
Image Simplification and Vectorization

Sven Olsen∗

University of Victoria
Bruce Gooch†

University of Victoria

Abstract

We present an unsupervised system which takes digital photographs
as input, and generates simplified, stylized vector data as output.
The three component parts of our system are image-space styliza-
tion, edge tracing, and edge-based image reconstruction. The de-
sign of each of these components is specialized, relative to their
state of the art equivalents, in order to improve their effectiveness
when used in such a combined stylization / vectorization pipeline.
We demonstrate that the vector data generated by our system is of-
ten both an effective visual simplification of the input photographs,
and an effective simplification in the sense of memory efficiency, as
judged relative to state of the art lossy image compression formats.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Graphics Utilities

Keywords: image stylistization, vectorization, image reconstruc-
tion

1 Introduction

In this paper, we approach image stylization, edge tracing, and
edge-based image reconstruction with the assumption that the three
tasks are synergistic. We describe an unsupervised system that
takes digital photographs as input and uses them to create stylized
vector art, resulting in a simplification of the source data in terms
of bit encoding costs, as well as visual complexity.

The algorithms that comprise our system are modified relative to
the current state of the art in order to take better advantage of the
complementary nature of the component tasks. Our primary tech-
nical contributions are:

1) We show that the edge modeling problem, previously identified
as one of the fundamental challenges facing edge-only image repre-
sentations, has a relatively simple and robust solution, in the special
case of images that have been stylized using aggressive smoothing
followed by soft quantization. (See Section 3.4.)

2) We introduce a novel edge-based image reconstruction method,
which differs from prior work in that anisotropic regularization is
used in place of a varying width Gaussian blur. While previous vec-
tor formats have successfully used varying width blurring to model
soft edges, we found that the technique leads to artifacts given the
unusually large widths required by our traced vector data. Our regu-
larization approach avoids these artifacts, while maintaining a high
degree of reconstruction accuracy. It also avoids the expense of cal-
culating a wide varying width blur—considerably reducing the cost
of luminance reconstruction. (See Section 6.1 and Figure 3.)

∗e-mail:sven2718@gmail.com
†e-mail:brucegooch@gmail.com

3) We demonstrate that the vector data generated by our system is,
in the sense of memory efficiency, significantly simpler than the in-
put photographs. Specifically, we compare our vector output with
state of the art lossy image compression results. While our vector
encodings are in no sense accurate reproductions of the input pho-
tographs, they do maintain a sharp, stylized look, while preserving
most visually important elements. The results of general purpose
compression codecs suffer from significant visual artifacts at simi-
lar file sizes. (See Sections 5 and 7.1.)

2 Background

The idea that image stylization, simplification, and edge tracing
should be approached as complementary tasks has a long history
in both computer graphics and computer vision.

In their seminal work on the theory of image segmentation, Mum-
ford and Shah [1989] cited the ability of artists to capture most im-
portant image information in simple cartoon drawings as evidence
that it should be possible to create image segmentations that con-
tain most of the semantic content present in natural images. In his
contemporaneous work, Leclerc [1989] went further, and hypothe-
sized that the most efficient possible representation of natural im-
ages would be as the sum of a piecewise smooth image and noise
data.

Elder [1999] similarly hypothesized that a sparse, edge-only im-
age representation could be used to store all the visually impor-
tant content of most natural images. Elder developed an image for-
mat that contained only edge locations and edge gradient samples,
and demonstrated that it was possible to reconstruct high quality
grayscale images from that data. While Elder’s format did not show
competitive memory efficiency when compared with more conven-
tional lossy image encodings, the similar but more recent edge-only
format proposed by Mainberger et al. [2010] has been able to out-
perform conventional lossy encodings in the case where the inputs
are limited to cartoon-like images.

An interesting variation on Elder’s edge only format was developed
by Orzan et al. [2008], who introduced diffusion curves. The pri-
mary purpose of the diffusion curve format is to enable artists to
more easily construct soft-shaded vector art. The underlying edge
data is thus parameterized by splines, in contrast to Elder’s use of
point samples. The image reconstruction method remains closely
related to Elder’s, although modifications have been made to sup-
port the presence of color. Diffusion curve vector data can also be
generated automatically from source photographs, though the con-
sequences of this process for either memory efficiency or visual
fidelity relative to the source photograph have not been studied.

DeCarlo and Santella [2002] described a system for converting in-
put photographs to cartoon-like images. The goal of this system
was to simultaneously simplify and clarify the contents of an im-
age. It operated by combining eye tracking data with mean shift
segmentations and a b-spline wavelet analysis of edge lines. The
resulting images were qualitatively simpler than the source data,
but also appealing when considered as works of digital art.

Lecot and Lévy [2006] developed Ardeco, a combined image styl-
ization / vectorization system. Ardeco operates by combining a
Mumford-Shah energy minimization with a sequence of increas-

Input
Photograph

Unsharp
Mask Line Integral

Pre-Quantized
Image

Stylized
Source Image

Hard
Quantization

Larger σ , per
Equation (1)

2

Larger σ , per
Equation (2)

2

Figure 1: Overview of image space simplification. The green boxes on the right show the degree to which the variance-based reparameter-
ization given in equation (2) removes the influence of σ2. The unsharp mask result shown in blue is calculated with σ2 = 1.1σ1, while both
alternate results are shown with σ2 = 1.6σ1.

ingly simplified triangle meshes, which are converted to spline
boundary curves at the end of the process. In an approach simi-
lar to Elder’s edge image reconstruction, adaptive blurring is used
to model soft edges between regions. A study of the memory effi-
ciency of Ardeco’s vector output showed that the system could, un-
der some circumstances, outperform JPEG encoding, but the com-
pression results were less competitive relative to the more modern
JPEG2000 standard [Stoiber 2007].

Gradient meshes are a vector format capable of representing smooth
shaded images. A gradient mesh uses a collection of spline patches
to parameterize smoothly varying colors over an image. Gradient
meshes are supported by vector editing programs such as Adobe
Illustrator, but have traditionally required a large amount of user
guidance to create. However, in 2007, Sun et al. showed that
the task of finding an optimal gradient mesh representation of an
input image could be productively approached using a nonlinear
least squares solver [Sun et al. 2007]. Subsequent work by Xia
et al. demonstrated that arbitrary input images could be repre-
sented by relatively simple gradient meshes at a very high level
of accuracy [Xia et al. 2009]. The primary motivation of gradi-
ent mesh generation algorithms has been to simplify graphic design
tasks [Price and Barrett 2006]; however, Sun et al. [2007] were able
to show that for simple images, their optimized gradient mesh re-
sults led to more compact files than JPEG compression.

The image-space stylization filter which we present here benefits
from the many recent computer graphics papers that have advanced
the art and science of image space stylization. In particular, we
make use of the ability of difference of Gaussians filtering to effec-
tively simplify and abstract facial features, something first noted by
Gooch et al. [2004]. Variations on difference of Gaussian filtering

that allow a wider range of artistic effects and higher quality results
have since been developed by Winnemöller et al. [2006], Kang et
al. [2007], and Kyprianidis and Döllner [2008]. The flow-guided
filters introduced by Kang et al., in particular, have proven very
useful in creating high quality stylizations for use as input to our
vector tracing and reconstruction algorithms.

3 Image Space Simplification and Stylization

The image space simplification is composed of three steps. First,
the photograph is converted to grayscale, and a combination of blur-
ring and unsharp masking is used to remove details and exaggerate
edges. Next, an edge orientation field is generated, and used to
guide a line integral convolution, thus simplifying object boundary
lines. The operation finishes by applying a non-uniform soft quan-
tization filter, setting most of pixels in the image to one of three
main tones. Figure 1 demonstrates the effects of each step.

3.1 Blurring and Unsharp Masking

Let Iσ denote the Gaussian blur of image I using a kernel of stan-
dard deviation σ. Blurring the input image using σ1, then perform-
ing an unsharp mask of strength p using a second blur result yields
an image Im, which will have reduced details but stronger edges.
If σ2 is defined to be the sum of the widths of the unsharp mask
blur and σ1, then result of these first two steps can be expressed as
follows,

Im := Iσ1 + p(Iσ1 − Iσ2), where σ2 > σ1. (1)

The closer σ2 is to σ1, the larger p must be to create a noticeable

edge enhancement effect. This makes experimenting with different
parameter values tedious, as small changes to either σ value can
dramatically change the effect of different p values. In practice, it
is helpful to reparametrize equation (1) in terms of the variance of
the Difference of Gaussians image E := Iσ1 − Iσ2 .

Im := Iσ1 + p

√
V ar(Iσ1)

V ar(E)
E. (2)

As shown in Figure 1, under this parameterization the choice of σ2

proves to have very little impact on the resulting image Im. Thus
most features of the image Im can be controlled by adjusting two
relatively intuitive parameters—the base blur strength σ1, and the
unsharp mask strength p. All images shown in this paper are gen-
erated using σ2 := 1.1σ1, while p is typically set at .16, and σ1 is
typically set to 0.2 percent of the input image width.

3.2 Line Integral Convolution

The second step simplifies object boundaries and eliminates most
of the noise introduced by unsharp masking. This is achieved by
using a smoothed edge orientation field to guide a line integral con-
volution of Im. The edge orientation field is calculated using a
structure tensor constructed from blurred Sobel gradient terms, as
in Kyprianidis and Döllner [2008]. We typically use a structure
tensor blurring parameter, σf , equal to 0.64 percent of the image
width.

The edge orientation field is then used to guide line integral convo-
lution, with a Gaussian kernel of standard deviation σc, using the
method of Cabral et al. [1993]. As noted by Kang et al. [2007],
Cabral’s method requires a slight modification in the case of edge
orientation fields, as at each sample point there are two displace-
ments consistent with the edge orientation. This ambiguity is best
resolved by choosing the displacement that minimizes the bending
of the line integral’s center line.

Our system defaults to a line integral convolution strength σc equal
to 1.6 percent of the image width, but, this can lead to over blurring
in more detailed images. In such cases we frequently use a σc value
of 0.3.

3.3 Linear Transformation and Soft Quantization

The image is next modified in such a way that shadows and
highlights will be exaggerated. We achieve this effect by apply-
ing a piecewise linear transformation chosen to map the values
(.45, .75, .85) to (.2, .61, .95). We refer to the result of this trans-
formation step as the pre-quantized image.

As a final step of the stylization, we apply a non-uniform soft-
quantization function. The function we use is similar to the soft
quantization operator in Winnemöller et al. [2006], but it allows
arbitrary bin centers, and lacks the discontinuities present in the
original operation.

Given an ordered list of characteristic values, b = (b1, ..., bn), the
hard quantization of a value v is given by,

q(v,b) := bi where bi is the characteristic value closest to v.

To create an analogous soft quantization function, we split the in-
terval [b1, bn] into n − 1 regions, each of which will map to a
different sigmoid curve. For v ∈ [b1, bn], let bi be the closest
characteristic value to v. Now define the sigmoid curve index j
as j := i − [bi ≥ v] + [v = b1] (here the square brackets are
Iverson notation [Graham et al. 1994]). Finally, define the width

of sigmoid j as wj := 1
2
(bj+1 − bj), and its vertical shift as

cj := 1
2
(bj+1 + bj). Using these variables, we create the following

non-uniform, continuous soft quantization function,

p(v, s) := wj
sig(s

wj
(v − cj))

sig(s)
+ cj . (3)

Note that the the division by sig(s) ensures C0 continuity. Also
note that that the derivative at the border between two quantization
regions is independent of the spacing between bins. Specifically,
p′(cj , s) = s sig′(0)

sig(s)
. Thus the sharpness of the soft quantization is

controlled exclusively by the sharpness parameter s; it is indepen-
dent of the spacing of the characteristic values. For sigmoid func-
tions with sig′(0) = 1, equation (3) converges towards p(v, s) = v
as s → 0. In other words, the maximally smooth soft quantization
function is simply the identity transform.

Given arbitrary v ∈ R, we clamp v to the interval [b1, bn], before
applying equation (3), this allows us to extend the domain of the
soft quantization function to all R.

In our stylization system, the non-uniform soft quantization func-
tion is applied using b = (.2, .61, .95), and s = 2.

We also choose to apply soft quantization using the exponential
sigmoid sig(x), rather than more commonly seen sigmoidal curves
such as tanh or erf .

sig(x) :=

{
1− e−x if x > 0,

ex − 1 otherwise.
(4)

The choice of sigmoid function impacts the edge model used when
vectorizing and reconstructing the stylized image, and using the ex-
ponential sigmoid in the soft quantization step implies that the dif-
ferential equations in Section 6.1 have simple solutions.

After applying soft quantization, our image stylization is complete.
We thus refer to the soft quantization result as the stylized source
image.

The boundaries between quantization regions will form the starting
lines input to our tracing algorithms. As the image shadows and
highlights are exaggerated by the linear transformation, and then
quantized using bin values chosen to divide the image into extremes
of light and dark regions, there is a sense in which our approach
to combined stylization and vectorization follows the advice given
by Edwards [1979] in her famously effective instructional book,
Drawing on the Right Side of the Brain. Rather than attempting to
trace the outlines of individual objects, we simply focus on tracing
patterns of light and dark tones.

3.4 A Solution to the Edge Modeling Problem

When Elder [1999] initially proposed his edge-only image format,
he identified edge modeling as a central challenge facing any edge-
only format, and one that might limit the utility of edge only im-
ages in practice. To solve the edge modeling problem, we must be
able to characterize how image data should behave on either side of
an edge. For soft edges, simply sampling the gradient at the edge
crossing is not sufficient, it is necessary to have some model that
specifies how luminance will vary as the distance from the edge
increases. Elder’s solution to the edge modeling problem was to as-
sume that all luminance variations across edges could be modeled
by the error function erf(x). The edge model parameter k was then
found by fitting this function to the source image data near the edge.

Elder’s edge fitting method sampled only four pixel values, but,
even so, it lead to good results in the context of his own edge-based

Input Result

x

k

w

w

0

1

Figure 2: The first image reconstruction step is to calculate a set of edge distance values x and sharpness values k based on the nearest
edge points. With x and k thus defined, we can use the definitions in Section 6.1 to calculate data weights w0 and edge weights w1. In these
visualizations, brighter colors correspond to larger values.

system. However, performing a high accuracy fit of an edge model
function to the very smooth edges that appear in our own styliza-
tions would require much larger sets of pixel samples, making edge
modeling both difficult and computationally expensive.

Yet, in the context of our own system, it is not necessary to perform
such a function fit, as we have additional information that can be
used to derive parameters for the model functions.

Quantizing the image implicitly partitions it into a set of regions
having shared quantization values. Some of the boundaries between
regions will occur in areas having low difference of Gaussian re-
sponse, and thus, they will tend to have smoothly varying, locally
linear luminance values. It is such smooth region boundaries that
are responsible for most of the apparent “smooth shading” in our
stylized images. We now show that, by assuming local linearity
near region boundaries, it is straightforward to derive a single sharp-
ness parameter, k, which models the behavior of the stylized image
across such a region edge.

Let I : Ω → [0, 1] be a grey scale image, having domain Ω ⊂ R2.
Let S : Ω→ R+ be an image that defines the desired sharpness of
the soft quantization at any point in the image. The soft quantization
of I using sharpness image S is thus p(I, S).

Consider the case in which the boundary between quantization re-
gions occurs in an area where I is approximately linear. More
specifically, let x0 be a point on the boundary between two adja-
cent regions, and Ω0 be a subset of Ω for which,

I(x) ≈ I(x0) +∇I(x0) · (x− x0), and∇I(x) ≈ ∇I(x0).

Now consider a line x(δ) normal to the boundary, where δ denotes
the distance from the boundary point x0. By local linearity, the
image value at a point x(δ) ∈ Ω0 can be approximated using,

I(x) ≈ I(x0) + δ||∇I||. (5)

Substituting equation (5) into equation (3) yields the result that, for
points inside the region Ω0, the soft quantization p(I, S) can be
approximated by

p(x, s) ≈ wj
sig(s

wj
(δ||∇I(x)||))
sig(s)

+ cj . (6)

Where the sigmoid index j is chosen to correspond to the sigmoid
centered at the boundary value, such that cj = I(x0).

In general, if an image has been aggressively smoothed, then lumi-
nance variations throughout the image are likely to be both small
and locally linear. However, if an image has been sharpened, then
luminance variations near edges are likely to be large and discon-
tinuous.

In areas with high edge response, we thus model edges as sharp
step functions, represented in our regularization model as edges
with infinitely large sharpness parameter, k. For low edge response
cases, however, we use the edge model function wj sig(kx), with
k = s

wj
||∇I(x)||, which, as demonstrated by equation (6), will be

a highly accurate model in the case of linearly varying image data.

4 Tracing

The algorithm we use to extract edge lines from the stylized im-
age has the same general form as Potrace or the extraction method
used by Diffusion Curves [Selinger 2003; Orzan et al. 2008]. What
makes our tracing method unusual is that, even though we are con-
structing a representation of the stylized source image, we never
reference the stylized image data directly. Instead, the information
collected in the tracing step comes exclusively from intermediate
images generated during the stylization process, specifically, from
the pre-quantized and hard-quantized images (see Figure 1).

Source Photograph Licensed from iStockPhoto R©

Reconstruction using Blurring Reconstruction using Regularization Edge Lines

Figure 3: Comparison of varying width blurring and anisotropic regularization. Elder’s method for smooth edge reconstruction operates by
first solving a Laplace equation to generate a blur width image constrained by the sharpness values stored at edge boundaries. That data
then guides a varying width Gaussian blur. The blur kernels cause banding artifacts near soft edges—notice that where the girl’s cheek fades
to shadow, the blur reconstruction contains two strong edge lines, though only a single edge exists in the vector data.

Small Region Elimination We begin by interpreting the hard
quantization result as an initial segmentation of the image. We per-
form a quick check to eliminate any small regions that may have
resulted from the quantization. This check is similar to the small
region elimination phase used in Selinger’s Potrace vectorization
system [Selinger 2003].

Generating Boundary Curves An initial set of boundary curves
is found using marching squares. However, the boundaries found
by marching squares take the form of closed loops around each re-
gion of the simplified quantization. We convert the closed loops
returned by marching squares into a series of curve segments, such
that every boundary point appears only once. We call any point
on the boundary curve a corner if it lies between 3 or 4 different
regions. We then convert our border curves into a set of curve seg-
ments, such that each segment connects two corner points. In the
special case that a matched pair of closed loops contains no corner
points, we convert them into a single closed boundary curve.

Boundary Curve Simplification The curves returned by march-
ing squares take the form of a list of vertical and horizontal line
segments, where each segment is exactly 1 pixel width long. We
convert these segments into a more efficient format by applying a
straightness constraint, similar to that used in Potrace’s polygon
extraction phase [Selinger 2003].

Edge Sharpness Sampling While performing the boundary
simplification step, we sample the gradient magnitude of the under-
lying pre-quantized image points. Gradient sampling is performed
using the results of a max filtered Sobel convolution, with the re-
sult that the largest gradient magnitude within rg of the edge will
be recorded. That sample is then used to imply an edge sharpness
parameter k, as explained in Section 3.4.

5 Encoding

There are several parameters of the tracing process that can affect
the memory efficiency of our vector data. Specifically, the small
region elimination and line simplification parameters, and the gra-

dient max filter width rg .

In order to generate memory efficient vector data, we further sim-
plify the traced data, as described below.

Sharpness Data First, we resample the edge sharpness samples
k using sampling frequency fk, where fk is defined relative to the
image space distance between two consecutive sharpness samples.
Then, we define kmax, a maximum bound on the edge sharpness
parameter k, and threshold all samples using this upper bound.
Next, we lower the resolution of the k values, by limiting each k
sample to one of nk values, which are found by applying k-means
clustering to the set of sharpness samples for which k < kmax. We
default to kmax = .6, fk = 1.7, nk = 5. After these simplifica-
tions, edge samples of the form (xi, k) can be eliminated, if both
adjacent edge samples store the same k value, because such sam-
ples correspond to redundant knots in the linear spline that defines
the sharpness values at any point.

After those simplifications have been applied, we store the k sam-
ples using Huffman coding. This requires storing frequency in-
formation for both each unique k value, and each unique sam-
ple position, xi. To improve on the efficiency of this coding, we
reexpress the position data xi in terms of a sequence of offsets,
di = xi+1 − xi.

Luminance data Luminance information makes up a very small
part of our vector format. We encode the luminance samples by
simply recording a 2 bit id for each of the connected components
implied by the edge data.

Edge Data After the edge model data simplifications have been
applied, by far the largest portion of our vector data is the edge lines
themselves. These are stored using Huffman encoding, after reex-
pressing each edge line in terms of its start point, and a sequence of
delta values that define each successive point in the edge.

Source Photograph Copyright 2006 Holger Winnemöller. Used with permission.

Source Image JPEG2000 at 5.8kB JPEG2000 at 5.8kB

DLI at 5.3kB JPEG at 5.76kB Vector at 5.8kB
Figure 4: In the case of color photographs, we generate comparisons relative to the source both with and without the color channels. In this
example, it appears that the luminance channel accounts for the majority of the information stored by the JPEG2000 encoding, as discarding
the chrominance channels leads to only slight improvements in the compressed result. In this example, all compression results lose visual
features that are preserved and sometimes even clarified by the vector stylization. Note in particular the shading of the students’ coats, and
the details of their faces.

6 Reconstruction

Our boundary curve data implies a segmentation of the image pix-
els into connected components. The characteristic luminance val-
ues stored for each of these components can be used to construct
a piecewise constant image. Our image reconstruction problem
is thus to modify this piecewise constant image to create a piece-
wise smooth image that reflects, as accurately as possible, the edge
sharpness values stored along the boundary lines.

We create such a piecewise smooth image by solving an anisotropic
regularization problem [Weickert 1996]. Unlike the related image
reconstruction methods of Elder and Orzan et al., we do not gener-
ate an intermediate blur width image, thus, the computational costs
of our reconstruction should generally be less than the computa-
tional costs of image reconstruction in either of those systems, as
our method requires only one linear system solve, while the varying
blur method requires both a linear solve and a convolution with a
large blur kernel. Also, as shown in Figure 3, given the vector data
generated by our system, regularization appears to result in higher
quality reconstructions of very smooth edges.

6.1 Regularization

Consider the very simple case in which our piecewise constant im-
age can be described as a step function,

v(x) :=

{
1 if x > 0,

−1 otherwise.

Here we are assuming that, though the image is two dimensional,
the value at any point is determined solely by the x-position.

There is only one edge boundary line in this image, which occurs at
x = 0. Assume that the edge sharpness parameter at this edge is k,
so the correct smooth image is defined by the exponential sigmoid
curve, sig(kx).

Now assume that our smooth image f(x) must be reconstructed
from v(x) using an energy minimization process, in which f(x) is
defined as the minimum of the following regularization functional,

min
f

∫ ∞
−∞

w1(x)|f ′(x)|2 + w0(x)(f(x)− v(x))2dx. (7)

Here w0(x) is a weighting function that determines how strongly
f(x) is attracted to v(x), while w1(x) is a weighting that causes
f(x) to tend towards smooth functions.

Applying the Euler-Lagrange equations to equation (7) shows that
f(x) must satisfy the following ordinary differential equation [We-
instock 1974],

w0(x)(f(x)− v(x))− f ′(x)w′1(x)− w1(x)f ′′(x) = 0. (8)

We can reinterpret equation (8) as a constraint on the possible w
functions by setting f(x) = sig(kx), i.e., by forcing the regulariza-
tion result f(x) to be a perfect reconstruction of the correct image
sig(kx).

There are many weighting functions that satisfy equation (8), given
f(x) = sig(kx). And if we were only interested in reconstructing
images that contained a single straight edge line, any of these pos-
sible w definitions would work equally well. However, while it is

Uncompressed Stylization Vector at 2.1kB Stylization at 2.1kB

Figure 5: This is a case in which the vector stylization noticeably loses several visually important features that are present in the image-
based stylization of the source, such as a portion of the outline of the left eye. But as the rightmost image shows, a JPEG2000 encoding of
the stylized image with equivalent memory efficiency exhibits significant compression artifacts. At such extremely small file sizes, the loss of
some visual information may be inevitable.

important that the reconstructed image be correct in the single edge
case, it is also important that our weighting function definitions lead
to reasonably good reconstructions given much more complex edge
sets. We have found that some weighting function definitions lead
to better reconstructions of complex edge images than others, even
if both functions produce perfect results in the single edge case.

We now provide the w definitions used in our own reconstruction
algorithm. These definitions have proven to yield good reconstruc-
tions even given complex edge information.

We use a different set of weighting function definitions depending
on whether or not the edge sharpness parameter k is less than an
average sharpness value, given by K. When k = K, we use the
simplest possible solution to equation (8),

w1(x) = 1 and w0(x) = K2.

For points far away from the edge boundary we clamp the weighting
functions to this simple solution, setting w1(x) = 1 and w0(x) =
K2 for all |x| > x1. In order to avoid introducing discontinuities as
a result of this clamping, we will parameterize additional solutions
to equation (8) in terms of the free parameter ε, chosen such that,

w0(x1) = K2, w1(x1) = 1, for x1 such that 1− sig(kx1) = ε.

Reconstruction errors due to clamping become increasingly likely
when k is either much greater or much smaller than K, thus it is
beneficial to set K to be a value that represents an average level of
edge sharpness. We use K = 0.3.

For the case of a low sharpness edge, in which k ≤ K, we use the
constant data weighting function w0(x) := K2 for all values of x.
This reduces equation (8) to an ordinary differential equation inw1,
the solution to which is [Potter et al. 1987],

w1(x) =
K2

k2
+ ek|x|ε(1− K2

k2
).

The main drawback of these weighting function definitions is that
w1(x) is negative for very large x. However, clampingw1 to have a
minimum value of 1 causes minimal reconstruction errors, provided
that we use an ε value which is sufficiently small. We use ε = .05.

A different pair of w definitions is needed to handle the high edge
sharpness case, in which k is larger than K. We derive weighting
functions for this case by enforcing the constraint that w0(x)K2 =
w1(x). Solving equation (8) given this constraint yields,

w1(x) = e
(1−K2

k2)|kx|
ε
1−K2

k2 , w0(x) = K2w1(x).

Like the low sharpness solutions, these weighting functions have
undesirable behaviors far from x = 0. In this case, the problem is
that the exponential increase in the two functions leads to unreason-
ably large weighting terms. However, as in the low sharpness case,
reconstruction errors are minimal given a small sufficiently small ε
value. Note that, after clamping is applied, these equations imply
that for very large k, w1(x) approaches a constant function having
a point discontinuity, specifically,

w1(x) ≈

{
ε if x = 0,

1 otherwise.

Thus, very sharp edges may be modeled using weighting functions
defined as in the average k = K case, but ignoring pixels in neigh-
boring regions whenever calculating the gradient terms associated
with the smoothness weight.

In the general case, our reconstructed image f(x), defined over
image domain Ω ⊂ R2, is found by solving the 2D regularization
problem,

min
f

∫∫
Ω

w1(x)||∇f(x)||2 + w0(x)(f(x)− v(x))2dx. (9)

The 2D weighting functions w1(x) and w0(x) are defined by
choosing the weighting function definition implied by the edge
sharpness value k of the closest edge point xe, and evaluating those
functions with x = ||x − xe||. The partial differential equation
implied by equation (9) is then solved using finite difference meth-
ods. We solve the implied sparse linear system using successive
over relaxation [Saad 2003]. As shown in Figure 2, the distance and
sharpness data needed to define the weighting functions is complex,
but, well known distance image and Voronoi tessellation algorithms
can be used to generate this data efficiently [Rosenfeld and Pfaltz
1966].

6.2 Post Smoothing

The image reconstructions generated by the regularization solve
tend to accurately reproduce any smooth shading in the source styl-
ized image. However, hard edges often suffer from “jaggies”, alias-
ing artifacts that result from the conversion of the boundary data to
a discrete image grid. One simple way to eliminate such artifacts is
to reconstruct images at a much higher resolution than they will be
displayed, and then downsample the results, thus taking advantage
of the resolution independent nature of the data. However, we have
found it both more computationally efficient and more effective to
apply a slight smoothing effect to the result. We use an anisotropic
smoother for this purpose, specifically, we apply coherence enhanc-
ing anisotropic diffusion, as defined by Weickert [1996], using the
coherence biasing parameter α = .001, and scalespace parameter
t = 3.6.

7 Results

Our system is implemented in a mixture of Matlab and C. The dom-
inant cost of image stylization and tracing is the line integral con-
volution step, which can can require more than a second of pro-
cessing time per image. Studies performed by Kyprianidis and
Döllner, however, demonstrate that similar convolutions can be per-
formed at much greater speeds using GPU processing [Kyprianidis
and Döllner 2008].

Reconstructing images at megapixel resolution takes several sec-
onds, the overwhelming majority of which is spent performing the
linear solve. We use a combination of supersampling and post
smoothing to reduce aliasing artifacts in our result images, there-
fore, all results are rendered at at least 1.5x the desired resolution.
Again, the costs of image reconstruction could likely be dramat-
ically reduced by using an iterative linear solver implemented in
CUDA or OpenCL.

There are several cases in which our algorithms fail to create sim-
ple, curve-based representations of an initial image. If the styliza-
tion filter does not create a useful abstraction of the initial image,
then our vectorization will also fail to be useful. Such failure cases
often appear to be over-blurred or over simplified. Additionally, ap-
plying aggressive line simplification and region elimination settings
can lead to shape distortions in the vectorized results. While errors
of this last form can be fixed by using more conservative line sim-
plification settings, doing so will increase curve complexity, lead-
ing to results which fail in our goal of creating a vector graphic that
represents a simplification of the input photograph, in the sense of
improved memory efficiency.

7.1 Memory Efficiency

Our goal is to create simple, stylized images in which the key visual
content of a source image has been clarified, rather than discarded.
Given an input photograph and the resulting vector image, the de-
gree to which we are successful in this goal is difficult to quantify.

For example, consider a system in which, for any input photo-
graph, the “vector stylization” returned is always an arrangement
of two black boxes on a white background. From a memory effi-
ciency standpoint, it is clear that a dramatic simplification has been
achieved. However, such a system could not reasonably claim to
“preserve and clarify” the key visual content of the photograph.
But, while quantifying the degree to which the stylizations are
“good abstractions” is difficult, and, perhaps necessarily subjec-
tive, identifying cases in which the vectorizations fail to improve
memory efficiency is straightforward.

Source Image at 1.28kB Vector at 1.28kB

Figure 6: Simplification relative to a lossy compression of the input
photograph, as generated by the Kadaku JPEG2000 encoder.

7.1.1 Simplification Relative to the Input Photograph

If the vector data, when stored to disk, has a higher encoding cost
than a high fidelity compression of the input photograph, then the
claim that the vector stylization is an effective simplification is sus-
pect. For example, even if the vector image appears visually simpler
than the source photograph, if the initial photograph can be encoded
with a high degree of visual fidelity using 7kB, then any vector re-
sult that requires more than 7kB of storage space has actually made
the source data more complex than it was in its original form.

The resolution independent nature of our vector format makes di-
rect comparisons of encoding efficiency impossible. As our vector
data can be used to reconstruct smooth images at arbitrarily large
sizes, storage efficiency per-pixel of output data is undefined.

Thus, for a collection of example vector stylizations, we have cre-
ated compressed versions of the input photographs having similar
filesizes. Cases in which the compressed images suffer from min-
imal visual distortions must be considered failure cases for our al-
gorithm, in the sense that the generated vector data does not appear
to represent a true simplification of the input photograph.

For the purposes of these tests, we have used the Kakadu
JPEG2000 encoder to create lossy compression results at various
file sizes [Taubman 2010]. The Kakadu encoder is arguably the
most efficient JPEG2000 encoder available. It performed very well
in the 2005 codec comparison studies performed at MSU [Vatolin
et al. 2005]. More recently, it proved to be the best of the vari-
ous JPEG2000 codecs tested by Lee in his DLI performance stud-
ies [Lee 2010].

We have also generated a few results relative to the older JPEG
image compression standard. In these cases our vector images typ-
ically pass the data simplification test easily, as JPEG compression
shows strong blocking artifacts at filesizes close to those of our vec-
tor encodings. The JPEG result shown in Figure 4 was generated
using XnView’s optimized Huffman table encoder.

Using JPEG2000 compression results in less extreme visual errors,
but noticeable artifacts frequently still result when images are com-
pressed into file sizes that match those achieved by our vector for-
mat.

Finally, in some of the Figures in this paper, we have included com-
parisons relative to the DLI research codec. As of 2009, DLI was
the record holder for minimum MSE compression of image data at
very small file sizes [Lee 2010]. But the DLI research codec does
not allow files to be created as a specified bitrate, so generating
comparison images matching specific file sizes is difficult.

Comparing the JPEG result shown in Figure 4 to the DLI or

Vector at 1.62kB Stylization at 1.62kB

Vector at 1.82kB Stylization at 1.82kB

Figure 7: Vector results compared to JPEG2000 encodings of the
source image space stylization.

JPEG2000 encodings should make it clear how dramatically image
compression technology has improved over the last twenty years.
In comparison to the sophisticated techniques used by the Kadaku
encoder, the vector encoding method presented here is quite imma-
ture, and there is likely significant room for improvement. Even so,
the encoding costs for our simplified vector images are often less
than 3kB per image. And at such extremely small file sizes, even
state of the art codecs frequently result in noticeable artifacts; thus
demonstrating that it is reasonable to consider our vector results ef-
fective simplifications of the input photographs. Example results
are shown in Figures 4 and 6.

7.1.2 Simplification Relative to the Image Space Stylization

While the image space stylization step is designed to anticipate sub-
sequent vectorization, the translation to a vector format will typ-
ically cause noticeable changes in the image content. Given our
goals, such changes are not necessarily problematic. Our aim is to
create effective abstractions of the input photograph, and depending
on what sorts of changes exist between the image space stylization
and the vector data, either one might be considered more success-
ful in that aim. For example, in the case of the Ardeco system
the “artifacts” of vectorization typically create attractive artistic ef-
fects [Lecot and Lévy 2006].

However, in many of the cases shown in this paper, the vector ab-
stractions lose some important visual content relative to the source
stylization. For example, the outline of an iris may disappear, or a
small but important highlight may be eliminated. Figure 5 contains
a good example of the iris simplification problem. In such cases,
if conventional image compression can be used to store the stylized
image at the same filesize as the vector data, we must conclude that
the vectorization step of our pipeline is sacrificing visually impor-
tant information unnecessarily.

Thus, we compare our vector renderings not only to lossy com-

Vector at 5.92kB Stylization at 5.92kB

Figure 8: A case that fails our second evaluation test. Vectoriz-
ing the stylization discards many visual features, but, most of those
visual features could have been faithfully preserved by simply cre-
ating a JPEG2000 encoding of the stylized source image.

pressions of the source data, but, also, to lossy compressions of
the image space stylizations from which the vector data is derived.
As with the comparisons against compressions of the input pho-
tographs, the results of these studies often demonstrate that the vec-
tor encodings do occupy a level of memory efficiency at which the
source stylization cannot be stored with good visual fidelity. Sev-
eral examples that pass this test are shown in Figures 7 and 5, while
Figure 8 shows a failure case.

8 Discussion and Conclusions

The very high memory efficiency achieved by our vector format
is interesting from an academic perspective, as it provides a case in
which artistic abstraction is clearly linked to information efficiency.
Such links have often been hypothesized [Leclerc 1989; McCloud
1994; DeCarlo and Santella 2002; Winnemöller et al. 2006]. But
stylization systems that can be used as an alternative to lossy com-
pression are relatively rare [Collomosse et al. 2005; Stoiber 2007;
Sun et al. 2007; Qu et al. 2008]. And ours is arguably the first such
system capable of showing clear benefits relative to JPEG 2000 en-
coding.

It is also interesting to note that the very low bitrate results cre-
ated by cutting edge compression algorithms often contain artifacts
not unlike the results of an artistic stylization. For example, com-
pare the artifacts in the bottom left image of Figure 4 to the brush
stroke stylizations created by Hertzmann [1998]. This further sug-
gests that at extremely low bitrates the most effective compression
methods may be those that approach increasingly stylized images.

The simplicity of our curve data suggests that our system could
prove useful as a tool for artists. For example, one of the draw-
backs of diffusion curves, as discussed in Orzan et al. [2008], is
that the number and complexity of the edges returned by the trac-
ing method makes the data difficult for artists to manipulate. For
this reason, most of the diffusion curve results shown in that paper
are generated from scratch by an artist, even in cases where the vec-
tor image is based on a reference photograph. The curves traced by
our own joint stylization/vectorization framework are simpler and
thus likely easier to manipulate; and as both our vector format and
diffusion curves are variations on Elder’s [1999] edge only format,
converting our data to the diffusion curves format would be rela-
tively straightforward.

References

CABRAL, B., AND LEEDOM, L. C. 1993. Imaging vector fields
using line integral convolution. In SIGGRAPH ’93: Proceed-
ings of the 20th annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, 263–270.

COLLOMOSSE, J. P., ROWNTREE, D., AND HALL, P. M. 2005.
Stroke surfaces: Temporally coherent artistic animations from
video. IEEE Transactions on Visualization and Computer
Graphics 11, 5, 540–549.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. In Proceedings of SIGGRAPH ’02,
769–776.

EDWARDS, B. 1979. Drawing on the right side of the brain. J. P.
Tarcher, Los Angeles, California, USA.

ELDER, J. H. 1999. Are edges incomplete? Int. J. Comput. Vision
34, 2-3, 97–122.

GOOCH, B., REINHARD, E., AND GOOCH, A. 2004. Human fa-
cial illustrations: Creation and psychophysical evaluation. ACM
Trans. Graph. 23, 1, 27–44.

GRAHAM, R. L., KNUTH, D. E., AND PATASHNIK, O. 1994.
Concrete Mathematics: A Foundation for Computer Science.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

HERTZMANN, A. 1998. Painterly rendering with curved brush
strokes of multiple sizes. In SIGGRAPH ’98: Proceedings of the
25th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, 453–460.

KANG, H., LEE, S., AND CHUI, C. K. 2007. Coherent line draw-
ing. In NPAR ’07: Proceedings of the 5th international sym-
posium on Non-photorealistic animation and rendering, ACM,
New York, NY, USA, 43–50.

KYPRIANIDIS, J. E., AND DÖLLNER, J. 2008. Image abstrac-
tion by structure adaptive filtering. In Proc. EG UK Theory and
Practice of Computer Graphics, 51–58.

LECLERC, Y. G. 1989. Constructing simple stable descriptions for
image partitioning. International Journal of Computer Vision 3,
1, 73–102.

LECOT, G., AND LÉVY, B. 2006. Ardeco: Automatic region detec-
tion and conversion. In Eurographics Symposium on Rendering.

LEE, D., 2010. DLI image compression .
http://sites.google.com/site/dlimagecomp/software.

MAINBERGER, M., BRUHN, A., WEICKERT, J., AND FORCH-
HAMMER, S. 2010. Edge-based compression of cartoon-like im-
ages with homogeneous diffusion. Pattern Recognition In Press,
Corrected Proof .

MCCLOUD, S. 1994. Understanding Comics. HarperCollins.

MUMFORD, D., AND SHAH, J. 1989. Optimal approximations
by piecewise smooth functions and associated variational prob-
lems. Communications on Pure and Applied Mathematics 42,
577–685.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: a
vector representation for smooth-shaded images. In SIGGRAPH
’08: ACM SIGGRAPH 2008 papers, ACM, New York, NY,
USA, 1–8.

POTTER, M. C., GOLDBERG, J. L., AND POTTER, M. C. 1987.
Mathematical methods / Merle C. Potter, Jack Goldberg, 2nd
ed. ed. Prentice-Hall, Englewood Cliffs, N.J. :.

PRICE, B., AND BARRETT, W. 2006. Object-based vectorization
for interactive image editing. Vis. Comput. 22, 9, 661–670.

QU, Y., PANG, W.-M., WONG, T.-T., AND HENG, P.-A. 2008.
Richness-preserving manga screening. ACM Transactions on
Graphics (SIGGRAPH Asia 2008 issue) 27, 5 (December),
155:1–155:8.

ROSENFELD, A., AND PFALTZ, J. L. 1966. Sequential operations
in digital picture processing. J. ACM 13, 4, 471–494.

SAAD, Y. 2003. Iterative Methods for Sparse Linear Systems,
second ed. SIAM, Philadelphia.

SELINGER, P., 2003. Potrace: a polygon-based tracing algorithm.
http://potrace.sourceforge.net/potrace.pdf, September.

STOIBER, N. 2007. Compression of images and videos by ge-
ometrization. Master’s thesis, Technische Universitat Munchen.

SUN, J., LIANG, L., WEN, F., AND SHUM, H.-Y. 2007. Im-
age vectorization using optimized gradient meshes. ACM Trans.
Graph. 26, 3, 11.

TAUBMAN, D., 2010. Kakadu JPEG2000 Encoder. University of
New South Wales. http://www.kakadusoftware.com/.

VATOLIN, D., MOSKVIN, A., PETROV, O., AND
TITARENKO, A., 2005. JPEG 2000 image codecs com-
parison. Moscow State University. http://compression.ru/
video/codec comparison/jpeg2000 codecs comparison en.html.

WEICKERT, J. 1996. Anisotropic diffusion in image processing.
PhD thesis, Dept. of Mathematics, University of Kaiserslautern.

WEINSTOCK, R. 1974. Calculus of Variations: With Applications
to Physics and Engineering. Dover Pub. Inc., New York.

WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-
time video abstraction. ACM Trans. Graph. 25, 3, 1221–1226.

XIA, T., LIAO, B., AND YU, Y. 2009. Patch-based image vec-
torization with automatic curvilinear feature alignment. ACM
Trans. Graph. 28, 5, 1–10.

