
Fluid Simulation as a Tool for Painterly Animation

Sven C. Olsen∗
Swarthmore College

Bruce A. Maxwell†

Swarthmore College

Abstract

In this paper we combine recent work from two different sub-
fields of computer graphics: semi-Lagrangian fluid simulation and
painterly rendering. We have implemented a painterly rendering
system in which users can select regions of an image in which
a fluid field will be used to inform the placement and render-
ing of brush strokes, and thus generate renderings which include
long curved strokes that inherit many of the aesthetically pleasing
properties associated with fluid fields. The attractive properties of
fluid fields are most apparent when those fields are in motion, and
our stroke based renderer builds on recent techniques for creating
painterly animations. We have combined fluid based stroke motion
with other painterly animation techniques in order to create anima-
tions based on video clips. We have also developed an interesting
technique in which an image is warped according to a fluid field and
a painterly animation generated based on the resulting distortion.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.6.3 [Simulation and Modeling]:
Applications

Keywords: Non-photorealistic rendering, Fluid Simulation

1 Introduction

In 1963, Ivan Sutherland published his famous dissertationSketch-
pad: A man-machine graphical communication system. And thus
was born the field of computer graphics. Since then it has been
widely recognized that computers have enormous potential as artis-
tic tools. This paper, like many others in the discipline of computer
graphics, concerns itself with one attempt to realize that potential.

We follow in the tradition of stroke-based non-photorealistic ren-
dering which began with Haelberi [1990]. Haelberi’s system al-
lowed users to generate impressionist images by creating a number
of brush strokes colored according to an input image. Unlike more
recent papers such as [Curtis et al. 1997], Haelberi did not try to
make a system that precisely simulated the characteristics of actual
paint, rather his goal was to allow users to quickly create images
which possessed many of the visual merits associated with paint-
ings.

Haelberi’s stroke based system inspired a number of impression-
istic image filters which have now become commonly used artistic

∗e-mail:sven@sccs.swarthmore.edu
†e-mail:maxwell@swarthmore.edu

Figure 1: Detail ofThe Starry Night, Vincent Van Gogh, 1889.

tools. Indeed some descendent of Haelberi’s original application is
included in almost every modern image editor.

The inspiration for this paper comes from two famous descen-
dents of Haelberi’s system. Litwinowicz and Hertzmann both pro-
duce images in which large, homogenous areas of the source im-
ages may be rendered using long flowing brush strokes [Litwinow-
icz 1997; Hertzmann 1998]. Hertzmann explicitly sets out to cre-
ate long curved brush strokes, while in the case of Litwinowicz a
more modest flowing effect arises as a result of his use of thin plate
splines for the purpose of color gradient interpolation. In both sys-
tems the resulting effects can be reminiscent of the brush stroke pat-
terns seen in some expressionistic paintings, strokes fluidly curling
and turning around each other. However, both systems align their
brush strokes normal to the color gradient of the source image, and
therefore the sense of turbulence which might otherwise be con-
veyed by the stroke patterns is always muted, never approaching
the wild whirlpools and vortices which are so striking in a painting
like The Starry Night.

Our goal is to create painterly video clipsa la [Litwinowicz
1997] in which the brush strokes possess a turbulent character sim-
ilar to that suggested by some of Van Gogh’s paintings. To this end
we introduce a novel, non-gradient based stroke placement method.
When rendering and controlling our brush strokes, we make use of
a semi-lagrangian fluid simulator, very similar to the one introduced
to the graphics community by Stam [1999]. Using simulated fluid
fields in the context of a stroke based non-photorealistic rendering
system allows us to produce stroke behaviors which are visually
appealing, and which offer expressive potential beyond that of gra-
dient based techniques.

2 Related Work

Litwinowicz introduced a system that expanded on Haelberi’s
stroke based technique to allow for video based non-photorealistic
animations[Litwinowicz 1997]. Like many other non-photo real-
istic systems that output video [Meier 1996; Klein et al. 2000;



Kalnins et al. 2003], Litwinowicz had to find a way to deal with
the problem of timewise coherency. Litwinowicz dealt with the is-
sue of coherency between stroke placements in successive frames
by cleverly combining a quality controlled Delaunay triangulation
and an optical flow algorithm. Like Litwinowicz’s, our own system
acts on sequences of video, and we have adopted many features of
his coherency scheme. Litwinowicz also introduced a strategy for
edge based brush clipping- another feature that we use in our own
work.

The goal of [Hertzmann 1998] was to create a system in which
users could enter a description of the style of painting that they
wanted to use, and the system would then paint a version of the
input image using that style. While his methods and goals differ
considerably from our own, Hertzmann’s is the only other research
paper that we are aware of which explicitly sets out to render images
using long, curved brushes.

We are not the first paper to coopt fluid flow simulations for the
purposes of non-photorealistic rendering. [Witting 1999] explains
how DreamWorks has used fluid simulations in the creation of their
animated featureThe Prince of Egypt. However, as far as we know,
we are the first to use fluid simulation in the context of a stroke
based system. We are also the first to expand [Litwinowicz 1997]
to incorporate a non-gradient based stroke alignment strategy and
to substitute alternate vector fields in regions of homogenous color.

Several commercial programs for creating stroke based anima-
tions from video exist [Synthetik Software, Inc. 2002; RE: Vision
Effects 2003], though neither program is designed to create anima-
tions using long, curved brush strokes.

In this paper we combine recent work from two different sub-
fields of computer graphics: semi-Lagrangian fluid simulation and
painterly rendering. We have implemented a painterly rendering
system in which users can select regions of an image in which
a fluid field will be used to inform the placement and render-
ing of brush strokes, and thus generate renderings which include
long curved strokes that inherit many of the aesthetically pleasing
properties associated with fluid fields. The attractive properties of
fluid fields are most apparent when those fields are in motion, and
our stroke based renderer builds on recent techniques for creating
painterly animations. We have combined fluid based stroke motion
with other painterly animation techniques in order to create anima-
tions based on video clips. We have also developed an interesting
technique in which an image is warped according to a fluid field and
a painterly animation generated based on the resulting distortion.

3 The Process

3.1 Creating regions

Our goal is to be able to render certain regions of the video, such
as sky or other parts of the background, using strokes which are
aligned and advected by a fluid field. However, it is generally not
desirable to use such fluid field based rendering methods in areas of
the video containing more detailed features, such as human faces.
Therefore we need to divide each frame of the video into two re-
gions. In the non-fluid region, our rendering technique is very
nearly a pure reimplementation of Litwinowicz’s system. In the
fluid region there are a number of changes which have been made
to Litwinowicz’s basic framework in order take advantage of the
information provided by the simulated fluid fields.

The regions of video which we generally want to render using
fluid fields tend be large areas of homogenous color. One could use
video analysis techniques to identify and track large homogeneous
regions to be rendered using the fluid flow fields. However, a fully
automated region identification and tracking system is not neces-
sarily desirable. While large homogenous regions are the natural
candidates for fluid flow based rendering, it is not necessarily the

case that we would want those regions and no others to be rendered
using fluid fields. We feel that the decision to render a given region
using fluid fields is a choice best left to the artistic sensibilities of
the user, and therefore we prefer an interface which allows users to
identify and label regions of the video as fluid or nonfluid as they
see fit.

When drawing our brush strokes, we clip them to the edges of
the objects in the image as in [Litwinowicz 1997]. Object edges
are defined using Sobel values- the magnitudes of an approximate
color gradient (though as we explain later, our Sobel values have
been modified in order to minimize noise). Currently we use a re-
gion growing technique to find and track the boundaries of the fluid
regions in video sequences. The seed pixel for each fluid region is
selected by the user, and should be a pixel that will always be within
the fluid region. Then, using a standard region growing algorithm,
the system grows the seed pixel until the region is bounded by pix-
els with gradient magnitudes larger than a threshold G. For this im-
plementation we used G equal to 10. This method works well for
images with large homogeneous regions such as interior walls or
sky, which are the kinds of regions where the curving brush strokes
and fluid vortices create much more interest than typical painterly
rendering algorithms.

It is worth noting that the manner in which we solve the region
tracking problem is completely independent from the rest of our
system - indeed in implementing our application we have consid-
ered both the source video and a set of boolean maps dividing each
video frame into fluid and non-fluid regions to be inputs to the rest
of the algorithm. Source videos more complicated than those which
we have used would most likely require more sophisticated region
tracking algorithms.

3.2 Stroke Motion

For each frame of the video, we create a painterly rendering using a
set of brush strokes. After each frame has been rendered, we advect
the brushstrokes using the fluid field if the stroke lies in the fluid
region, or using an optical flow field if it is in the non-fluid region.
This allows us to achieve a measure of visual continuity between
frames since each stroke represents a slightly displaced stroke from
an earlier frame.

The problem facing any system in which strokes are advected
between frames is that as the strokes move their density tends to
become far too high in some areas, and far too low in others. One
existing solution to this problem involves first finding a Delaunay
triangulation for the point set containing all stroke positions and the
corners of the image [Litwinowicz 1997]. To prevent the strokes
from becoming too sparse, a quality control constraint is used as in
[Shewchuk 1996], forcing new strokes to be inserted as is needed
to prevent any triangle in the triangulation from growing beyond a
given area. To prevent the strokes from becoming too dense, if any
pair of strokes is closer than a given distance, the lower-rendered
of the two strokes is deleted. We have adopted Litwinowicz’s tri-
angulation based density control method, though we use a simpli-
fied version of Shewchuk’s area based quality control logic.1 It
is important to note that while different fields advect the strokes,
the density control algorithms do not distinguish between fluid and
non-fluid regions.

In the fluid regions, the fluid simulator provides the motion vec-
tors for a video sequence. In the non-fluid regions, however, we
follow the current practice of using optical flow analysis to gener-
ate the vector field for frame-to-frame coherence of brush strokes
[Litwinowicz 1997]. While Litwinowicz used Bergen’s hierarchical
algorithm to calculate the optical flow fields, we found that in the

1The details of our quality control algorithm are explained in section
3.7.1



case of our own videos, Bergen’s algorithm tended to produce trou-
blesomely inaccurate fields, which led to large, inaccurate stroke
placements. Instead, we found that Horn and Schunck’s optical
flow algorithm creates much nicer, smoother fields for our video se-
quences [Horn and Schunck 1981]. This observation is in keeping
with a comparative analysis that suggests that, despite its venerable
age, Horn and Schunck is one of the best optical flow algorithms
available [Galvin et al. 1998].

3.3 Stroke Rendering

Our renderings of each scene are created using texture mapped
brush strokes. Information about each stroke is stored in a vector,
and the strokes themselves are drawn as texture mapped polygons
using OpenGL.

Figure 2: Brush Polygon: Starting from the stroke position point
(solid red), two sets of center points (red outline) are created by
moving in small, fixed length steps forward and backward through
the fluid field. Field vectors are drawn in black. Polygon edges are
drawn in gray.

When rendering strokes in the fluid region we want the strokes
to curve according to the underlying fluid field. To generate the
curved stroke we use an algorithm very similar to the particle trac-
ing method which we will later use in the fluid simulator. The first
step is to calculate a set of stroke center points. Our first center point
is the position of the stroke itself. To get the rest of the points, we
first use bilinear interpolation to find the fluid field velocity under-
neath the position of the stroke, and then move some small distance
in the direction of the velocity vector (typically half a grid square
length); that gives us our second center point. We then recalculate
the velocity, and continue the pattern of moving and recalculating
until the stroke is either clipped or has reached a desired length.
We then use the same process to get a second set of stroke center
points, this time moving backwards through the fluid field. Once
the center point calculation is complete we calculate the points in
the polygon, creating two polygon points for each center point by
moving out by half the desired stroke width from the center of the
stroke, in a direction perpendicular to the velocity vector calculated
at the center point.

Stroke rendering in the non-fluid region is much simpler. Our
polygons all rectangles, drawn with a base orientation of 45 degrees
plus or minus some random permutation value.

3.4 Stroke Clipping

Stroke clipping methods can go a long way in helping to define the
object in a scene. When brush strokes overlap object boarders, the
result is that the objects in the scene seem to blur into each other.
Clipping brush strokes to object edges can eliminate this blurring
effect.

Figure 3: The velocity field generated by our fluid simulation

Figure 4: The source frame to be rendered

Figure 5: The region definition (white is fluid, black is nonfluid)

Figure 6: The rendered frame



In [Litwinowicz 1997] Sobel filters are used to determine the
edges of objects in the scene. We adopt Litwinowicz’s terminology,
and define the “Sobel value” to be the magnitude of the color gra-
dient as calculated using Sobel convolution matrices [Fisher et al.
1994]. Thus:

SobelValue(x,y) =
√

Sx(x,y)2 +Sy(x,y)2. (1)

Once the Sobel values have been calculated, a stroke is clipped
in the event that it ever passes over a pixel in which the Sobel value
is lower than that in the pixel before it. In order to minimize the
number of false edges, it can be wise to avoid calculating Sobel
values directly from the underlying image. Litwinowicz generated
his Sobel values by first blurring the image using a Gaussian kernel,
and then running the Sobel convolution matrices over the blurred
image.

We have found that even given the initial blur, the Sobel values
produced by our images still tend to be a little noisy, and therefore
we go a step farther in order to clean up the edge information. We
run a second Gaussian blur over our Sobel values, and then get rid
of what remains of the noise by setting all Sobel values less than 6
to 0. Because most of the noise in the Sobel values takes the form of
thin lines, a small kernel is sufficient to eliminate it. We have been
able to consistently produce nice Sobel values by using a kernel
of radius 8 in the first blur, and a kernel of radius 4 in the second
blur. The additional cleanup of the Sobel values is especially useful
given that our region tracking methods also benefit from it.

3.4.1 Stroke Coloring

Stroke coloring presents an interesting challenge. For the strokes in
the nonfluid region, we know that whatever optical flow algorithm
we use is going to be imperfect. Therefore keeping stroke color
constant for the life of the stroke will lead to a steadily growing
number of obviously misplaced brush strokes, destroying the qual-
ity of the resulting video. On the other hand, using the color in the
underlying image to determine stroke color means that the color of
each stroke changes from frame to frame, which necessarily implies
less timewise coherency. One proven stroke coloring strategy is to
store intensity and RGB color permutation values for each stroke
[Litwinowicz 1997]. The base brush color is reset every frame to
match the underlying image, but by keeping the permutation values
constant for the life of the stroke we increase the degree of con-
tinuity between strokes in successive frames. The random color
permutations also serve to give the rendering a more handcrafted
appearance.

In our own system we have used a variation on Litwinowicz’s
coloring technique. For strokes inside of the fluid region, we expect
that the underlying color will be more or less constant, and are more
interested in frame to frame coherency than in preserving the details
of color in the underlying image. Thus we only recolor the stroke
if its color exceeds a given square sum difference (SSD) with the
underlying image color. This has the effect of making it very likely
that a stroke will keep the same color as it moves from frame to
frame. For strokes in the nonfluid region, we use a smaller SSD
threshold, reflecting the increased extent to which we are willing to
sacrifice coherency for accurate stroke coloring.

3.5 Stroke Data

We store a number of values for each brush stroke. Our stroke
motion algorithms require that we store the position of each stroke.
In order to render each stroke, we need to know it’s width and color.
We also the store delta values indicating how much to perturb stroke
color and intensity. When a stroke is in the nonfluid region, we
may wish to perturb its orientation, and therefore that delta value

also needs to be stored. Finally, we store a boolean value indicating
whether the stroke was last rendered as part of the fluid or nonfluid
region. This allows us to reinitialize the characteristic values of a
stroke if it moves from one region to the other. Such reinitialization
is primarily useful because it allows us to vary the ranges used to
initialize stroke width and delta values from region to region. In our
experience it is preferable to have smaller strokes in the nonfluid
region in order to preserve the higher level of detail.

We initialize our brush stroke positions using a 2 dimensional
Halton sequence as in [Keller 1997]. Given that the stroke density
control algorithms quickly take care of all distribution issues, any
pseudorandom stroke initialization method would serve to generate
the initial stroke placements. But as computer graphics researchers
we have a great affection for Halton sequences, and their low dis-
crepancy properties saves us a couple processor cycles during the
first iteration of our density control algorithms.

3.6 Fluid Simulation

Our fluid fields are simulated using a semi-Lagrangian fluid solver
of the type which has recently become popular in computer graph-
ics. Semi-Lagrangian solvers sacrifice some amount of physical
accuracy in return for speed and stability. This makes them well
suited to many graphics applications, as in graphics we are usually
content to create something that viewers will perceive as a fluid,
rather than something that precisely models fluid properties. In our
own case we take this attitude a step further: There is no need for
the fields which we generate to approximate actual fluid behavior,
our only goal is to create fields which are visually pleasing. The
brush alignments in the Van Gogh paintings which provide the main
inspiration for our work are quite certainly not derived from any
physically accurate fluid simulation. Thus our aims imply that we
can freely interfere with the mathematics behind our simulation in
hopes of creating more visually satisfying fields.

3.6.1 Voricity Confinement

Voricity confinement is a technique used to remedy one of the in-
herent inaccuracies of semi-Lagrangian fluid solvers. The tech-
nique was invented by Steinhoff in the early 90s, and it was in-
troduced to the graphics community by [Fedkiw et al. 2001]. Semi-
Lagrangian solvers tend to create fields in which whirlpools die out
more quickly than they should; the technique of voricity confine-
ment addresses this problem by adding in an artificial force which
acts to magnify the curl of the field and thus reintroduce the turbu-
lent effects which would otherwise be lost.

The confinement force is given by

fcon f = εh(N×ω) (2)

Whereh is a parameter that indicates the density of the simula-
tion grid,ω is the curl of the velocity field andN is the normalized
gradient of|ω |.

When this technique is used in the context of a fluid modeling
application, the value ofε that is used must be carefully calculated
to be consistent with physical reality. But in our case, we are free to
reintroduces as much turbulence into the field as we find appealing.
Sometimes this leads us to chose anε much greater than would be
appropriate in a physical simulation.

3.6.2 Particle Tracing

The ”Lagrangian” component of semi-Lagrangian solvers is the
particle tracer used in the advection step of the solver. A fast and
simple solver can be built by simply using linear tracing [Stam
2003]. In [Fedkiw et al. 2001], a much more sophisticated mono-
tonic cubic interpolation method is used. We take a rather different



Figure 7: Strokes rendered using a simulation with a physically
plausibleε = 1

Figure 8: Strokes rendered using a simulation withε = 8, greatly
increasing the number of small vortices

route, and perform our particle tracing using the same strategy of
successive small steps which we use when drawing curved brush
strokes. In the brush drawing case we needed to advect a particle
for a given distance, however in this situation we need the particle
advection to continue for a given∆t. But the transitioning from dis-
tance to time is easy enough, as we can use the speed of the particle
to calculate a time cost for every step in the advection.

3.6.3 Boundaries

Depending on the effect we want to create, it can be useful to im-
pose boundaries on the fluid flow. If we have the fluid field consider
the nonfluid region as a boundary to flow, then the brush strokes will
flow around the other objects in the scene. The other option is to
impose no boundaries on the flow, which creates the impression that
the strokes are flowing behind the strokes in the nonfluid region.

Again, because we have little interest in physical accuracy, we
have settled for a very simple implementation of fluid bounds. As
suggested in [Stam 2003], we simply force the flow to be zero at all
grid points inside of the boundary, and in combination with our par-
ticle tracing method, that is sufficient to create a plausible simulated
boundary to the flow. We have used a Jacobian solver to solve the
sparse linear systems present in the projection and diffusion steps
of the solver (see [Stam 1999]). Properly the boundary points ought
to impact the matrices fed into the linear solver, however the char-
acter of the Jacobian solver is such that we can ignore the effects
that the boundaries ought to have on the linear systems, sacrificing
a bit of accuracy in return for a simpler boundary implementation.2

2Our experience has been that the Gauss-Seidel solver used in [Stam
2003] becomes problematic if used with our simple boundary implementa-
tion, this is why we switched to the Jacobian solver.

Semi-Lagrangian solvers completely separate the evolution of
the velocity field from that of the material to be advected. Thus, the
solver in [Stam 1999] was actually two independent solvers, one
which calculated the evolution of the velocity field, and one which
calculated the evolution of the smoke density field given the current
and past velocity fields. In visual simulation of smoke, two density
fields were advected by the velocity field, one representing smoke
density, and one representing temperature. (The temperature values
were used to calculate forces to be applied to the velocity field.) In
theory, any number of scalar fields can be advected by the velocity
fields. In our own case, we are only interested in the evolution of
the fluid velocity field, and thus we are properly only using half of
the solver presented in [Stam 1999].

3.7 Still Image Based Rendering

Thus far we have focused on video based renderings, but interesting
effects can be achieved by modifying the algorithms to work on still
images. Still images created by simply rendering a give source im-
age as if it were a single frame from a video can be quite attractive
in their own right. Animations can be created from a single image
by using the same source image for all the frames of an animation
(in this case the strokes in the fluid region will move, while strokes
in the rest of the image will stay still).

3.7.1 Fluid Warping Animations

We can also use the fluid field to warp a given image over a series
of frames. The resulting animations show the progressive distortion
of the image under the effects of the fluid field. Many image editors
are able to create animations by warping images, but our combina-
tion of fluid fields and stroke based rendering allows us to create
warping animations with some unique qualities.

In the warped image case we eliminate nonfluid regions alto-
gether. We initialize the strokes based on our source image, and
advect all brushes using the fluid field. After the first frame of ani-
mation, the stroke colors no longer match up with the original im-
age, which presents a problem when new strokes need to be added,
as querying the new color from the source image quickly destroys
any semblances of shapes or objects.

Because we are using a simplified version of Shewchuk’s qual-
ity control algorithms, there is a simple coloring option available to
us. In our quality control phase we walk through all the triangles
in the triangulation and create a new stroke in the case that the area
of the triangles exceeds a given maximum value. The new stroke is
placed at the circomcenter of the overly large triangle, and forced
back inside of the bounds of the image in the case that it lies out-
side of them. Thus we can determine the color for any new stroke
using the colors of the three strokes which formed the overly large
triangle. A scanline interpolation method would be the preferred
way to calculated the new stroke’s color, but scanline interpolation
is undesirable in the occasional cases in which the circomcenter
lies outside of the image boundaries. Simply averaging the strokes’
colors is a more robust method, and given sufficiently high stroke
density, the results of averaging are not perceptibly inferior to those
of scanline interpolation.

The stroke clipping used in video based rendering allow the ob-
jects in the scene to retain their definition, despite the blurring ef-
fects which normally result from stroke based rendering. While the
objects in a still image based rendering are going to be distorted, we
don’t necessarily want to blur the objects’ boundaries. It is possible
to adapt the clipping methods of video based rendering to work in
the context of warped images. We use the source image to create
Sobel values as per the video based case. Each time we advect the
brushes, we use the fluid field to warp the Sobel image - thus we
can continue to clip the brush strokes to object boundaries, even as



Figure 9: A still image used to create a warping animation

Figure 10: The warped source image

Figure 11: The warped Sobel values

Figure 12: A frame from the animation

those boundaries are distorted. For each frame of the animation we
create a new Sobel image, the value at each pixel is calculated by
starting at pixel’s position and tracing back through the fluid field.
The particle tracing algorithm is identical to the one used in the ad-
vection step of the solver. We perform a bilinear interpolation on
the Sobel values from the previous frame to find the Sobel value
under the advected pixel position.

Warping the Sobel values in this way adds a notable computa-
tional cost to the animation process. However, if we are already
calculating advected positions for each pixel in the image for the
purpose of Sobel warping, we can warp the source image at very
little additional cost. This gives us an alternative technique for cal-
culating the color of new strokes, we can simply query the warped
source image. Warping the source image also gives us the option of
recolor the brushes if they depart from the color in the underlying
image, which can result in more coherent animations.

The warping case seems to create situations in which edge clip-
ping is more effectively done by clipping any stroke which encoun-
ters a sufficiently high Sobel value (rather clipping if the Sobel
value decreases as in [Litwinowicz 1997]).

4 Results

We have written our program using C++ under Microsoft Visual
Studio 6, using a plethora of freely available libraries and source
code. In keeping with the tradition of Litwinowicz’s original paper,
we use Jonathan Shewchuk’sTriangle for the Delaunay triangula-
tion [Shewchuk 2002]. Our fluid simulator is an extended version
of the minimalistic implementation provided with [Stam 2003]. We
have used David Minnen’s publicly available implementation of
Bergen’s optical flow algorithms [Minnen 2002], while all other
optical flow algorithms use Intel’s OpenCV computer vision pack-
age. We use wxWindows for our user interface, OpenGL to handle
the actual stroke rendering, and SGI’s Image Format Library (IFL)
for writing and reading all image files.

Figure 13: Our Application

Our application consists of a window that can interact with the
fluid simulation and render the animations. There are a number
of dialogs for editing the parameters governing the fluid simula-
tion and stroke initialization / display. Our application is designed
and built purely to serve our needs as graphics researchers; which
means that in these dialogs every imaginable parameter is immedi-
ately exposed to the user. The bits of the program involving Sobel
values and region tracking have been implemented using a collec-
tion of small command line programs and patched together using
perl scripts. Were we targeting our program at casual users, we



would almost certainly want to obscure the parameters behind a
couple of default configurations.

Our program has been developed and tested using an Athlon
1Ghz desktop computer. The main costs of rendering a frame are
Sobel value generation and the density control logic. Generating
the Sobel values for a 640x480 images takes 10 seconds. The time
required for the density control logic depends on the desired brush
density; density control in our demo animations typically takes
around 20 seconds per frame. But for sufficiently sparse stroke dis-
tributions the system can run in close to real time. Using the fluid
field to warp a 640x480 image typically takes about 2 seconds.

Along with the traditional mouse based velocity insertion, our
fluid simulator includes some simple field editing tools which al-
low users to freeze the velocity values in parts of the simulation -
this can be used either to create a final field with a desired over-
all pattern (freezing parts of the field when they exhibit the desired
properties, and then unfreezing the entire field before rendering the
video), or to stop portions of the field from evolving while the video
is rendered. Similarly the application allows users to halt all of the
density control and stroke advection logic while still running the
fluid simulation, which allows us to see the effects different fields
on the given strokes. In this way interesting movies can quickly
be created from still images even without any stroke advection -
and without the cost of density control logic to slow us down such
videos can be generated in real time.

Our fluid simulator uses a 64x64 grid. Using a grid of this size
allows the fluid simulation to run in real time, which in turn makes it
easy to interact with the fluid fields. Using a larger grid would allow
for more detailed fields, but once the simulation slows to around an
update per second, interacting with the fluid field becomes much
more cumbersome.

When creating our renderings we have often found it useful to
display the source image behind the brush strokes which we have
generated. Even given very high stroke densities, vortices in the
fluid field will tend to have a small spot at their center which is never
covered by any brush strokes; displaying the source image behind
the strokes serves to cover up what would otherwise be a number
distracting black spots at the center of the vortices. Attractive ef-
fects can also be achieved by displaying the source image behind a
set of strokes which do not completely cover the underlying time.
This strategy can result in renderings which give a paint-like im-
pression while still persevering many of the details of the original
underlying image.

5 Discussion and Future Work

We have implemented a novel painterly rendering method informed
by fluid simulations. Fluid fields have demonstrated themselves to
be an artistically effective tool for informing stroke alignment in
areas of homogenous color, and our use of fluid velocity fields to
advect strokes between frames has produced painterly animations
in which stroke motion is pleasingly smooth and visually coherent.
We have presented stroke rendering techniques specialized for use
with fluid fields, and fluid simulation algorithms specialized for use
with painterly rendering.

One natural avenue for future work would be give the present
system the ability to derive fluid fields from the source video, thus
potentially reducing the amount of user input necessary to generate
animations. For example, the color values in the images might be
used to infer forces to be applied to the fluid field. In this way an-
imations could be created without the user ever needing to directly
edit a fluid field.

How exactly one might use color information or to infer a set of
forces is an interesting question. One strategy would be to follow
in the path of [Witting 1999], and use the colors in the image to
infer a temperature field, which could the in turn be used to apply

forces to the fluid field. However, the question of how to best infer
forces depends heavily on the kind of effect that the user wishes
to achieve. An ideal system would provide a number of potential
force inference methods, each tailored to create fields of a specific
character.

In a similar vein, it could be interesting to explore means in
which high level information provided by the user might be used
to infer forces to be applied to the fields. It is tempting to consider
adapting the keyframing techniques from [Treuille et al. 2003] to
function of fluid velocities, rather than smoke density. In this way
one might generate a set of forces such that the velocity field (and
thus the implied stroke orientations) would reach certain states at
specific frames of the animation. If one could get such a keyfram-
ing system working, it would be possible to seamlessly transition
between fluid and gradient based stroke orientation methods.

In this paper we have demonstrated how recent mathematical
models developed for the task of fluid simulation can be used to
good artistic effect in the realm of painterly rendering. It is our
hope that our work will provoke further exploration of new meth-
ods for orienting and controlling the brush stokes, and open the way
for new artistic endeavors.

References

BERGEN, J., ANANDA , P., HANNA , K., AND HINGORANI, R. 1992. Hi-
erarchical model-based motion estimation. InProceedings of the 2nd
European Conference on Computer Vision, Springer-Verlag, 237–252.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER, K. W., AND

SALESIN, D. H. 1997. Computer-generated watercolor. InProceed-
ings of the 24th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., 421–430.

FEDKIW, R., STAM , J., AND JENSEN, H. W. 2001. Visual simulation
of smoke. InProceedings of the 28th annual conference on Computer
graphics and interactive techniques, ACM Press, 15–22.

FISHER, B., PERKINS, S., WALKER , A., AND WOLFART,
E., 1994. Hipr - hypermedia image processing reference.
http://www.cee.hw.ac.uk/hipr/html/.

GALVIN , B., MCCANE, B., NOVINS, K., MASON, D., AND M ILLS , S.
1998. Recovering motion fields: An evaluation of eight optical flow
algorithms. InProceedings of the British Machine Vision Converence
(BMVC).

HAEBERLI, P. 1990. Paint by numbers: abstract image representations. In
Proceedings of the 17th annual conference on Computer graphics and
interactive techniques, ACM Press, 207–214.

HERTZMANN, A. 1998. Painterly rendering with curved brush strokes of
multiple sizes. InProceedings of the 25th annual conference on Com-
puter graphics and interactive techniques, ACM Press, 453–460.

HORN, B. K. P., AND SCHUNCK, B. G. 1981. Determining optical flow.
Artificial Intelligence 17, 1-3 (Aug.), 185–203.

KALNINS , R. D., DAVIDSON, P. L., MARKOSIAN, L., AND FINKEL -
STEIN, A. 2003. Coherent stylized silhouettes. 856–861.

KELLER, A. 1997. Instant radiosity. InProceedings of the 24th an-
nual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 49–56.

KLEIN , A. W., LI , W., KAZHDAN , M. M., CORRA, W. T., FINKELSTEIN,
A., AND FUNKHOUSER, T. A. 2000. Non-photorealistic virtual envi-
ronments. InProceedings of the 27th annual conference on Computer
graphics and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., 527–534.

L ITWINOWICZ , P. 1997. Processing images and video for an impression-
ist effect. InProceedings of the 24th annual conference on Computer
graphics and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., 407–414.



MEIER, B. J. 1996. Painterly rendering for animation. InProceedings of
the 23rd annual conference on Computer graphics and interactive tech-
niques, ACM Press, 477–484.

M INNEN, D., 2002. http://www.cc.gatech.edu/ccg/people/david/mini-
proj.html.

RE: VISION EFFECTS, 2003. Video Gogh 2.7.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D Quality Mesh Gen-
erator and Delaunay Triangulator. InApplied Computational Geome-
try: Towards Geometric Engineering, M. C. Lin and D. Manocha, Eds.,
vol. 1148 ofLecture Notes in Computer Science. Springer-Verlag, May,
203–222. From the First ACM Workshop on Applied Computational
Geometry.

SHEWCHUK, J. R., 2002. Triangle: A two-dimensional quality mesh gen-
erator, version 1.4. http://www-2.cs.cmu.edu/ quake/triangle.html.

STAM , J. 1999. Stable fluids. InProceedings of the 26th annual conference
on Computer graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., 121–128.

STAM , J. 2003. Real-time fluid dynamics for games. InProceedings of the
Game Developer Conference.

SUTHERLAND, I. E. 2003. Sketchpad: A man-machine graphical com-
munication system. Tech. Rep. UCAM-CL-TR-574, University of Cam-
bridge, Computer Laboratory, Sept.

SYNTHETIK SOFTWARE, INC., 2002. Studio Artist 2.0.

TREUILLE, A., MCNAMARA , A., POPOVIC, Z., AND STAM , J. 2003.
Keyframe control of smoke simulations.ACM Transactions on Graphics
(TOG) 22, 3, 716–723.

WITTING , P.1999. Computational fluid dynamics in a traditional animation
environment. InProceedings of the 26th annual conference on Computer
graphics and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., 129–136.



Figure 14: In this rendering the nonfluid regions are not completely covered by brush strokes, allowing for some of the fine details in the
underlying image to show through.

Figure 15: In this rendering we have bounded the fluid simulation to the fluid rendered region of the image.


