Supplemental Material: Encoding Cost Studies

Contents
1 Notes on kdu Compression 3
1.1 Gradient Meshes and kdu L e 5
2 Example Results and Reference Compressions 6
2.1 Female Face e e 7
2.1.1 Vector Results L e e e 7
2.1.2 Image Space Stylization Result 8
2.1.3 Imput Photograph e 8
2.2 Two Student Example oL 10
2.2.1 Vector Results o e e e 10
2.2.2 Image Space Stylization Result e 11
2.2.3 Input Photograph e 11
2.3 Historical Photograph #1 e 13
2.3.1 Vector Results o e e e 13
2.3.2 Image Space Stylization Result 14
2.3.3 Input Photograph e 14
2.4 Historical Photograph #2 e 15
2.4.1 Vector Results 15
2.4.2 Image Space Stylization Result o 16
2.4.3 Imnput Photograph e e 16
2.5 Historical Photograph #3« . L e 17
2.5.1 Vector Results L e 17
2.5.2 Image Space Stylization Result 18
2.5.3 Imput Photograph e 18
2.6 Gallery Example oL e 19
2.6.1 Vector Results o e e e 19
2.6.2 Image Space Stylization Result e 20
2.6.3 Input Photograph e 20
2.7 Girlin Shadow L 21
2.7.1 Vector Results e e 21
2.7.2 Image Space Stylization Result 21
2.7.3 Input Photograph e e 22
2.8 Sunglasses Example oL e e e 23
2.8.1 Vector Results e 23
2.8.2 Image Space Stylization Result o 24
2.8.3 Imput Photograph e e 24
2.9 Skull Image e e 26
2.9.1 Vector Results L e e 26
2.9.2 Image Space Stylization Result 27
2.9.3 Input Photograph 28
2.10 Mandrill Test Image o L o e e e 29
2.10.1 Vector Results o e e e 29
2.10.2 Image Space Stylization Result 30
2.10.3 Input Photograph e 30
2.11 Architecture Example oL e 32

2.11.1 Vector Results e e e e e e 32

2.11.2 Image Space Stylization Result 33

2.11.3 Input Photograph o e 33

2.12 Cameraman Example L 34
2.12.1 Vector Results o e 34

2.12.2 Image Space Stylization Result 34

2.12.3 Input Photograph e e 35

3 Vector Format Details 36

1 Notes on kdu Compression

In these tests, we use the Kakadu JPEG2000 codec to create lossy compression results at various file sizes.! The Kakadu encoder
(kdu) is arguably the most efficient JPEG2000 encoder available, it performed very well in the 2005 codec comparison studies

performed at MSU. More recently, it proved to be the best of the various JPEG2000 codecs tested by Lee in his DLI performance

studies. 2 3

To evaluate each vectorization test case, we generate four different reference compression results. Unlike research codecs
such as DLI, the Kakadu encoder is capable of quickly creating results at specific filesizes—making it straightforward to create

comparison results at filesizes matching that of the vector data.

10

o0
o ®
. ooseme *

ot— = : ‘ :
20 25 30 35 40
Filesize (kB) as a function of PSNR kdu at 0.24kB (psnr=11.06) kdu at 0.33kB (psnr=14.04)

kdu at 4.44kB (psnr=29.82) kdu at 9.44kB (psnr=33.00) Source Image

Thttp://www.kakadusoftware.com/
?http://compression.ru/video/codec_comparison/pdf/jpeg2000_codec_comparison_en.pdf
3http://sites.google.com/site/dlimagecomp/test-methodology

http://www.kakadusoftware.com/
http://compression.ru/video/codec_comparison/pdf/jpeg2000_codec_comparison_en.pdf
http://sites.google.com/site/dlimagecomp/test-methodology

Here we show a range of kdu compression results for one of the source images included in our test set. At very small filesizes,
the codec appears to limit itself to encoding only luminance information, even when the input image contains colors. While the
specific behavior varies for each input image, extreme compression artifacts reliably occur at filesizes near 1kB, though more
minor distortions may remain at much larger filesizes.

1.1 Gradient Meshes and kdu

In their 2007 paper on gradient meshes, Sun et al. suggested that compactness was one of the potential benefits of a gradient
mesh image representation [1]. Though not the focus of their paper — they did reveal a that a nearly perfect gradient mesh
representation of this yolk image had a filesize of 7.7kB, while storing the same image in JPEG format would require 37.5kB. The
yolk example would have been much less compelling had they compared relative the JPEG2000 format — the kdu compression
of the yolk image at 7.7kB shows few if any visible artifacts.

Source Image kdu at 7.7kB

While Sun et al. did not publish any filesize information beyond that of the yolk image, the single subject, smooth shaded
images on which they test their algorithm are generally very amenable to low bitrate compression. For example, the following
image requires a gradient mesh considerably more complex than that used in the yolk, and can also be represented well at by
JPEG2000 at 7.7kB.

Source Image kdu at 7.7kB

More recent research on gradient meshes by Xia et al. has focused on generating meshes for more complex input images [2].
While their work is impressive, Xia et al. appear to have set aside the goal of compactness—perhaps because the very high
efficiency of compression codecs such as Kakadu makes demonstrating any advantage relative to state of the art lossy compression
difficult.

2 Example Results and Reference Compressions

In this section, we show vectorization results for a large range of input photographs. The vector reconstruction is the end result
of our system. The image space stylization shows the stylized image that the vector tracing is based on. The input photograph
shows the photograph prior to stylization. If the input photograph is color, we also show a greyscale version of the input. For
each of these four images, we also show the image as it appears given JPEG2000 compression to a filesize matching that of the
vector reconstruction. Thus, when an image is labeled as “compressed”, it can be assumed to be a kdu compression to a filesize
that matches that of the vector encoding.

2.1 Female Face

Here we show results for one of the images that appears in Sun et al. [1]. Our vectorization results for this image are relatively
poor — may significant details are lost or distorted a result of the stylization step, and important shading information is lost in
the vector result. However, unlike a gradient mesh result, the vector data generated by our algorithm is sufficiently compact
that JPEG2000 encoding produces many visible artifacts at a similar resolution.

In order to better handle the high overall lightness of this image, the bin values by have been changed from their default
setting of (.45,.75,.85) to (.6, .8,.85).

2.1.1 Vector Results

Encoding Costs

Boundary Curves: 1.22kB (60%)
Edge Sharpness Data: 0.765kB (38%)
Luminance Data: 0.051kB (2.5%)

Total File Size: 2.04kB

Edge Lines

Vector Reconstruction, 2.04kBCompressed Reconstruction

2.1.2 Image Space Stylization Result

Image Space Stylization Result Compressed Stylization

2.1.3 Input Photograph

Greyscale Input Photograph Compressed Greyscale Input

Input Photograph Compressed Input Photograph

2.2 Two Student Example

For this example, the o, parameter has been changed to .3, from its default value of 1.6. This reduces the amount of smoothing
in the stylized image, and thus causes the vector result to differ more significantly from the initial stylization. Reducing the
amount of smoothing used in the stylization makes it much less likely that the reconstructed image will be capable of matching
the stylized result—and particularly large differences between the vector reconstruction and input stylization are visible in this
example.

2.2.1 Vector Results

Encoding Costs

Boundary Curves: 3.98kB (69%)
Edge Sharpness Data: 1.69kB (29%)
Luminance Data: 0.095kB (1.7%)

Total File Size: 5.76kB

Vector Reconstruction, 5.76kB Compressed Reconstruction

10

2.2.2 Image Space Stylization Result

Image Space Stylization Result

2.2.3 Input Photograph

L

Greyscale Input Photograph Compressed Greyscale Input

11

o -
Input Photograph Compressed Input Photograph

12

2.3 Historical Photograph #1
2.3.1 Vector Results

Encoding Costs

Boundary Curves: 1.74kB (83%)
Edge Sharpness Data: 0.291kB (14%)
Luminance Data: 0.073kB (3.5%)

Total File Size: 2.11kB

Vector Reconstruction, 2.11kB Compressed Reconstruction

13

2.3.2 Image Space Stylization Result

V|

Image Space Stylization Result Compressed Stylization

2.3.3 Input Photograph

4

Input Photograph Compressed Input Photograph

14

2.4 Historical Photograph #2
2.4.1 Vector Results

Encoding Costs

Boundary Curves: 1.34kB (83%)
Edge Sharpness Data: 0.212kB (13%)
Luminance Data: 0.065kB (4%)

Total File Size: 1.62kB

Vector Reconstruction, 1.62kB Compressed Reconstruction

15

2.4.2 Image Space Stylization Result

Image Space Stylization Result Compressed Stylization

2.4.3 Input Photograph

Input Photograph Compressed Input Photograph

16

2.5 Historical Photograph #3

For this example, the bin values by have been changed from their default setting of (.45,.75,.85) to (.3,.65,.85), while the o,
parameter has been changed to .3, from its default value of 1.6.

2.5.1 Vector Results

Encoding Costs

Boundary Curves: 2.34kB (79%)
Edge Sharpness Data: 0.536kB (18%)
Luminance Data: 0.08kB (2.7%)

Total File Size: 2.96kB

Vector Reconstruction, 2.96kB Compressed Reconstruction

17

2.5.2 Image Space Stylization Result

Image Space Stylization Result

2.5.3 Input Photograph

Input Photograph Compressed Input Photograph

18

2.6 Gallery Example

This is an example that illustrates the difficulty of distinguishing between “success” and “failure” cases. At 3.45kB, kdu is
capable of generating relatively faithful versions of the input photograph — though some significant artifacts are visible. The
vector reconstruction, meanwhile, is not very faithful to the stylization result — significantly altering important features such
as the mouth, glasses, and eyebrows. Despite this, the vector reconstruction is arguably an effective “abstraction” of the input
photograph. Interestingly, the nonlinearities introduced by process of stylization and vectorization lead to a greyscale image
that is significantly less amenable to compression than the source. Thus, while the greyscale source image shows relatively few
compression artifacts, the greyscale abstraction is clearly more difficult to encode accurately.

2.6.1 Vector Results

Encoding Costs

Boundary Curves: 2.44kB (71%)
Edge Sharpness Data: 0.929kB (27%)
Luminance Data: 0.076kB (2.2%)

Total File Size: 3.45kB

Edge Lines

Vector Reconstruction, 3.45kB Compressed Reconstruction

19

2.6.2 Image Space Stylization Result

Image Space Stylization Result Compressed Stylization

2.6.3 Input Photograph

Greyscale Input Photograph Compressed Greyscale Input

Input Photograph Compressed Input Photograph

20

2.7 Girl in Shadow
2.7.1 Vector Results

Encoding Costs

Boundary Curves: 1.06kB (69%)
Edge Sharpness Data: 0.417kB (27%)
Luminance Data: 0.054kB (3.5%)

Total File Size: 1.53kB

Vector Reconstruction, 1.53kB Compressed Reconstruction

2.7.2 Image Space Stylization Result

Image Space Stylization Result Compressed Stylization
21

2.7.3 Input Photograph

Greyscale Input Photograph Compressed Greyscale Input

Input Photograph Compressed Input Photograph

22

2.8 Sunglasses Example

2.8.1 Vector Results

Vector Reconstruction, 3.43kB

23

Encoding Costs

Boundary Curves: 2.73kB (80%)
Edge Sharpness Data: 0.595kB (17%)
Luminance Data: 0.108kB (3.1%)

Total File Size: 3.43kB

Compressed Reconstruction

2.8.2 Image Space Stylization Result

Image Space Stylization Result Compressed Stylization

2.8.3 Input Photograph

Greyscale Input Photograph Compressed Greyscale Input

24

Compressed Input Photograph

Input Photograph

25

2.9 Skull Image

For this example, the bin values b; have been changed from their default setting of (.45,.75,.85) to (.5, .85,.9).

2.9.1 Vector Results

Edge Lines

26

Encoding Costs

Boundary Curves: 2.19kB (77%)
Edge Sharpness Data: 0.581kB (20%)
Luminance Data: 0.074kB (2.6%)

Total File Size: 2.84kB

Vector Reconstruction, 2.84kB Compressed Reconstruction

2.9.2 Image Space Stylization Result

Image Space Stylization Result Compressed Stylization

27

2.9.3 Input Photograph

Greyscale Input Photograph Compressed Greyscale Input

Input Photograph Compressed Input Photograph

28

2.10 Mandrill Test Image
For this example, the bin values b; have been changed from their default setting of (.45,.75,.85) to (.6, .8,.85).

2.10.1 Vector Results

L~ Yy

S Encoding C

NN ncoding Costs
=
~—
§§& Z Boundary Curves: 5.92kB (79%)
= — Edge Sharpness Data: 1.41kB (19%)
~ Luminance Data: 0.196kB (2.6%)
=
== Total File Size: 7.53kB
= =

Vector Reconstruction, 7.53kB Compressed Reconstruction

29

2.10.2 Image Space Stylization Result

Image Space Stylization Result Compressed Stylization

2.10.3 Input Photograph

ORI it ,
i ‘ -
A i S

Greyscale Input Photograph Compressed Greyscale Input

30

.
y &

Input Photograph Compressed Input Photograph

31

2.11 Architecture Example

For this example, the bin values by have been changed from their default setting of (.45,.75,.85) to (.6,.8,.9), while the o,
parameter has been changed to .8, from its default value of 1.6.

2.11.1 Vector Results

Encoding Costs

Boundary Curves: 5.54kB (89%)
Edge Sharpness Data: 0.532kB (8.6%)
Luminance Data: 0.138kB (2.2%)

Total File Size: 6.21kB

Edge Lines

Vector Reconstruction, 6.21kB Compressed Reconstruction

32

2.11.2 Image Space Stylization Result

Image Space Stylization Result Compressed Stylization

2.11.3 Input Photograph

|

Compressed Input Photograph

33

2.12 Cameraman Example

2.12.1 Vector Results

Encoding Costs

Boundary Curves: 1.51kB (83%)
Edge Sharpness Data: 0.257kB (14%)
Luminance Data: 0.057kB (3.1%)

Total File Size: 1.82kB

Edge Lines

Vector Reconstruction, 1.82kB Compressed Reconstruction

2.12.2 Image Space Stylization Result

34

2.12.3 Input Photograph

Input Photograph Compressed Input Photograph

35

3 Vector Format Details

32-bit Integer

64-bit Double

Integer Array
Luminance Data :

Characteristic Values

Double Array
Huffman Coded Data

Compressed Integer Array

i Edge Data Edge Sharpness Data

Delta Histogram Ml Spline Lengths
Delta Indices X Value Mapping § k Value Mapping
Edge Start Points X Histogram k Histogram

Edge Lengths x Indices

Figure 1: Encoding Format. The header includes the resolution of the source image, as well as the resolution of the label image
used when calculating connected components. The edge sharpness data includes the sampling frequency of the position data, f,
along with the maximum sharpness bound k... The integer n;,; records the number of edge lines for which the sharpness is
uniformly infinite, 74, ¢. The histogram calculated for edge delta values is slightly compressed; in that the edge delta histogram
is forced to be symmetric about the origin. For example, if there are three delta values equal to —4 and one value equal to 4,
the recorded histogram will consider the frequency of both 4 and —4 to be two.

The details of the encoding format are summarized in Figure 1. The format is most simply described in terms of the following
primitives:

Integer Arrays A list of unsigned integer values, L = (i, ...,4,). Integer arrays are encoded by first storing the number of
elements, followed by the number of bits b needed to encode any element of array, calculated as b = [log,(max(L))]. Both
n and b are stored as 32-bit integers. Finally, the elements (ig, ..., i,) themselves are stored using b bits each.

Compressed Integer Array A slightly more memory efficient variant on an integer array. For a list of unsigned integer values,
(igy ...y i), the number of elements n is recorded, followed by the the maximum integer m = max(L). Then a huffman
encoding for the integers between 0 and m is generated by assuming that all integers in that range are equally probable. If
m is a power of two, a compressed integer array encoding will be nearly identical to the uncompressed encoding. In other
cases, it may be slightly more memory efficient.

Double Arrays A list of 64 bit floating point values, (dy,...,d,). Double arrays are encoded by first storing the number of
elements, followed by the 64-bit representation of each element of the array.

Huffman Coded Data Store a list of unsigned integer values L = (g, ..., 15), using a matching list of probabilities py, ..., Py
The probability data is generated by calculating the frequency of each integer value, and then setting p; equal to the number
of times i occurs in L. The probabilities are used to generate Huffman coding strings for each element of L, which are then
used to store each element of L. In order to store data in this format, the probability data (i.e., the data histogram) must
be stored in a separate integer array.

Typically, the Huffman encoded integer list will contain indices into a set of either floating point or integer values. Thus a
list of source double values (dy, ..., d,,) might be coded by ﬁrstg%nding the set of all unique d; values. Represented as a double

array, that set defines a mapping between the double values d and integers i. A histogram for the implied integer list (ig, ...,)
would then be calculated. As written to disk, the source double array (dy, ..., d,) would represented as the combination of its
mapping data, histogram data, and the Huffman coded indices (g, ..., i,).

The edge and sharpness data are both stored using flattened lists. Position data for all edges is concatenated into a single
list, while the number of points in each edge is stored as a separate integer array.

It is often the case that all points on an edge line will be “infinitely sharp”. No sharpness data is stored for such edge lines.
To facilitate this, edges are arranged into a list having the property that the first n;,; edges fall into the “infinitely sharp” case.
Thus, the number of sharpness splines stored is equal to the total number of edge lines, minus n;, .

37

References

[1] Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung Shum. Image vectorization using optimized gradient meshes. ACM Trans.
Graph., 26(3):11, 2007.

[2] Tian Xia, Binbin Liao, and Yizhou Yu. Patch-based image vectorization with automatic curvilinear feature alignment. ACM
Trans. Graph., 28(5):1-10, 2009.

38

	Notes on kdu Compression
	Gradient Meshes and kdu

	Example Results and Reference Compressions
	Female Face
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Two Student Example
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Historical Photograph #1
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Historical Photograph #2
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Historical Photograph #3
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Gallery Example
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Girl in Shadow
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Sunglasses Example
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Skull Image
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Mandrill Test Image
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Architecture Example
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Cameraman Example
	Vector Results
	Image Space Stylization Result
	Input Photograph

	Vector Format Details

