
Giving Nolfi a Fair Fight

A Comparison of Emergent Modularity and Elman

Recurrent Networks

Sven Olsen and Matt Fowles

September 29, 2003

Abstract

During the last few years, using neural networks as robot controllers has received

heavy attention in robotics research. Searching for a network based controller capable

of accomplishing a particular tasks has proven time consuming. Genetic algorithms

are often applied to find these neural networks. In this paper we explore how well

genetic algorithms can find controllers for a trash removal task given various network

architectures. We repeat and expand on the work done by Nolfi in Using emergent

modularity to develop control systems for mobile robots, comparing his emergent mod-

ularity network with both two-layer feed forward and Elman architectures. While we

encountered a number of technical difficulties, we were able to verify some of Nolfi’s

findings: the emergent modularity architecture quickly converges to a solution, and the

two-layer architecture spends the first 75 generations stuck using an ineffective strategy.

Interestingly the Elman network, which was absent from Nolfi’s original experiment,

proves far more effective than Nolfi’s modular architecture in the long run.

1 Introduction

When applied to robotics, traditional AI demands that we carefully engineer the control

system of a robot, first using symbolic logic to abstract the state of the world, and then

applying more logic to determine the robot’s actions given that internal representation of the

world. Neural networks provide an alternative to traditional AI, allowing us to tie a robot’s

behavior more directly to its sensor values. All we need to do is define simple translations

from the robot’s sensors and actuators to the input and output nodes of the network, and,

given those translations, the nature of the network fully determines the robot’s actions.

Although the connection thus provided is more direct than those in a symbolic system,

hidden layers and recurrences in the network allow abstractions to be built into the system.

Unlike symbolic abstractions, these abstractions arise naturally from patterns in the sensor

data and the network architecture, rather than being created by engineers who perceive the

1



robot’s world very differently than the robot does with its sensors. For this reason neural

networks have the potential to produce simpler control systems that make effective use of

the data available to the robot.

If we have some way of knowing what a robot’s behavior should be given any set of sensor

values, then it is relatively easy to use backpropagation of error to find a set of network

weights that can approximate that behavior well. The problem with such a method is that

it relies on knowledge already inherent in the teacher function. If we, as robot designers,

already have access to a teacher capable of performing the desired behavior, then our task is

probably a simple enough one or well enough understood that we could create a controller

by hand. When attempting to create complex behaviors, we almost never have an easy way

of finding a teacher function. Thus we turn to genetic algorithms, which provide us with a

more widely applicable, albeit less efficient, method of finding network weights.

Formally, for any function f : Rn → Rm there exists a neural network with a hidden layer

that can approximate f to an arbitrary precision [2]. While in practice, we fix the number

of nodes in the hidden layer of a network, a two-layer neural network still has the potential

to accurately approximate a fairly large range of functions. These functions are naturally

parameterized by the weights and biases of the network. Given a robot with m sensors, n

actuators, and a method for defining the distance between the behaviors associated with

a particular weight set and our goal behavior, we can bring the accumulated knowledge of

search algorithms to bear on this problem using a neural network as the control function.1

The weight space implied by a neural network is typically large, and so we use genetic

algorithms as our search method because they are designed to effectively search such high

dimensional spaces.

While neural networks have tantalizing potential, they have yet to be used to create

complex robotic controllers. Nolfi [6] attempts to pave the way for more complex neural

network based controllers by introducing network architectures designed to encourage the

network to break complex tasks into simpler subtasks. He applies these architectures to

the task of removing trash from a small rectangular world, using genetic algorithm with a

fitness function defined by the robot’s success as a trash remover. Nolfi compares two of

his “modular” architectures to a number of more conventional networks. He finds that the

network that defines its own way of breaking up the task is by far the most effective. Nolfi

dubs this highly successful architecture an “emergent modularity” (EM) network. The

other modular network used in Nolfi’s experiment had one set of outputs that was used

while the robot was attempting to find the garbage, and one set that was used after it had

picked the garbage up. Nolfi explained the poor performance of this network by claiming

that the division of the task assigned by a human engineer was not particularly useful

given the limitations of the robot’s sensors. However, the EM network, free from many

of the assumptions of human designers, was better able to develop ways of overcoming its
1Recurrent networks cannot be properly considered functions, as they possess time sensitivity.

2



Two-Layer Elman Emergent Modularity

Figure 1: Network Architectures

limitations.

While Nolfi’s results are exciting, it can be argued that the EM architecture which

he champions has an unfair advantage over the other networks in his experiment. Nolfi’s

emergent modular system has well over twice the number of weights of any competitor.

While it is true that in some cases networks will benefit from having a smaller number of

weights, these cases usually involve interesting topologies with at least one hidden layer.

The concept of emergent modularity presented by Nolfi is certainly exciting, but it seems

that he has limited the competing networks in his experiment to a collection of straw men.

In this paper, we attempt to recreate Nolfi’s experiment, while supplying new competi-

tors with whom Nolfi’s emergent modularity system can compete on even footing. We chose

our networks such that they all have a roughly equal number of weights, as this provides an

objective measure of a networks power. To what extent the actual computational potential

of these networks is equivalent is left to more competent debaters. We chose two canonical

networks to compete against Nolfi’s architecture, both of which have proven successful in

solving reasonably complex tasks, an Elman network and a two-layer feed forward network

(see figure 1). While Nolfi does include a recurrent Network among his set of test archi-

tectures, his has only two recurrent nodes, and no hidden layer. Thus, an Elman network

allows for considerably more complex behaviors than Nolfi’s recurrent net.

2 Related Work

In the paper Using emergent modularity to develop control systems for mobile robots [6],

on which we base this experiment, Nolfi compares the performance of 5 different network

architectures when applied to a trash removal task. A one layer network with only input

and output nodes; a one layer network with two additional output nodes that recur as input

nodes; a two-layer network with 4 hidden nodes; a one layer network with two predefined

modules; and his EM network. These networks have 32, 60, 52, 64, and 128 total weights and

biases respectively. All of the architectures except the EM perform relatively poorly. While

the feed forward network ends with results almost as good as the emergent modularity’s,

its behavior does not translate to the real world as well as that of the modular architecture.

While Nolfi observes this phenomenon he does not offer any explanation of it. Nolfi argues,

3



after analyzing his results, that the difficult problem for the robots in this task is to identify

whether an object in the sensors is a wall or trash. The modular architecture determines

this by moving to the object and “dancing” back and forth in front of the object until it

has a clear sensor reading on which to base its decision.

When using genetic algorithms to find neural network weights for robot controls, we can

only hope to achieve success if we use an architecture such that there exists a set of weights

which preform the behavior we want. However, for the algorithm to be successful, we also

need the weight space implied by the architecture to be “GA friendly”, so that we have a

reasonable chance of finding a good weight set. For example, a network architecture may

allow a large range of values to preform the same action, making it easier to find, or it may

have very strict limits on the values, making the behavior hard to stumble upon. There may

well exist weight sets for the simpler networks used in Nolfi’s experiment that would allow

them to perform as well or better than his champion EM design. What Nolfi’s results show

is that the the EM architecture implies a weight space in which a GA has a much better

chance of finding an effective weight set.

One of the experiments discussed by Floreano in [7] demonstrates how learning can

be combined with a genetic algorithm in order to improve the chances that a GA will be

able to find a good weight set. Training some of the networks nodes on a prediction task

during the life of the robot and running a genetic algorithm on the robot population using a

fitness score based on a separate task forces the GA to move to sections of the search space

in which better prediction performance coincides with higher fitness scores. In Floreano’s

terminology, it forces the GA into areas where the learning space and the fitness space are

highly correlated. Because of this correlation, as learning improves the network’s predictive

ability, the learning also improves the network’s performance on the fitness task. Thus,

instead of being “hit or miss”, potential sets of network weights tend to achieve fitness

scores which reflect their distance from high fitness weight sets. This makes it easier for the

GA to navigate the weight space.

The Elman architecture that we use in our experiments was originally presented in [3].

Elman designed the network with the goal that it be able to effectively detect patterns in

time. He describes a series of test which demonstrates the network’s success at a number of

time dependent tasks. The first test of the network that he presents demonstrates its ability

to recognize patterns of XOR in time. His later experiments build up to much more complex

tasks, in which the network is used to identify the syntactic and semantic characteristics of

words.

While the topic has little relation to neural networks or robotics, Kaplan and Salesin’s

paper on Escherization [4] includes a description of an interesting search algorithm designed

to handle high dimensional spaces. Kaplan runs a number of simulated annealers in parallel,

and prunes the population of parallel annealers every n time steps to eliminating the lowest

scoring searches.

4



The behavior of an annealer can be roughly matched by running a GA and creating the

next generation by picking and mutating one of the most fit individual in the population

(the probability of not picking the most fits decays over time). Thus the search method

applied by Kaplan is similar to running a number of separate GA’s in parallel, each having

a small population, and pruning the population of the GA’s every n time steps. The fact

that Kaplan found this search method successful suggests that it could be an interesting

alternative to more conventional large population GA’s.

3 Methods/Mistakes

We began by searching for a simulator in which we could reproduce Nolfi’s work. We settled

upon Player/Stage2 because it provided a C++ interface, and allows us to simulate pucks

and a gripper module. The pucks function as trash since they can be picked up by the

grippers. Initially, we implemented Nolfi’s trash world as a player client that used truth

objects tied to the pucks to reset the world between runs. Unfortunately, we uncovered a

few bugs, not all of which we could track down. Since Player/Stage is conveniently open

source, we were able to hack the stage sources directly layering our controllers directly on

top of the ordinary update loop. This had the ancillary benefit of giving nearly an order

of magnitude increase in speed. We used Annie3 for our neural networks, which we also

customized, adding an Elman network class and code to allow us to set set network weights.

We wrote our own Genetic Algorithm library which, along with all of our modified sources,

can be downloaded from Sven’s website.4

In order to maximize our chances of successfully replicating Nolfi’s results, we modelled

our simulated world closely on his. We used a simulated 5.5 cm diameter circular robot

equipped with a gripper as our stand in for Nolfi’s Kheperas. The pucks were 2.3 cm in

diameter (the same size as Nolfi’s cylinders). Our world was a square box approximately

45 cm x 45 cm; Nolfi used a rectangular box, 60 cm x 35 cm. Like Nolfi, we initialized our

world to contain 5 randomly placed piece of trash. Trash placement was restricted such

that pieces of trash did not appear overlapping the world’s walls, the robot, or each other.

We assumed that because our world and Nolfi’s contained approximately the same amount

of trash per unit area, the minor difference in shape would not significantly effect robot

performance.

Nolfi’s Khepera received input from six forward facing IR sensors. The Stage simulator

does not provide IR sensors. Therefore, we did our best to use a scanning laser to approx-

imate IR values. We restricted the range of the sensors to 2.5 cm beyond the body of the

robot. We then converted the range information from the laser according to our approxi-
2http://playerstage.sourceforge.net
3http://annie.sourceforge.net
4http://www.sccs.swarthmore.edu/users/03/sven/downloads/NolfiRedux.tar.gz

5



mation of the expected IR sensor activations given white paper objects [1], which seemed

appropriate given that Nolfi covered all the objects in his experiment with white paper. The

stage simulator does not provide robots with two parallel motors, but instead has settings

for linear and angular velocity. To translate motor values to state, we first scale our outputs

into the range of -100 to 100. Then we assign a linear velocity based on the difference of the

two values with a bit of logic to handle signs intelligently. We then set the angular velocity

to rightMotor−leftMotor
3.4 . The 3.4 in the previous equation was discover via a manual hill

climb and subjective fitness function.

3.1 Network Architecture

All networks in our experiments take seven inputs, six sensor values and a seventh boolean

input which is activated when the gripper’s break beam is cut. The Elman and two-layer

networks each have four outputs. The first two specify the left and right motor values; the

last two inputs are used to open and close the gripper. We open or close the gripper when

only the corresponding node has an activation greater than .85. If both gripper control

nodes are greater than .85 we do nothing. The EM network is faithfully copied from Nolfi’s

description, a single layer feed forward network with 16 outputs. The 16 outputs are divided

into 4 sets, each set corresponding to one of the standard output commands. Two of the

nodes specify potential outputs for the set, and the other two nodes are “selector” neurons

which compete to determine which of the potential outputs is used.

Our two-layer network has a hidden layer of 10 nodes. The size of the hidden layer

implies a network with 124 total weights and biases, slightly fewer than Nolfi’s EM network

which has 128.

Elman networks are two-layer feed forward networks, with all the nodes in the hidden

layer made recurrent. The Elman network has seven hidden nodes, which implies 116 total

weights and biases. We could have used a hidden layer of 8 nodes, which would have implied

132 total weights and biases (closer to Nolfi’s 128), but we decided that our point against

Nolfi would be made more strongly if we found a network with fewer weights and better

performance.

3.2 Fitness Function

Initially we copied Nolfi’s fitness function, which ran 15 trials but halted each after the robot

successfully drops a piece of trash outside the world. If a robot removed a piece of trash

during a trial it would receive 1 fitness point, but if it only managed to pick up a piece of

trash it would get .1 fitness points instead. After starting several runs with this function,

we decided that the time required for 15 tests was too great. With this in mind, we lowered

the number of trials per run to seven. We soon noticed that now networks were achieving

nearly maximum fitness scores at very early generations. When we watched the high scoring

6



behavior for ourselves, however, we saw that all the robot was doing was driving forward,

grabbing a puck if it happened to run into one, and then opening its gripper as soon as it

hit the wall. While most of the time this was an ineffective behavior, in a population of

75 individuals all using this strategy, one or two will be lucky enough to have pucks placed

directly in front of them nearly all the time. Because a more inventive approach would not

be able to outscore these one or two lucky individuals, once the population is filled with

robots which used this strategy, new behaviors are unlikely to emerge.

Having learned our lesson, we returned the number of trials to 15, acting out of the

belief that while one or two individuals might get lucky 6 or 7 out of 7 times, they would be

much less likely to get lucky in 14 or 15 out of 15 trials. When we watched the preliminary

results from the next round of experiments, we noticed that some of our networks were

developing relatively simple behaviors, which failed in the cases when they encountered a

puck while holding another. In his own experiment, Nolfi had his simulator move one of

the other pieces of trash directly in front of a robot immediately after the robot picked up

a piece of trash. We decided that doing this might provoke more sophisticated behaviors,

and so implemented it in our own experiment. We then went a step beyond Nolfi in our

quest to encourage more sophisticated robot behaviors, and added what we called a “full

trial” option. If a robot manages to score over 10 points in its partial trials, we grant it the

right to compete in a full trial. In a full trial, the simulation does not terminate after the

robot successfully removes a piece of trash. Instead, it has a total of 800 actions, 4 times

the length of a partial trial, in which to clear the world, gaining an additional fitness point

for each piece cleared. In a full trial, a puck is not teleported in front of the robot when it

first picks up another puck.

We did all of this preliminary work using the two-layer network as our guinea pig. In

retrospect, this was probably a bad idea as the two-layer network takes a long time to display

interesting behaviors. We should have used the EM network to test our runs as we know

what sort of behavior it should manifest over time. Also, the EM network tends to produce

interesting results slightly more quickly then other networks.

3.3 Genetic Algorithm

Nolfi’s genetic algorithm used a population of 100 individuals. After evaluating the fitness

of each individual, the top 20 scorers created 5 children each, which formed the next gen-

eration’s population. Nolfi’s experiment represented each weight as an 8 bit number. He

randomly mutated the bits strings representing a neural net’s weights with a 2% chance of

replacing any bit with a new random bit. Since he mutated each bit with a 2% chance, only

1% of the bits are actually changed on average. He did not use crossover in his GA.

Our GA used vectors of doubles to represent the weights of a network. Although we

experimented with other population sizes and reproduction rates, we ended up using a

7



population size of 100, and creating 5 children from each of the top 20 individuals in a

given generation, just as Nolfi did. However, in order to more quickly search the space, we

included a special case in our children generating method. If a parent had 0 fitness, each

of its children had a 50% chance of being an entirely new gene. We hoped that this would

have the effect of introducing “new blood” into a population that had been filled up with

individuals that all performed the same simple strategy, relying on luck to propagate. We

mutated each weight in a gene with a 1% probability.5 We used a normal gaussian, centered

at 0 and scaled by 5 to mutate each double. We chose a gaussian distribution because a bit

selected at random from a number is more likely to be a low order bit (as there are more of

them), thus when bits are mutated randomly, the effect is more likely to be a small change

in the number.

4 Results

Unfortunately, there seems to be a lurking bug in our experiment implementation. After

running for a considerable amount of time (usually more than 14 hours / 70 generations), all

of our fitness scores abruptly drop to 0. We hypothesize that some quirk in the simulation

is causing the re-initialization of the world to fail in such a way that it becomes impossible

for the robots to interact with the pucks. However, as we have no way of viewing the world

mid-run, the problem is incredibly difficult to track down. Were we professional researchers,

we would leave several versions of the experiment running in graphical mode, and with a

little luck, after about 4 days (each trial take notably longer when running in graphical

mode), we would be able to start isolating the bug. However, as we are college students

with limited time, we have instead decided that the 75 generations of good data that we do

have is enough on which to base a paper.

Our Elman experiment mysteriously crashed after running for about 11 generations. We

wrote a quick program to resume the experiment from our log files. However, analysis of the

resumed experiment shows some odd trends. Rather than continuing from the high fitness

of the earlier data, the population starts entirely filled with individuals of nearly 0 fitness.

After about 70 generations, the Elman population is performing very well, but the learning

curve seems much slower than that of the initial Elman run. We imagine that the initial data

is not the resumed values but in fact data that is worse than random values as a starting

point for a GA. We suspect that our “new blood” addition to the GA gradually phased

out these undesirables, leading to the eventual high performance. But given the admirably

fast convergence rate demonstrated before the crash, we suspect that Elman networks can

converge much faster than our results suggest.6

A general trend that we noticed in all of the network populations is that a single behavior
5In retrospect, our GA would have been closer to Nolfi’s if we had used a 8% mutation rate.
6Owing to this bug, we treats the beginning of the “resumption” as generation 0 in the results section.

8



Figure 2: Emergent Modularity Network Fitness

Figure 3: Elman Network Fitness

Figure 4: Two-Layer Network Fitness

9



clearly comes to dominate the population relatively early on. As that behavior is refined,

the overall fitness of the population increases. We have yet to see two distinct behaviors

coexisting within a single population.

4.1 Two-Layer Network Results

When randomly initialized, a two-layer network tends

Figure 5: Two-Layer Behavior

to display one of three basic behaviors: spinning madly

in place, driving forward, or driving backward. Over

time these behaviors tend to mature into driving for-

ward (sometimes with a slight arc) and grasping at any-

thing that breaks the gripper beam (see figure 5). As

discussed in our methods/mistakes section, this simple

strategy can provide fitness scores anywhere between 0

and 10 depending on luck, though the maximum in a

given population is usually somewhere in the range of 5

to 7. This behavior seems to dominate the population

for the length of time that we were able to run the GA.

4.2 Elman Network Results

Randomly initialized Elman networks display much

Figure 6: Elman Behavior

of the same behavior as two-layer networks; though on

occasion a randomly initialized Elman net will switch

between two simple behavior mid run. However, over

time these mature into an effective and comparatively

quite complex strategy. The Elman network will per-

form a simple wall follow, driving around the edge of

the world. It will snap up any puck that it encoun-

ters, quickly drive itself into the wall, deposit the puck,

and resume its circuit (see figure 6). The wall following

strategy is well suited for the standard trials, where the

time limit implies that the robot cannot expect to search the entire world for pucks. By

limiting the area that it searches to the borders of the world, the robot maximizes its chance

of finding a puck and still having enough time left to drop it over the edge of the world. On

occasion the Elman driven robot will get stuck after dropping off it’s puck, but more often

it continues it’s search. Thus if it makes it to the “full trial”, the robot has a chance of

scoring on all pucks positioned near the edges of the world. We have observed lucky Elman

nets quickly clearing 4 of the 5 pucks in a world.

The evolved Elman net also adopts the strategy of “herding” pucks, capitalizing on a

10



subtle flaw in the stage simulator. While a real Khepera would require a notable amount

of time to pick up or release an object, the simulated robot can grab and release pucks at

no time cost. The robot will herd pucks in front of it by quickly opening and closing the

gripper. To imagine this behavior effectively one must realize that stage allows a newly

dropped puck to overlap an already existing puck, but will only pick up the closest puck

when the gripper closes. A dropped puck will appear slightly farther away from the robot

than one being pushed along in front of it. Under normal circumstances, pucks pushed in

front of a robot will tend to slide off to the side. However, when a puck starting to slide

out of line is picked up and dropped, it is recentered with respect to the robot’s line of

motion. We have seen robots carry as many as 3 pucks along with them by using this

strategy. During partial runs, the robot deals with the puck teleported in front of it by

simply adding the new puck to the herd that it is currently carrying. During full trial runs,

the robot will sometimes herd multiple pucks towards a wall before dropping them over it.

The evolved Elman behavior is capable of garnering fitness scores between 11 and 17 with

startling regularity.

4.3 Emergent Modularity Network Results

Randomly initialized EM networks tend to show a

Figure 7: EM Behavior

greater range of behavior than either of the other net-

work types. Like the others types, these networks will

occasionally just spin or drive straight; however, they

are also likely to display complex behaviors like rudi-

mentary wall following or obstacle avoidance. The evolved

EM networks displayed an initial wall follow similar to

that shown by the Elman networks. Unlike the Elman

network, the EM network will begin to spin quickly in

place after picking up a puck (see figure 7). The robot

lunges for a wall if it sees one during the spin. Because

it has been following a wall prior to picking up the puck, this lunge will almost always

bring it to a wall. This behavior sometimes mistakes other pucks for walls; however, this

is extremely uncommon as the pucks are rarely close enough to each other. Because the

teleported puck appears just outside of sensor range, the spinning robot never notices it and

cannot be confused by the new puck. If the network is unlucky enough to find a puck before

it finds a wall, it will just spin until time runs out. In full trials the network will continue

spinning after releasing the first puck by the wall.

The activation in the selector neurons, which define what module we use for a particular

output, is interesting. One module continually controls the left wheel and the drop com-

mand. The right wheel switches between its two modules (one of them moving it forward,

11



and the other causing it to spin or turn), depending on sensor values. The pick up mod-

ule switches the moment anything is in its sensor range or it has its gripper closed. The

switching of the right wheel accounts for both the wall follow and the spin states described

above.

5 Conclusions

Despite the difference in hidden layer size, our two-layer network produces results that are

similar to those that Nolfi reported for his own two-layer network. Up through generation

75, our own hidden layer fails to produce any interesting behavior. Nolfi found that his own

hidden layer networks were very slow to show interesting behaviors, only evolving successful

strategies around generation 400.

To some extent our results confirm Nolfi’s. The EM architecture quickly finds a success-

fully strategy. Nolfi’s EM architecture can be seen as a special case of a multi layer network.

We could design a multi-layer network in which the first 16 hidden nodes produce the same

outputs as Nolfi’s network, and then use another hidden layer to implement the selection

logic. Thus, the EM networks have a weight space that is a proper subspace of that of an

appropriately sized multi-layer network. The high degree of complexity shown by randomly

weighted EM networks, as well as the network’s success in later generations, indicates that

this subspace is a friendly one and that it can helpfully restrict our search. However, given

enough time, a GA run to find multi-layer network weights should be able to find behaviors

which are at least as good as the best behaviors produced using Nolfi’s architecture, which

is also true for two-layer networks. This is not true in the case of Elman networks.

In addition to Elman’s superior performance in our experiment, Elman networks have

a greater potential range of behavior than any non-recurrent network. Elman networks are

sensitive to the past experiences of the robot. For this reason the outputs of Elman networks

cannot be described as stateless functions. Given a situation in which the robot needs to

infer whether it is looking at a puck or a wall, the only way that a non-time sensitive network

such as Nolfi’s can hope to distinguish between the two cases is to vary its position until

the sensors values become unambiguous. However, an Elman network has the option of

varying its perspective and then making a conclusion on the nature of the object based on

its accumulated perceptions. Because of its recurrent character, an Elman network is able

to collect information to inform its future decisions in ways that are simply inaccessible to

networks without recurrences.

Just as Nolfi did, we see the modules associated with a part of the network being used in

many different circumstances. Nolfi observed that only one module in his architecture was

actually used, but that it was switched at frequent places throughout the entire life time

of the robot, rather than being associated with a single distal task. We observed the same

behavior in our EM networks, as they would activate the right motor module for obstacle

12



avoidance, puck tracking, and to spin at the last stage.

Recall that the motivation behind the emergent modularity architecture is that the

different modules will encourage the network to break the complex task of trash removal

into a set of simpler subtasks. Observing the behavior of the evolved EM network, it

certainly seems like the network is breaking the task up into two subtasks, grabbing a puck,

and spinning until it can place the puck outside of the world. Though the EM network’s

strategy does not lead to as high fitness as that found by the Elman net, the strategy

obviously divides the task into two distinct phases. And thus we can claim that Nolfi’s

architecture does successfully promote the division of the task. However, it is interesting

that the mechanism through which division is implemented is not as simple as changing the

network’s selector neurons depending on the current subtask.

While the Elman network outperforms Nolfi’s architecture in the long run it is interesting

to note that even given random values, an EM network has a fairly good chance of displaying

complex behaviors. Ordinarily a GA has to bootstrap its behavior, searching randomly for

behaviors that will garner some fitness and thus help direct it towards more effective areas

on which to focus. During this bootstrapping phase, the GA will not be able to differentiate

between partial solutions and complete failures. If many of the complex behaviors that are

common to the weight space of Nolfi’s architecture provide these partial solutions, then the

GA has a simpler task. Thus with this architecture a GA has fewer complete failures to go

through in its bootstrapping phase and will thus have a shorter bootstrapping phase and

more time to focus on developing solutions.

6 Future Work

While we do feel that the data we have managed to collect is significant, our experiment has

been hampered by numerous technical difficulties. Many of these were resolved, but a few

are still outstanding. We would like to be able to run our experiment for 1000 generations,

giving us data symmetric to that in Nolfi’s original paper. Unfortunately doing this would

require tracking down the lurking bug in our simulation code - a task beyond our current

means.

As our data reveals, there are a number of ways in which behaviors that have evolved

in the stage simulator would not translate to a Khepera in the real world. The herding

technique adopted by the Elman network would be a disaster if attempted by a real Khepera

collecting cylindrical trash, as in the real world two objects cannot occupy the same space.

The act of grabbing and releasing objects can also be accomplished instantaneously in the

simulated world–another impossibility for a Khepera in the real world.

In order to legitimately challenge and extend Nolfi’s experiment, we would need to alter

the stage simulator to the point where behaviors evolved using it could be translated to an

actual Khepera. This would require considerably improving the current collision detection

13



and response algorithms, imposing a time penalty on gripper actions, properly implementing

simulated IR sensors, and possibly modifying the robot motion logic to explicitly simulate

2 wheeled robots.

We would like to run tests using Elman and two-layer networks that contain a variety of

hidden layer sizes, so that we could evaluate the value of the extra weights. When training

networks with hidden layers, it is often advantageous to use a smaller hidden layer, as this

encourages the network to create more compact representations of its sensor values. It

would be interesting to thoroughly study the effects of hidden layer size of a network when

the weight space is traversed by a genetic algorithm, rather than the gradient descent of

backpropagation.

As Nolfi found in his experiment, we found that the EM network did not use several of

its modules. In fact, in both experiments only the right motor module is ever switched. We

could try reducing the number of modules available to the EM architecture by providing

modules for the motors only. This would shrink the implied search space considerably, and

thus potentially speed up the already intimidating convergence rate of Nolfi’s architecture.

While somewhat outside the realm of simple extensions to Nolfi’s work on emergent mod-

ularity, we think that the trash world experiment has the potential to provide an interesting

context in which to study the interactions of evolution and learning. Nolfi and Floreano [7]

argue that training a network to predict the next sensor states during its fitness trial can

substantially improve the convergence speed of a GA. The Elman and two-layer networks

used in our experiment could be given an additional six outputs nodes, which would repre-

sent the network’s prediction of its next IR sensor states. Thus we could use the task and

environment already built up for our earlier experiments in order to further test Nolfi and

Floreano’s hypothesis.

Nolfi and Floreano [7] also discuss a network in which half of the outputs act as teachers

for the other half. Their analysis of this network indicates a sort of controlled instability

in the weights that allows it to achieve its task. Perhaps having modules for the teacher

function would allow it to control its behavior in interesting ways.

Since both Nolfi’s emergent architecture and Elman networks provide reasonable results

on this task, perhaps a more difficult task would provide more compelling evidence for or

against one of them. For this reason our initial design of this experiment included two

tasks. The second experiment, which we could not implement do to time constraints, was

“puck segregation”. Given a world that is split into two colors and pucks of each color, we

require that the robot set the world into order. We had planned on providing the robot

inputs which would specify the half of the world it was on and the color of the puck that it

was holding. We expect that both Nolfi’s EM and Elman networks would have found this

task more challenging; and for that reason, the degree to which they succeed could provide

important insights into the limitations of each.

We have made a point of avoiding biological metaphors when justifying our own work.

14



We use genetic algorithms because they have proven to be effective tools for searching high

dimensional spaces, not out of any desire to argue for the biological plausibility of our

experiments. For this reason an appropriate extension to our work would be to experiment

with alternate search algorithms. As mentioned in our related work section, the parallel

simulated annealer used by Kaplan and Salesin [4] has also proven effective at searching high

dimensional spaces, and would probably have a greater chance of exploring more distinct

behaviors than the genetic algorithm.

Recall that properly a genetic algorithm includes crossover, though in our own exper-

iment we have followed Nolfi’s lead and set the GA’s crossover rate to zero. However,

abandoning crossover limits a genetic algorithm’s ability to cover a large section of the

space effectively. For that reason it might be worth experimenting with algorithms such as

Kaplan’s, which keep the attention of the search algorithm spread over a larger range of

potential solutions.

Nolfi states that he

did not obtain better performance with respect to simulations without crossover

... This may be due to the fact that the crossover points were randomly chosen.

Restricting the crossover points so as to preserve the organization of the network

may produce better results (Montana, an Davis, 1989)[5]

Providing those restrictions and rerunning the GA with crossover would undoubtedly

provide interesting information about the search spaces of our networks.

References

[1] K-Team S. A. Khepera 2: User Manual, version 1.1 edition, 2002.

[2] G. Cybenko. Approximation by superpositions of a sigmoid function. Mathematics of

Control, Signals and Systems, 2:303–314.

[3] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[4] Craig S. Kaplan and David H. Salesin. Escherization. In Kurt Akeley, editor, Siggraph

2000, pages 499–510. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[5] D. J. Montana and Lawrence Davis. Training feedforward neural networks using genetic

algorithms. In Proceedings of the International Joint Conference on Artificial Intelli-

gence, pages 762–767, 1989.

[6] S. Nolfi. Using emergent modularity to develop control system for mobile robots, 1997.

[7] Stefano Nolfi and Dario Floreano. Learning and evolution, 1999.

15



Appendix: Simulating Khepera IR values

In Nolfi’s emergent modularity experiments, the robots had to react to their environment

given only the measurements provided by their IR sensors. Many of the more interesting

behaviors that Nolfi observed seemed to have developed for the purpose of coping with the

limitations of this sensor data.

The Khepera 2 User manual [1] provides information on the expected activation of the

robot’s IR sensors. Figure 8 charts the activation of the robot’s four forward facing sensors,

given a 5cm x 5cm white paper square surface placed in front of the Khepera at various

distances.

We have modified the sensor values from one of stage’s simulated scanning lasers to

approximate a Khepera’s IR sensors. The scanning laser shoots out 8 beams, spaced so as

to evenly cover a 180 degrees arc directly ahead of the robot. We ignore the first and last

beams, the positions of the remaining six roughly approximate the positions of the Khepera’s

IR sensors. The value returned by the scanning laser is the distance that the beam travels

from the center of the robot before hitting an obstacle, or its maximum range in the case

that the beam hits nothing (in our case, max range was 6cm). Because the diameter of the

simulated robot is 5.5cm, it can detect objects up to 3.25cm in front of it. We generate our

simulated IR values by considering any laser value closer to the robot’s center than 3cm to

create an IR activation of 0, we then scaling the last 3cm worth of data to approximate the

values reported by the IR manual for an IR sensor with an obstacle dead ahead of it (see

Figure 9).

There is a problem with our approximation method. As you can see from Figure 8,

even the IR sensors not pointed directly at the obstacle will still pick up some amount of

activation. However, if our laser beams miss an obstacle, they always return 0; there is no

partial activation that results from having a beam close to an obstacle, as is the case with

the IR sensors.

We imagine that even though the behavior of our simulated IR sensors are not quite

like that of real IR sensors, the data that they return will create some of the same sorts of

problems for the robot that real IR data would.

16



Figure 8: Actual IR values vs distance (cm)

Figure 9: Approximated IR values vs distance (cm)

17


