
Interactive Vector Fields for Painterly Rendering

Sven C. Olsen
Department of Computer Science

Northwestern University

Bruce A. Maxwell
Department of Engineering

Swarthmore College

Bruce Gooch
Department of Computer Science

Northwestern University

Abstract

We present techniques for generating and manipulat-
ing vector fields for use in the creation of painterly im-
ages and animations. Our aim is to enable casual users
to create results evocative of expressionistic art. Rather
than defining stroke alignment fields globally, we divide
input images into regions using a colorspace clustering
algorithm. Users interactively assign characteristic brush
stroke alignment fields and stroke rendering parameters
to each region. By combining vortex dynamics and semi-
Lagrangian fluid simulation we are able to create stable,
easily controlled vector fields. In addition to fluid sim-
ulations, users can align strokes in a given region using
more conventional field models such as smoothed gradi-
ent fields and optical flow, or hybrid fields that combine
the desirable features of fluid simulations and smoothed
gradient information.

Key words: Non-photorealistic rendering, Fluid Simula-
tion

1 Introduction

Creating expressionistic images of has long been a goal of
nonphotorealistic rendering. Stroke based rendering sys-
tems, which create a painterly version of a source image,
often cite the work of Van Gogh and other expression-
ist painters as a primary inspiration for their algorithms
(Hays et al. [12], Hertzmann [13]).

Our work is distinguished from it’s predecessors in that
we have included several tools for designing the vector
fields used to align the brush strokes, and that these fields
are not globally defined, but rather assosiated with partic-
ular regions of the image.

Using a region based approach allows us to create out-
put images in which the style of the brush strokes varies
radically depending on the region. This is a feature some-
times seen in Van Gogh’s paintings, it is particularly re-
markable in landscapes such asStarry Nightand some
of his self portraits (see Fig. 3). Background regions
are filled with long curling strokes arranged in turbulent
patterns, while a more conservative style is used in ar-
eas of greater detail. The swirling patterns in his skies

Figure 1: Our system allows a user access to a variety of
vector field methods. In this rendering of a red poppy,
fluid fields determine stroke alignment in the blue back-
ground region while RBF fields are used inside the flower.

and backgrounds can be one of the most striking char-
acteristics of Von Gogh’s work, but similar effects are
difficult to achieve with a traditional stroke based filter,
because stroke the behavior parameters must be defined
globally. Thus effects which rely on a juxtaposition of
different stroke styles are very difficult to achieve. Such
effects may possible, given careful hand editing of the
alignment fields and close user supervision of the algo-
rithms. However our techniques are designed to make the
creation of such renderings trivial - allowing casual users
to easily create painterly results with the swirling back-
grounds that have become one of the most recognizable
signatures of expressionist art.

The purpose of this work is not to create replicas of
Van Gogh paintings, nor to exactly imitate his style. Cre-
ating convincing imitations of actual paintings is beyond
the scope of the textured stroke framework that we have
adopted. Rather our purpose is to further empower casual

users to create digital art in an expressionist style; provid-
ing tools and algorithms that give them more control than
previous systems, but which are still simple to use and
allow for large amounts of automation.

In order to create fields with a turbulent character we
make use of a semi-Lagrangian fluid simulator, similar to
the one introduced by Stam [20]. Most of the time this
simulation is bounded by region definitions. User con-
trol is possible through the manipulation of vortex parti-
cles. It is also possible to hybridize the results of the fluid
simulation with a gradient-based field, leading to a result
which better conform to object edges, but still possesses
fluid characteristics farther from boundaries.

Most stroke based painterly rendering algorithms can
be set in motion, creating animations based on either still
images or input videos. Our user designed vector fields
are a particularly well suited to such extensions, because
the fields can be made to evolve over time in a way that
reflects the properties of the source image as well as the
desires of the user.

2 Related Work

We follow in the tradition of stroke-based non-
photorealistic rendering, which began with Haelberi [11].
Haelberi’s system allowed users to generate impression-
istic images by creating a number of brush strokes col-
ored according to an input image. Unlike some more re-
cent papers [6, 2], Haelberi did not try to simulate the
characteristics of actual paint, rather his goal was to allow
users to quickly create images which possessed many of
the visual merits of paintings.

Much of the inspiration for this paper comes from
two descendants of Haelberi’s system. Litwinowicz [17]
and Hertzmann [13], both of whom produced images in
which large, homogeneous areas of the source images
may be rendered using long flowing brush strokes. Hertz-
mann’s method explicitly sets out to create long curved
brush strokes, while in the method of Litwinowicz a more
modest flowing effect arises as a result of the use of thin
plate splines to interpolate gradient information. Both
systems can create brush stroke patterns reminiscent of
some of Van Gogh’s expressionist paintings, strokes flu-
idly curling and turning around each other. However,
both systems align their brush strokes using the color gra-
dient of the source image; and therefore users have little
control over the effect .

The painterly animation system of Litwinowicz [17]
introduced several techniques which we have incorpo-
rated into our own work, most notably a stroke density
control algorithm based on Delaunay triangulations, and
the use of thin plate interpolations to specify stroke align-
ment fields.

Hertzmann [13] presented techniques through which
users could enter a description of a painting style, and the
system would then a version of the input image using that
style. He also introduced the technique of putting down
multiple layers of brush strokes, painting first at a coarse
level of detail and then at progressively finer scales. This
is one technique which we did not implement for our own
system. Hays et al. [12] expanded on Hertzmann’s work,
and like Litwinowiz used radial basis functions to cre-
ate smoothed gradient values. Unlike Litwinowiz, Hays
et al. performed the interpolations across time as well
as space, which allowed for highly temporally coherent
video based animations.

Arbitrary vector fields have been incorporated into
stroke based rendering in the past – Hertzmann et al.
presented an interactive system in which procedural fluid
fields could be used in place of optical flow fields when
warping a dynamic scene [14]; Hays et al. includes a dis-
cussion of similar techniques, in which arbitrary vector
fields can be used in place of optical flow to create videos
based on still images [12]. Both methods are global in
nature, and while the methods described can work on ar-
bitrary fields, there is little discussion of how such fields
may be manipulated by users.

Other work in NPR has made use of fluid simulations
as well. Curtis et al. [6] and Baxter et al. [2] both use
fluid simulations to model paint. Witting [22] explains
DreamWorks’s use of fluid simulations in their animated
featureThe Prince of Egypt. Unlike the previous work
in stroke based rendering, Witting’s artificial fields are
derived from his source images; he uses the underlying
colors to imply temperature forces which drive the simu-
lation. Finally, image filtering techniques such as Cabral
et al. have proven effective tools for field visualization
[3]. The same techniques have also been turned to artistic
purposes, warping a source image using arbitrary fields to
create “Van Gogh-like” ripples and swirls.

3 Stroke Rendering

Our rendering system starts by segmenting the image into
regions. For each region we define a set of characteristics
governing stroke rendering and motion. Among the re-
gion’s characteristics are descriptions of the fields to be
used to align the strokes and advect them between frames
of an animation.

3.1 Regions

We use a mean-shift colorspace clustering algorithm [5]
to segment source images , and then allow users to refine
that segmentation by merging any set of regions. Each
region defines its own stroke alignment and advection
fields, as well as stroke rendering parameters.

3.2 Rendering
Random permutations are applied to stroke intensity,
color, width, length, and alignment. Different permu-
tation parameters may be used depending on the region
that the stroke is in (crossing a region boundary causes
the stroke’s permutation variables to be reinitialized).
Strokes are clipped to region boundaries. A region may
use curved brush strokes, in which case the alignment
permutation is ignored, and a curved stroke is rendered
by advecting points through the alignment field.

3.3 Stroke Motion
Between each frame of an animation, strokes are dis-
placed by their region’s advection field. When strokes
are advected they tend to become too sparse in some ar-
eas and too dense in others. In order to combat this effect,
a quality controlled Delaunay triangulation is used to de-
termine locations where stroke centers should be inserted
[19]. If the distance between any two stroke positions is
below a given threshold, one is eliminated. Techniques
similar to those introduced by Hays et al. [12] are used
to improve temporal coherency. When new strokes are
added, or old strokes reset as a result of crossing a re-
gion boundary, they are initially rendering using a small
alpha value, and then fade in over time. Similarly, deleted
strokes are not immediately removed, but instead fade
out.

4 Fields

4.1 RBF Fields
First used in stroke-based rendering by Litwinowicz [17],
radial basis functions (RBFs) continue to be used in more
modern systems [12]. In two dimensions, we may de-
fine an interpolationf(x, y) of the control points(xi, yi)
having valuesvi as:

f(x, y) = a1 + a2x + a3y +∑
i=1

wiU(||(xi, yi) − (x, y)||).

The linear system implied by setting allf(xi, yi) = vi

is underspecified, so the following additional constraints
are applied.

∑
i=1

wi =
∑
i=1

wixi =
∑
i=1

wiyi = 0.

Though the exact application of RBFs to stroke-based
rendering varies from one stroke-based rendering system
to another, the general goal is always the same: creating a
smooth stroke alignment field based on the color gradient
of the image. By aligning strokes perpendicular to such

Figure 2: Our application, with both field and region edit-
ing windows open.

a field, it is possible to create renderings with long brush
strokes which are aligned to region boundaries. We use
a thin plate basis function,U(r) = r2 log(r), which has
desirable smoothness characteristics [7].

In our system, a set of pseudo-gradient values are cal-
culated on the borders of each region by treating all pixels
in the region as intensity 1, all pixels outside the region
as intensity 0, and then applying Sobel convolution matri-
ces. Interpolating those gradients over the region would
require inverting a(p + 3)x(p + 3) matrix, wherep is
the number of pseudo-gradient points. In order to speed
up the solver, we divide the image into an MxM grid and
average all values in each grid box to create a single vec-
tor. We vary the value of M used in each region in order
to yield control point sets in a preferred size range. Vec-
tors perpendicular to the averaged values are then used as
control points for two RBFs; which together define a field
over the region.

4.2 Fluid Fields

We simulate a fluid velocity field using a semi-
Lagrangian solver as in Stam [20] and vorticity confine-
ment as in Fedkiw et al. [8]. Any region may be treated
as a barrier to fluid flow, using the Von Neumann no-
penetration boundary conditions.

Vortex Dynamics

Vortex particle simulations can be used to create fast, sta-
ble, and visually appealing fluid effects [10]. A turbulent
two dimensional fluid velocity field can be simulated us-
ing a set of vortex points with strengthsΓi and positions
(xi, yi). The velocity field at any point is determined by
the sum:

Uvort(x, y) =
∑

i

(Γi
y − yi

r2
,Γi

x − xi

r2
).

wherer = ||(x, y) − (xi, yi)|| [4].
This formalism is attractive because changing particle

positions andΓ values is a simple and intuitive means of
controlling the velocity field. Unfortunately, for small
numbers of vortex points, velocity fields created using
this formalism lack many of characteristics that attracted
us to fluid simulations. Therefore we have adopted a hy-
brid approach. We use a small number of vortex particles
to apply a force at all grid points in the semi-Lagrangian
simulation equal toε · uvort(x, y). The result is a dy-
namic vector field that is both easily edited and reason-
ably “fluid looking”. In order to balance out the velocity
constantly being added into the system by the vortex par-
ticles, we use a fairly high viscosity value. Properly, vor-
tex points should always be advected by the fluid velocity
field, but we find that sometimes it is useful to keep the
vortex points fixed. When advecting the particles, we use
simpler−n repulsive forces to prevent the particles from
coming too close to each other or drifting through region
boundaries.

While we experimented with different strategies for
automatically generating fields by adding forces based
on the image, none of them worked well for more than
a handful of cases. However, with the hybrid vortex ap-
proach, much more robust automatic field generation be-
comes possible. For example, using a pseudorandom se-
quence to generate a collection of vortex points consis-
tently leads to appealing turbulent fields.

4.3 Hybrid Fields
It is sometimes useful to control strokes with hybrid fields
defined as a weighted sum of the fluid and RBF fields.
Given velocity fieldv and RBF fieldt we define a hybrid
field f as:

f =


d−w

w t + d
wv if d < w

t d ≥ w, ||v|| < r
v otherwise

w indicates the ”width” of the hybridization, andr con-
trols a replacement threshold. Thus we create a field that
is both aligned with region boundaries, and which ex-
hibits fluid-like behavior farther from the region edges.

4.4 Optical Flow Fields
While Litwinowicz used Bergen’s hierarchical algorithm
to calculate the optical flow fields, we found that in the
case of our videos, Bergen’s algorithm tended to produce
troublesomely inaccurate fields. Instead, we found that

Horn and Schunck’s optical flow algorithm created much
nicer, smoother fields for video sequences [15]. This ob-
servation is in keeping with a comparative analysis that
suggests that, despite its age, Horn and Schunck is one of
the most robust optical flow algorithms available [9].

5 Results

We developed our application on an Athlon 1.4 ghz ma-
chine with a GeForce2MX video card. We use multiple
windows to allow the user to interact with fluid fields,
vortex particles, and region definitions in real time. Users
select from one of several configuration files to determine
the stroke rendering parameters and field properties in
each region. Those files themselves may be edited in or-
der to fine tune stroke behaviors within a given region.
The region configuration files, in turn, are designed to al-
low human editing.

The slowest component of the algorithm is stroke ren-
dering. The rendering time for our demo images, which
use around 6000 strokes, was typically 5 seconds per
frame. The next most expensive operation is stroke den-
sity control, which takes about 2 seconds per frame. Total
time to process a single frame is around 8 seconds.

Hybrid fields have proven to be incredibly useful. They
have all of the advantages of both fluid and RBF fields,
and none of the disadvantages. Even when neighbor-
ing regions are used as boundaries to fluid flow, strokes
aligned according to fluid fields may not appear to match
neatly to region boundaries. Pure RBFs, on the other had,
can have poor temporal coherency. Hybrid fields have
neither of these problems.

Using fixed vortex points leads to fields with a very
different character than using advected points. The fixed
case tends to create smooth steady-state flow, and the
only noticeable vortices are those explicitly specified.
The advected case creates an endlessly evolving turbulent
field, with lots of small scale effects outside of those im-
plied by the vortex particles. We have found that the first
method is well suited to users who desire large amounts
of control, while the second is an effective means of
quickly creating interesting dynamic fields.

6 Conclusion and Discussion

We have presented a painterly rendering system in which
a range of user designed vector fields may be used in the
generation of brush stroke rendering. The user’s control
over the system takes the form of a few simple high level
choices.

A fully automatic system could be implemented by as-
signing each region rendering characteristics based on re-
gion properties such as size or texture. However, it would
likely be hard to find region specification rules that would

Figure 3: Detail of Self Portrait, Vincent Van Gogh,
1889. Brush strokes in the background region are long,
curved, and arranged in a fluid-like pattern, while the face
itself is painted with much smaller, more detailed strokes.

work well in a wide range of cases.
Our system cannot run in real-time given high stroke

densities. However, we suspect that a GPU-based imple-
mentation could. All stroke information could be kept
in texture memory, and stroke polygons generated using
fragment programs. It is, however, not clear to the au-
thors how a Delaunay triangulation algorithm could be
efficiently implemented on a GPU. Thus, to prevent den-
sity control from becoming a bottleneck, a GPU-based
system would require the development of new density
control techniques.

There are a number of ways in which our techniques
could be integrated with other recent work. Our segmen-
tation algorithms only allow for relatively crude forms
of user control, a modern user-assisted region segmen-
tation system would be preferable, such as Rother et al.
[18] or Li et al. [16]. Working with video input would
be much easier if we had a robust user-guided algorithm
that was able to track the motion of regions in the source
video – Agarwala et al. [1] would probably work well.
It could also be interesting to compare the results of our
RBF solver to that of other fast approximate solvers, such
as those discussed in Donato et al. [7], or the iterative
energy minimization strategy introduced in Terzopoulos
[21].

References

[1] Aseem Agarwala, Aaron Hertzmann, David H.
Salesin, and Steven M. Seitz. Keyframe-based
tracking for rotoscoping and animation.ACM

Trans. Graph., 23(3):584–591, 2004.

[2] William V. Baxter, Jeremy Wendt, and Ming C. Lin.
IMPaSTo: A realistic model for paint. InProceed-
ings of the 3rd International Symposium on Non-
Photorealistic Animation and Rendering, pages 45–
56, June 2004.

[3] Brian Cabral and Leith Casey Leedom. Imaging
vector fields using line integral convolution. InSIG-
GRAPH ’93: Proceedings of the 20th annual con-
ference on Computer graphics and interactive tech-
niques, pages 263–270. ACM Press, 1993.

[4] Alexandre J. Chorin. Vorticity and Turbulence.
Springer, New York, 1994.

[5] Dorin Comaniciu and Peter Meer. Robust analysis
of feature spaces: Color image segmentation. In
1997 Conference on Computer Vision and Pattern
Recognition (CVPR ’97), pages 750–. IEEE Com-
puter Society, 1997.

[6] Cassidy J. Curtis, Sean E. Anderson, Joshua E.
Seims, Kurt W. Fleischer, and David H. Salesin.
Computer-generated watercolor. InProceedings of
the 24th annual conference on Computer graphics
and interactive techniques, pages 421–430. ACM
Press/Addison-Wesley Publishing Co., 1997.

[7] Gianluca Donato and Serge Belongie. Approximate
thin plate spline mappings. InECCV (3), volume
2352 ofLecture Notes in Computer Science, pages
21–31. Springer, 2002.

[8] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen.
Visual simulation of smoke. InProceedings of the
28th annual conference on Computer graphics and
interactive techniques, pages 15–22. ACM Press,
2001.

[9] Ben Galvin, Brendan McCane, Kevin Novins,
David Mason, and Steven Mills. Recovering mo-
tion fields: An evaluation of eight optical flow al-
gorithms. InProceedings of the British Machine
Vision Converence (BMVC), 1998.

[10] Manuel Noronha Gamito, Pedro Faria Lopes, and
Mario Rui Gomes. Two-dimensional simulation
of gaseous phenomena using vortex particles. In
Proceedings of the 6th Eurographics Workshop on
Comput. Anim. and Sim., pages 2–15. Springer-
Verlag, 1995.

[11] Paul Haeberli. Paint by numbers: abstract image
representations. InProceedings of the 17th annual
conference on Computer graphics and interactive
techniques, pages 207–214. ACM Press, 1990.

[12] James Hays and Irfan Essa. Image and video based
painterly animation. InProceedings of the 3rd in-
ternational symposium on Non-photorealistic ani-
mation and rendering, pages 113–120. ACM Press,
2004.

[13] Aaron Hertzmann. Painterly rendering with curved
brush strokes of multiple sizes. InProceedings of
the 25th annual conference on Computer graphics
and interactive techniques, pages 453–460. ACM
Press, 1998.

[14] Aaron Hertzmann and Ken Perlin. Painterly ren-
dering for video and interaction. InNPAR ’00:
Proceedings of the 1st international symposium on
Non-photorealistic animation and rendering, pages
7–12. ACM Press, 2000.

[15] Berthold K. P. Horn and Brian G. Schunck. De-
termining optical flow.Artificial Intelligence, 17(1-
3):185–203, August 1981.

[16] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-
Yeung Shum. Lazy snapping.ACM Trans. Graph.,
23(3):303–308, 2004.

[17] Peter Litwinowicz. Processing images and video
for an impressionist effect. InProceedings of
the 24th annual conference on Computer graphics
and interactive techniques, pages 407–414. ACM
Press/Addison-Wesley Publishing Co., 1997.

[18] Carsten Rother, Vladimir Kolmogorov, and Andrew
Blake. ”grabcut”: interactive foreground extrac-
tion using iterated graph cuts.ACM Trans. Graph.,
23(3):309–314, 2004.

[19] Jonathan Richard Shewchuk. Triangle: Engi-
neering a 2D Quality Mesh Generator and Delau-
nay Triangulator. In Ming C. Lin and Dinesh
Manocha, editors,Applied Computational Geome-
try: Towards Geometric Engineering, volume 1148
of Lecture Notes in Computer Science, pages 203–
222. Springer-Verlag, May 1996. From the First
ACM Workshop on Applied Computational Geom-
etry.

[20] Jos Stam. Stable fluids. InProceedings of
the 26th annual conference on Computer graphics
and interactive techniques, pages 121–128. ACM
Press/Addison-Wesley Publishing Co., 1999.

[21] Demetri Terzopoulos. The computation of visible-
surface representations.IEEE Trans. Pattern Anal.
Mach. Intell., 10(4):417–438, 1988.

[22] Patrick Witting. Computational fluid dynamics in
a traditional animation environment. InProceed-
ings of the 26th annual conference on Computer

graphics and interactive techniques, pages 129–
136. ACM Press/Addison-Wesley Publishing Co.,
1999.

Source image.

“Traditional” rendering using a single brush
type and no fluid fields.

Source Image,
a cartoon rendered photograph.

Rendering using fluid fields and
larger brush strokes in the background region.

Rendering with opaque strokes
and unblocked hybrid fields.

Figure 4: Results: The sunset demo was generated very quickly (in less than a minute) using a pseudorandom vortex
point initialization. For the larger skateboarder image more time was spent hand editing the vortex particle strengths
and positions.

	Introduction
	Related Work
	Stroke Rendering
	Regions
	Rendering
	Stroke Motion

	Fields
	RBF Fields
	Fluid Fields
	Hybrid Fields
	Optical Flow Fields

	Results
	 Conclusion and Discussion

