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I present an unsupervised system that takes digital photographs as input, and generates

simplified, stylized vector data as output. The three component parts of the system

are image-space stylization, edge tracing, and edge-based image reconstruction. The

design of each of these components is specialized, relative to their state of the art

equivalents, in order to improve their effectiveness when used in such a combined

stylization / vectorization pipeline. I demonstrate that the vector data generated by

this system is often both an effective visual simplification of the input photographs,

and an effective simplification in the sense of memory efficiency, as judged relative to

state of the art lossy image compression formats.

Many recent image-based stylization algorithms are designed to simplify or abstract

the contents of source images; creating cartoon-like results. An ideal cartoon simpli-

fication preserves the important semantics of the image, while de-emphasizing unim-

portant visual details.

In order to fully exploit image simplification in a software engineering context, an

abstracted image must be “simpler” not just in terms of its apparent visual complexity,

but also in terms of the number of bits needed to represent it. At present, the most ro-

bust image abstraction algorithms produce results that are merely visually simpler than

their source data; the storage requirements of the “simplified” results are unchanged.

In contrast to computationally stylized images are vector-graphic cartoons, created

by a human artist from a reference image. Vector art is more easily modified than

bitmap images, and it can be a more memory efficient image representation. However,

the only reliable way to generate vector cartoons from source images is to employ
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a human artist, and thus the advantages of vector art cannot be exploited in fully

automatic systems.

In this work, I approach image-based stylization, edge tracing, and edge-based im-

age reconstruction with the assumption that the three tasks are synergistic. I describe

an unsupervised system that takes digital photographs as input and uses them to cre-

ate stylized vector art, resulting in a simplification of the source data in terms of bit

encoding costs, as well as visual complexity. The specific algorithms that comprise this

system are modified relative to the current state of the art in order to take better ad-

vantage of the complementary nature of the component tasks. My primary technical

contributions are:

1) I show that the edge modeling problem, previously identified as one of the funda-

mental challenges facing edge-only image representations, has a relatively simple and

robust solution, in the special case of images that have been stylized using aggressive

smoothing followed by soft quantization. (See Section 2.4.2.)

2) In Chapter 4 I introduce a novel edge-based image reconstruction method, which

differs from prior work in that anisotropic regularization is used in place of a varying

width Gaussian blur. While previous vector formats have successfully used variable

width blurring to model soft edges, the technique leads to artifacts given the unusually

large widths required by the traced vector data. My anisotropic regularization approach

avoids these artifacts, while maintaining a high degree of reconstruction accuracy. (See

Sections 4.2 and Figure 4.18.)

3) I demonstrate that the vector data generated by my system is, in the sense of

memory efficiency, significantly simpler than the input photographs. Specifically, I com-

pare my vector output with state of the art lossy image compression results. While my

vector encodings are in no sense accurate reproductions of the input photographs, they

do maintain a sharp, stylized look, while preserving most visually important elements.

The results of general purpose compression codecs suffer from significant visual arti-

facts at similar file sizes. (See Sections 3.2, and 5.2.)
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Notation
I have attempted to use notational conventions that are as consistent as possible with

related publications in computer vision, graphics, and applied math. With few ex-

ceptions, italic lowercase letters denote scalars while bold lower case letters denote

vectors. Capital italic letters are used to denote a relatively wide range of objects,

though most often they refer either to matrices or image data. Thus, x is a vector, x i is

an element of x, and Ax is a matrix vector product.

Additionally, I use the following mathematical shorthand:

R: the set of real numbers.

R+: the set of positive real numbers.

Z: the set of integers.

Z+: the set of positive integers.

Cn: the set of functions that are continuous in derivatives 0 through n.

∀i > 1: for all i > 1.

∃x > 1: there exists x such that x > 1.

i ∈ Z+: i is an element of the set of positive integers.

i 3 Z+: i is not an element of the set of positive integers.

{x | x < 2}: the set of all x such that x < 2.

R×R: the set of all ordered pairs of real numbers, i.e. {(x , y) | x , y ∈ R}.
Rn: the set of all n-tuples of real numbers, i.e. R×R× ...×R.

f : R→ R2: f is a function that maps R to R2.

bxc: the largest integer which is less than or equal to x .

dxe: the smallest integer which is greater than or equal to x .

Square brackets and parentheses are used to define intervals of R, for example,

[0, 1) = {x | x ≥ 0 and x < 1}.

When they enclose a predicate, square brackets define indicator functions, thus,

[x ≥ y] =







1 if x ≥ y,

0 otherwise.

(The use of square brackets to define indicator functions is known as Iverson Notation,

and was popularized by the authors of Concrete Mathematics [29].)



1 Introduction

You should call it ‘entropy’, for two reasons.
In the first place your uncertainty function has been used in
statistical mechanics under that name, so it already has a name. In
the second place, and more important, nobody knows what entropy
really is, so in a debate you will always have the advantage.

– John von Neumann to Claude Shannon,
on the topic of information theory.

This dissertation describes an image simplification system, inspired by the artistic tra-

ditions of cartoons and pencil sketches. The stored image data is designed to be repro-

duced at arbitrary resolution, and is composed exclusively of parametric curve data.

In the domain of digital art and design, artists will often create cartoon-like draw-

ings from a source photograph by tracing the outlines of all the shapes in the scene.

Image editing programs such as Adobe Illustrator include several tools that can aid in

tracing tasks. Using these tools, it is possible for a user to convert an input bitmap

image into a vector format cartoon drawing. For example, a PostScript cartoon might

be created from a digital photograph stored in JPEG format. In the graphic arts com-

munity, the process of converting a bitmap image to a vector cartoon is referred to as

vectorization.

The art of vectorization is related to that of drawing, as, given an input photograph,

an artist must decide how to best decompose the photo into a collection of closed re-

gions. As Edwards advises in Drawing on the Right Side of the Brain, one of the funda-

mental components of learning to draw is mastering the related task of decomposing a

scene into areas of shadow and highlight [19].
In computer vision and computer graphics, there is a long tradition of using the

precedent of visual art, most commonly line drawings or cartoons, to support the argu-

ment that only a very small portion of the information contained in most photographs

is visually important. Thus, algorithms for performing low level vision tasks like edge

detection or image segmentation, or algorithms for applying artistic effects such as

cartooning, are frequently motivated in terms of the need to discard the visually unim-



2

portant information that exists in any input photograph.

However, while the precedent of art has played a major role in influencing the

development of algorithms in computer graphics and computer vision, the results of

those algorithms remain inferior to the level of visual simplification and data efficiency

that can be achieved by a skilled artist.

Automatic object tracing algorithms exist, and some have proven to be relatively

robust solutions to the problem of converting input bitmap data into vector format

curves. Such automatic tracing algorithms are not used to simplify input images, but,

rather, to convert them to a resolution independent format, and allow them to be more

easily manipulated as components of vector graphics editing programs.

To imitate the vector cartoons that can be created by a human artist, an algorithm

would need to first perform a visual simplification of the input photograph, and then

convert that visual simplification into a vector format. Such algorithmic imitations are

possible, using state of the art tools. The algorithm can begin by running an image

space stylization filter on an input photograph. This stylization may be one of the

cartoon or pencil sketch filters included with Adobe Photoshop [71], or any of the

more recent image space stylization filters that have appeared in the computer graphics

literature. The result can then be input to an automatic tracing system such as Vector
Magic1. However, the curve data returned by high quality automatic tracing systems

tends to be information dense, and thus, the file size size of the vector output will often

exceed that of the bitmap input.

The image simplification system I present is composed of both an image space styl-

ization algorithm and an automatic curve tracing algorithm. These two component

algorithms are specialized, relative to their state of the art equivalents, in that they

are treated as pieces of a single simplification pipeline, rather than independent algo-

rithms meant to be applied to arbitrary inputs. These specializations greatly improve

the memory efficiency of the resulting vector data. The results have a recognizable

artistic look—somewhere between a cartoon and a pencil tone study.

The very low encoding cost of my vector format is interesting from an academic per-

spective, as it provides a concrete example of the link between art and information ef-

ficiency. While this link has often been hypothesized in both computer vision and com-

puter graphics, rarely has it been so convincingly demonstrated [51, 41, 18, 48, 34].
On some images, my system generates attractive vector art that has significantly lower

bit costs than those that can be achieved with state of the art lossy compression tech-

niques. As such, it improves by several orders of magnitude the compression results

reported for ARDECO, the most closely related joint vectorization / stylization sys-

1http://vectormagic.com

http://vectormagic.com
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tem [68].
The image space stylization algorithms described in Chapter 2 introduce some nov-

elties relative to the state of the art, and I suspect that many digital artists may find it

an improvement, relative to current image stylization filters. However, while my styl-

ization algorithm anticipates its use in a vectorization pipeline, it does not require it,

and the results of vectorization are rarely more attractive than the intermediate stylized

images.

Given the efficiency of modern lossy image compression formats, and the tremen-

dous amounts of storage space available on most computers, there is little benefit to

using my vector format to store local image data. In today’s computing environment,

there is little practical difference between a 2kB image file and a 20kB image file. Even

so, my format could prove useful in web applications. Converting the vector data to

Flash or SVG would be possible, though doing so would both reduce the quality of the

image data and its memory efficiency, as those formats do include a means of repre-

senting the edge shading data generated by my algorithm. With some adjustment, the

core vector content could prove useful for web designers creating pages meant to load

under bandwidth limited conditions. In the near term, an algorithm similar to Sun et

al.’s could likely be used to convert my vector content to the more widely supported

gradient mesh format [70]. And, in the more distant future, it may be possible to

expand the vector formats supported on most web browsers to allow smooth shaded

images more like those generated by my system.

I am also hopeful that the image vectorization system presented here could be ex-

panded to the case of video. Most of the component algorithms have equivalents de-

signed to work on video data, and the ability to quickly transmit stylized video data

over low bandwidth connections would likely have even more applications than the

vector image case.

1.1 Background

The idea that image stylization, simplification, and edge tracing should be approached

as complementary tasks has a long history in both computer graphics and computer

vision.

In their seminal work on the theory of image segmentation, Mumford and Shah

cited the ability of artists to capture most important image information in simple car-

toon drawings as evidence that it should be possible to create image segmentations

that contain most of the semantic content present in natural images [51].
Leclerc went further than most other early computer vision researchers, and hy-
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pothesized that the most efficient possible representation of natural images would be

as the sum of a piecewise smooth image and noise data [41]. Using this assumption, he

was able to leverage Shannon information theory to derive a set of Bayesian priors for

images, and demonstrated that those in turn could be used to improve the performance

of edge detectors and segmentation algorithms.

Much of the continuing work on the topic of image segmentation has been heavily

influenced by either Mumford and Shah or Leclerc, and a number of the most relevant

developments are discussed in Section 1.2. I have adopted several concepts from image

segmentation for use in my own system. The energy functionals described by Mumford

and Shah are one of the main inspirations for my own approach to image reconstruc-

tion, and forms of anisotropic diffusion are used when creating both the initial image

stylization, and when rendering the vectorized result.

Inspired by the segmentation work that preceded him, Elder hypothesized that a

sparse, edge-only image representation could be used to store all the visually important

content of most natural images [20]. Elder developed an image format that contained

only edge locations and edge gradient samples, and demonstrated that it was possible

to reconstruct high quality grayscale images from that data. However, this format did

not show competitive memory efficiency, when compared with more conventional lossy

image encodings.

An interesting variation on Elder’s edge only format was developed by Orzan et

al., who introduced diffusion curves [52]. The primary purpose of the diffusion curve

format is to enable artists to more easily construct soft-shaded vector art. The under-

lying edge data is thus parameterized by splines, in contrast to Elder’s use of point

samples. The image reconstruction method remains closely related to Elder’s, although

modifications have been made to support the presence of color. Diffusion curve vector

data can also be generated automatically from source photographs, though the con-

sequences of this process for either memory efficiency or visual fidelity relative to the

source photograph have not been studied.

In 2002, DeCarlo and Santella described a system for converting input photographs

to cartoon-like images [18]. The goal of this system was to simultaneously simplify and

clarify the contents of an image. It operated by combining eye tracking data with mean

shift segmentations and a b-spline wavelet analysis of edge lines. The resulting images

were qualitatively simpler than the source data, but also appealing when considered as

works of digital art.

In 2006, Lecot and Lévy developed ARDECO, a combined image stylization / vector-

ization system [42]. Ardeco operates by combining a Mumford-Shah energy minimiza-

tion with a sequence of increasingly simplified triangle meshes, which are converted
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to spline boundary curves at the end of the process [42]. In an approach similar to

Elder’s edge image reconstruction, adaptive blurring is used to model soft edges be-

tween regions. A study of the memory efficiency of Ardeco’s vector output showed

that the system could, under some circumstances, outperform JPEG encoding, but the

compression results were less competitive relative to the more modern JPEG2000 stan-

dard [68].
The image-space stylization filter presented in Chapter 2 benefits from the many

recent computer graphics papers that have advanced the art and science of image space

stylization. In particular, I make use of the ability of difference-of-Gaussians filtering

to effectively simplify and abstract facial features, something first noted by Gooch et

al. [27]. Variations on difference of Gaussian filtering that allow a wider range of

artistic effects and higher quality results have since been developed by Winnemöller

et al., Kang et al., and Kyprianidis and Döllner [76, 35, 39]. The flow-guided filters

introduced by Kang et al. have proven very useful in creating high quality stylizations

for use as input to the vector tracing and reconstruction algorithms.

1.2 Segmentation

Historically, image and video segmentation algorithms have been grouped into one of

several competing paradigms. Three of the most popular categories have been Mum-

ford Shah region energy minimizations [51], active contour spline fitting [37], and

global optimizations derived from Bayesian or minimal description length (MDL) crite-

ria [25, 41].
Image segmentation is closely related to the task of edge detection, as the most

significant edges in an image are typically those that occur on the boundaries between

regions, while the most desirable segmentations are those in which most of the region

boundary lines are also edges. Christoudias et al. argued that the two tasks of edge de-

tection and image segmentation are naturally synergistic—and that the best approach

to both problems was to integrate local image information obtained from edge detec-

tion into global methods for image segmentation [11]. Many modern approaches to

computer vision problems are arguably examples of such a “synergistic” approach. For

example, anisotropic diffusion was originally proposed as an edge finding method but

is now often used as a component in a variety of low level vision tasks, including image

segmentation, texture classification, and optical flow approximation [53, 5].
In 1996, Zhu and Yuille argued that most approaches to image segmentation could

be encompassed by a single unified optimization framework, and proposed an effi-

cient strategy for solving any segmentation problems in this broad category, which they
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called region competition [79]. Since then, several new video segmentation algorithms

have been defined by extending the region competition framework to additionally ac-

count for optical flow constraints [16, 7].

1.2.1 Parametric Models

In 1988, Kass et al. introduced active contours as a low-level computer vision tool [37].
Also known as snakes, active contours are parametric curves that locally adjust their

control points in order to seek a minimum energy state. By convention, the energy

functional used by a snake is divided into two parts: the internal energy, which is

typically defined to favor straight, smooth curves, and the external energy, which is

defined so as to attract the curve to certain features in the image, most typically edges.

For a parametric curve C(t), and a greyscale image defined by the intensity function

I((x)), the standard snake energy functional is,

E(C) = (µ1

∫ 1

0

|C(t)′|2d t +µ2

∫ 1

0

|C(t)′′|2d t)−
∫ 1

0

||∇I(C(t))||2d t.

If the curve C(t) is open, the snake will match an edge in the image, if C is closed, the

snake will form the border of a closed region. The µ terms may be used to control the

relative weightings of the curve’s first and second degree smoothness.

An additional external term may also be added to take into account input supplied

by either a user or a high level computer vision algorithm. The external energy term

may also be adjusted to react to intensity gradients measured at multiple levels of

scale space, in order to better match blurry region boundaries. Because the snake

performs only local optimizations, and fits itself to the closest minimal energy state,

active contour edge finding is very fast. However, for the same reason, traditional active

contours cannot be considered an automatic segmentation technique. They require the

output of other algorithms or user input to supply them with useful initial conditions.

In the case of closed snakes, one simple method for reducing the high dependence on

initial conditions is to add an energy term penalizing the snake for enclosing a small

area. Thus, closed curves will tend to expand, and seek the boundaries of large regions.

Such methods are known as balloon models [13].

Snakes in Video Segmentation

The sensitivity of snakes to their initial placement has made them attractive to re-

searchers interested in video segmentation. Once a snake has been matched to an

object in one frame of video, the minimal energy state that it finds can be used as an
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initial condition for the next frame. Thus, a naive application of snakes to video seg-

mentation can provide a very fast and simple region tracking algorithm. Unfortunately,

the approach has proven to be quite brittle [50].
One significant source of problems are region topology changes. If the segmentation

of an image into regions is mapped to a graph, with each closed region implying a node,

and edges inserted between all regions adjacent to one another, then that graph will

often remain constant throughout several frames of a video sequence. However, some

common events will cause the topology of the region adjacency graph to change. If one

object moves to partially occlude another, the occluded region may be split into two

distinct closed regions. A traditional active contour model has no way of dealing with

such a topology change—the enclosing curve will typically be forced to choose to track

one closed region or the other.

Two different strategies have been suggested for adapting active contour models to

better handle topology changes. In 1995, McInerney and Terzopoulos described a seg-

mentation system in which the active contour curve evolution step was alternated with

a curve reparameterization step [49]. After each update of the curve’s control points,

the active contour was projected onto a grid. This grid was used to re-parameterize

the curve, and, if necessary, split or join regions in the case of topology changes. The

authors named this method topologically adaptive snakes, or t-snakes, and it has since

been successfully applied to the case of tracing volume data in medical datasets [50].
A very different strategy was proposed by Caselles et al. in 1997 [9]. A potential

energy field was defined such that its zero level set would roughly match the behavior

of a classical snake energy. As the method did not require an explicit parametrization of

the boundary curve, it had no difficulty handling region topology changes. The authors

named the method geodesic active contours, because similarities existed between their

energy functional and the laws of relativistic dynamics. Unfortunately, optimizing the

potential function proved much more computationally intensive than optimizing the

control points of a parametric curve, and geodesic active contour methods can require

several minutes to process a single image.

1.2.2 Region Energy Minimization

While active contour methods optimize an energy defined only for the boundary points

of a region, other methods have been proposed which take into account the character

of the pixels inside each region. The Mumford-Shah functional, proposed 1989, is a

popular means of defining such an energy [51].
The Mumford-Shah energy functional is defined in terms of a source image g, and

output image f [51]. Both f and g are considered to be scalar functions defined in the
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domain Ω⊂ R2. In addition to creating an output image f , which may not be identical

to the input image, g, the Mumford Shah energy functional is also defined in terms

of a segmentation of Ω into N closed regions Ri. The boundary curves between those

regions are defined as Γ, and the combined length of all boundary curves denoted by

|Γ|. The Mumford Shah energy functional is defined as,

E( f ,Γ) = µ2

∫∫

Ω

( f − g)2d xd y +

∫∫

Ω−Γ
||(∇ f )||2d xd y + ν |Γ| (1.1)

The energy functional can be interpreted as a formalization of the following two

goals:

• The values in the output image should be close to the values in the source image.

However, the output values should not vary much inside a given region.

• The region boundaries should be as simple as possible.

The boundary length |Γ| can be understood as a measure of the complexity of the

region boundaries, thus, the scalar ν can be used to control the relative weighting of

the boundary simplicity goal. The scalar µ controls the relative weight of source image

matching.

When the functional was first introduced, Mumford and Shah proved two important

theoretical results. The first is that, for any fixed Γ, the output image f is always

uniquely determined by the following Poisson equation:

Inside Ri, ∇2 f = µ2( f − g), and on ∂ Ri,
∂ f

∂ n
= 0.

Based on this result, Mumford and Shah introduced the concept of the cartoon limit.
As µ2 goes to 0, the ( f − g)2 term becomes vanishingly small relative to the ||(∇ f )||2

term2. Thus, f (x , y) will be forced to take on a constant value inside each Ri. It can be

shown that the optimal constant color value inside each Ri will be the mean color of g
in Ri. This piecewise constant special case is called the cartoon limit.

Mumford and Shah’s second important theoretical result is that it is possible to can

characterize the extrema of Γ well enough to refine any Γ using standard nonlinear

optimization techniques. Specifically, small perturbations in Γ imply that the total

energy of the segmentation will change relative to the changes in curvature measured

over a parametrization of Γ.

2One reason to consider the limit st µ2→ 0, rather than simply setting µ to 0, is that, strictly speaking,

f is not “uniquely determined” by the Poisson equation given above, in the case that µ = 0. However,

there is always a unique solution to as long as µ > 0, and that solution converges to the constant color

case as µ→ 0.
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Despite the two significant theoretical results listed above, in practice, finding op-

tima of the Mumford-Shah energy functional tends to be difficult. If it is assumed

that there are only two distinct regions in the image, then a potential-based level set

method, like that used in geodesic active contours, can be used to optimize the func-

tional. Handling the case of multiple regions is more difficult. Vese and Chan have

proposed a method whereby log(n) potential functions can be used to implicitly en-

code n different regions [73]. Methods such as this, in which multiple regions are

found using a collection of connected level set optimizations, are known as multiphase
level set optimization frameworks.

1.2.3 Bayesian Segmentation

In its simplest form, Bayesian segmentation considers the input image D to be a cor-

rupted version of some model image Mi, where the model image can be any piecewise

smooth image corresponding to a segmentation of the scene pixels [25]. From Bayes’

rule, it follows that the most likely model image is the one that maximizes the prod-

uct of the product of the two probability functions, P(D|M) and P(M). Defining the

probability of the source image given a particular model image is straightforward, it

requires only that we define a model for the corrupting process that generated D from

M . Typically, a Gaussian error distribution is used for this purpose. However, defining

the prior probability of a piecewise smooth image, P(M), presents a problem. A priori

arguments to the effect that one type of model image should be considered more likely

than another are hard to justify. Generally, the prior probability of a model is chosen to

reflect a particular assumption of about what a good segmentation ought to look like,

for example, if we wish to avoid segmentations having many small regions, P(M) may

be defined as a function that decreases with the number distinct regions in the image.

MDL Segmentation

The minimum description length segmentation method, introduced by Leclerc in 1989,

provides an alternative means of justifying the Bayesian approach, one that allows the

prior probability of a given model to be defined in a less arbitrary manner [41]. Leclerc

makes use of a result from information theory, which states that if probability functions

governing the likelihood of model image corruption and model image prior probability

exist, then there must also exist optimal languages for encoding those images, such

that the number of bits needed to encode the model image M is − log2(P(M)), and the

number of bits needed to encode the pattern of corruption is − log2(P(D|M)). Assum-

ing that an image is most efficiently described by first specifying the piecewise smooth
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segmentation M , and then describing the pattern of corruption D− M , it follows that

the most likely model image for a given input source image is the segmentation that

can be used to create a minimal bit count description of that image. Thus, the prior

probability of a given model image can be derived from the number of bits needed to

describe it, assuming the use of an optimal language.

Leclerc thus recommends building segmentation algorithms by combining some def-

inition of P(D|M), which can be thought of as a general specification of the behavior ex-

pected inside each region, with a “language" for representing a given piecewise smooth

segmentation. While in principle, such a language would be equivalent to an encoding

scheme for the image data, in practice, it need only be a way of estimating the number

of bits needed to store the model segmentation under ideal conditions.

1.2.4 Unified Models

In 1996, Zhu and Yuille argued that, if Leclerc’s approach were extended to consider

an images as a continuous field of intensity values, rather than discrete data points,

then most other popular segmentation algorithms could be considered as special cases

of a generalized MDL method [79]. For example, in the Mumford-Shah energy func-

tional, equation (1.1), the segmentation encoding cost becomes the ν |Γ| term, while

the smoothness terms define the expected internal region behavior. The notion of a

closed active contour was argued to be equivalent to the special case in which corrup-

tion inside each region is assumed to uniformly distributed, and the cost of encoding

segmentation edges varies as a function of the underlying image gradients.3 Zhu and

Yuille then went on to introduce a novel algorithm for solving the difficult optimization

problem implied by their generalized MDL criterion. This algorithm worked by alter-

nating between updating region boundries and updating the internal parameters that

described each region. The algorithm also included provision for performing region

merges, and creating new regions.

At least two different joint segmentation and optical flow finding algorithms have

been proposed as extensions to Zhu and Yuille’s general framework. The first was

presented by Cremers et al. in 2005, and provided both a parametric binary segmen-

tation implementation and an multiregion segmentation, based on Chan and Vesse’s

multiphase level set representation [16]. The second was proposed by Brox et al. in

2006 [7]. The Brox et al. system did not include the option of using parametric curves,

3At first glance, specifying the prior probability of the model image M in terms of the gradients in the

source image D seems like a blatant violation of what it means to be a ‘prior’ probability. However, it is

not necessarily as bad as it seems, as there might well be an extent to which the distribution of gradients

in the source image is representative of the distribution of edges in all ideal image segmentations.
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and it made use of a different multiphase level set framework. The 2006 system also

produced significantly better results than the 2005 system.

In both these systems, the segmentation’s energy functional was modified to in-

clude optical flow energy terms, such as those defined by a Horn/Schunck solver [32].
A minimum of the functional thus defines not only a segmentation of each frame, but

also flow fields that specify the apparent motion between frames. In Brox et al., a mul-

tiscale optimization process was used, in which region competition was performed at

successively fine levels. This multiscale optimization was similar to that used by the

same authors in their 2004 paper on calculating optical flow [6]. The different goals

provided by the combined optical flow and segmentation energy functional proved to

be synergistic; the region definitions found appeared better than those that could be

found by a per-image segmentation algorithm, while the optical flow fields reported by

Brox et al. are higher quality than those that could be found using any prior optical

flow algorithms [7]. In addition to breaking many previous records for accuracy in

computed flow, the Brox et. al system also proved so accurate that the authors uncov-

ered errors in the ground truth data used to evaluate performance on the Yosemite test

dataset [7].

1.2.5 Graph Optimization

All of the segmentation methods that can be encompassed by Zhu and Yuille’s uni-

fied framework fall under the broad heading of continuous energy minimization ap-

proaches. This is to say, they require that the discrete image data be treated as a con-

tinuous field of intensity or color values, upon which the tools of multivariable calculus

can be brought to bear. In contrast to this, are the original, non-continuous formula-

tions of Bayesian and MDL segmentations, which consider image data as a discrete grid

of scalar values. There can be a computational advantage in leaving the image data in

a discrete form, as segmentation algorithms can then be defined in terms of optimal

paths through the pixel connectivity graph, rather than as the minimizers of integral

expressions. Such natively discrete, graph based methods have proven very successful

in some application domains. In 2003, Kwatra et al. used graph optimizations to find

regions in a source image for the purposes of texture generation [38]. In 2004, Rother

et al. showed that a mincut graph algorithm could prove useful in the the case of user

guided binary segmentation [62]. In 2006, Schoenemann et al. used a similar graph

cut algorithm to perform fast per-frame binary segmentations of video data [64].
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1.3 Multiresolution Curves

Wavelets have proven a very useful tool for image simplification and compression

tasks. The application of wavelet analysis to images was pioneered by Mallat [46]
and Daubachies [17], leading to an explosion of research in multiresolution imaging

applications [10]. Wavelet decompositions have become an important component of

modern image compression standards, such as JPEG2000 [1].
Wavelets have also been applied to the problem of simplifying vector curve data [69].

In 1994, Finkelstein and Salesin introduced the graphics community to the use of B-

spline wavelets for curve analysis [23]. Also known as Chui wavelets or B-wavelets, B-

spline wavelets are constructed from a nested space of B-spline scaling functions, and

had recently become popular among mathematicians studying wavelet theory [12].
Finkelstein and Salesin demonstrated that B-wavelets had many potential applications

in computer graphics. Decomposing a hand drawn curve into detail and low-resolution

components could allow an artist to separate the line style from the shape of the curve.

Thus, it was possible to replace the line style from one drawing with that of a differ-

ent drawing. Postscript curve data could also be automatically simplified before being

spooled to a printer, minimizing the transmission cost required to print detailed vector

art.

As the b-wavelet basis functions are only semi-orthogonal, separating the detail

and low-resolution components of a b-spline can be computational intensive. A naive

decomposition algorithm, which computes the necessary analysis matrices for each res-

olution, will require two n× n dense matrix multiplications per decomposition. Given

input curves with thousands of initial control points, storing and applying these large

matrices can become a significant computational burden. However, Finkelstein and

Salesin recommended making use of the linear time decomposition algorithm proposed

by Quak and Weyrich [57], in which the properties of the b-wavelet’s dual space were

used to derive decomposition matrices defined in terms of the inverse of sparse banded

matrices. As those sparse matrix inversions can be performed in linear time, the entire

B-wavelet decomposition may be computed relatively quickly. This fast decomposition

method is limited, however, to the case of end point interpolating b-spline wavelets.

Periodic B-splines are a more natural tool for representing closed curves. An acceler-

ated decomposition method for periodic b-wavelets, based on fast Fourier transforms,

has been proposed by Plonka and Tasche [54].
In 1995, Gortler and Cohen demonstrated that using a B-wavelet basis could im-

prove on the performance of finite element solvers applied to the task of finding min-

imal energy curves, such as those used in active contour models [28]. They also de-
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scribed how the curve could be adaptively refined or simplified during the course of

the optimization, by altering the resolution of different areas using an appropriately

designed oracle. Such an oracle will tend to produce a minimal energy spline curve

represented using the smallest possible set of control points.

1.4 Tracing Binary Images

In the computer vision literature, algorithms that identify regions in an image either by

assigning each pixel a region ID, or by finding parametric curves that describe region

boundaries, are both referred to as segmentation techniques. However, from an artist’s

perspective, the difference between blocky pixel labeling information and spline curves

is significant.

Inferring a set of boundary curves from a binary image may be seen as a trivial

interface extraction problem. However, given the end goal of generating vector data,

the nature of the extracted boundary curves, both in terms of memory efficiency and

less easily measured aesthetic qualities, is important. To the best of my knowledge,

the computer graphics literature contains no references on the topic of extracting visu-

ally attractive boundary curves from segmented bitmap data, though Finkelstein and

Salesin have addressed the issue of improving the memory efficiency of spline curve

drawings [23]. However, sophisticated algorithms designed for the express purpose

of generating attractive boundary curves from binary image data do exist. Currently,

the most effective of these is considered to be the proprietary algorithm used by the

website Vector Magic. The most popular documented tracing algorithm is curve extrac-

tion program Potrace, an open source project developed by the mathematician Peter

Selinger [65].
The Potrace algorithm generates PostScript curve data from a binary input image.

The algorithm proceeds as follows: First, the marching squares algorithm is used to

generate lists of boundary pixels. Next, a graph based minimization finds a minimal

vertex polygon having edges contained inside an area defined by the boundary pixels.

A second minimization is then used to generate curves from the polygon data. The

output curves are piecewise cubic splines, and special attention is paid to detecting

and preserving sharp corners. The algorithm is relatively fast, with typical runtimes of

less than a second. The bottleneck is the polygon finding energy minimization, which

uses a relatively expensive method to find a global minimum of a graph optimization

problem. If a faster version of the algorithm were required, this global optimization

step could be replaced by a cheaper heuristic.

The vector editing program Inkscape includes an automatic image vectorization tool
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based on Potrace. In order to use Potrace for vectorization, it is necessary to first

create a segmentation of the input image, and then use Potrace to generate curves

data for each of the resulting regions. Typically, there will be areas of overlap as well

as gaps between the output curves for the different segmentation regions. To avoid

this problem, Inkscape generates a hierarchy of increasingly coarse segmentations, and

renders the curves found for the finer segmentation on top of those found for the

coarser levels.

1.5 Image Morphology

While not directly related to the task of generating vector cartoons, morphological

skeletonization is an important precedent for the more general problem of developing

highly memory efficient simplifications of image data. Morphological skeletonization

is a technique in which a sequence of morphological operations are applied to a bi-

nary image in order to reduce it to handful of points or lines in the centers the image

regions. These operations may then be reversed to create an output image. In 1987,

Maragos and Schafer [47] proposed using morphological skeletonization to compress

binary video data. Binary image skeletonization can be performed very quickly, and the

resulting skeletons can be easily compressed, thus Maragos and Schafer argued that the

algorithm would be suitable for low-bandwidth telephony for the deaf. However, their

high sensitivity to noise has thus far prevented skeletonization techniques from being

widely applied.

1.6 Scattered Data Interpolation

Scattered data interpolation is the task of interpolating scalar or vector valued data

for all points in a domain, given a set of irregularly distributed, unordered control

points. Reconstruction of smooth images from edge only image data is a scattered data

interpolation problem.

Common scattered data interpolation techniques include radial basis functions,

membrane energy minimizations, and mesh based techniques [24]. Thin plate splines

are an interesting special case, as they can be expressed either as a radial basis tech-

nique, or a tension-based energy minimization [72]. Depending on the method, the

computational complexity of a scattered data technique may be determined by either

the size of the domain over which it is applied, or the number of control points present.

In 1984, Terzopoulos demonstrated that the potential to apply multigrid solvers to

the partial differential equations implied by the tension-energy form of the thin plate
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spline equations made very fast surface reconstructions from scattered depth samples

possible [4, 72]. In 1997, this same technique was adapted to the domain of stylized

video filtering by Litwinowicz, who used it to generate smooth brush stoke alignment

fields [44]. However, the generated alignment fields had a tendency to change dramat-

ically from one frame of video to the next. To overcome that problem, Hays and Essa

suggested switching to a radial basis method, defined in video volume space rather

than image space [30].

1.7 Video Vectorization

Many different tools exist for creating cartoon animations from captured video. The

most commercially successful of these is Rotoshop, a software system developed by

Robert Sabiston, and marketed by Flat Black Films. Rotoscoping is a traditional ani-

mation technique in which an artist traces the outline of an object in each frame of a

source film. As most video postprocessing is now performed digitally, the terms ‘roto-

scoping’ and ‘vectorization’ are sometimes used interchangeably, though it is still typ-

ically the case that rotoscoping implies tracing one or more objects of interest, while

vectorization implies generating curve data for all elements of the input. Rotoshop

provides artists with tools that simplify the rotoscoping process. It has been used to

generate cartoon-like visual effects in several Hollywood films, including Waking Life
and A Scanner Darkly.

In the academic literature, Agarwala et al. have described a software tool for sim-

plifying the rotoscoping process [2]. It includes two components: a per-frame tool

that allows artists to specify object outlines by adjusting a small set of control points,

and a temporal optimization capable of generating intermediate outlines given outlines

defined at a sparse set of keyframes.

In the field of computer graphics, there are two published systems that are arguably

capable of automatically generating vector cartoons given input video; though both

systems typically require user input to produce good results, in addition to being quite

computationally expensive. Wang et al. described a Video Tooning system in which

mean shift clustering was applied to a three dimensional video volume [74]. Marching

cubes was then used to generate a set of boundary pixels from the clustered data. By

sketching on the video frames prior to segmentation, users could introduce biases into

the mean shift kernel, giving them a degree of control over the resulting volume seg-

mentations. Once the segmentation was complete, the volumes could be adjusted by

hand, to deal with occasional over- or under-segmentations. After the volume data had

been defined, several video stylization options where made available to the user, in-
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cluding a flat shaded cartoon style. Because the system relied on a relatively expensive

three dimensional clustering algorithm, several hours of processing time were required

to generate results for a 10 second, 300 frame clip of input video.

Collomosse et al. described a similar video stylization system, which improved on

many of the weakness in Wang et al. [14]. Rather than applying a single clustering op-

eration to the entire 3D video volume, an off the shelf image segmentation algorithm

was used to quickly perform per-frame segmentations. A second, active contour-like

optimization was then used to fit a 3D spacio-temporal Catmull-Rom surface to the

sequence of segmented video frames. A graph defining region topology changes and

adjacency information was generated based on these surfaces. Users could edit the

graphs in order to correct for errors made by the surface fitting algorithm. After the 3D

surfaces had been defined, users were able to create animations by applying several dif-

ferent stylization effects. In order to improve the temporal coherence of any texturing

effects, a moving reference frame was maintained for each region. Temporally aver-

aged colors were also calculated using the stored region topology data, which allowed

a flat shaded cartoon style to be implemented without noticeable flickering. Collo-

mosse et al. also presented results showing that a file containing the volume surface

information and the user supplied parameters necessary to generate a stylized output

video could be significantly more memory efficient than an MPEG-4 compression of the

implied output.

In 2002, DeCarlo and Santella described a system for converting input photographs

to simplified cartoon-like line drawings [18]. To the best of my knowledge, this is the

only published system capable of generating vector format cartoon drawings from input

still images without human supervision (though Inkscape’s Potrace-based vectorization

method is arguably an unpublished algorithm capable of achieving a similar effect).

The system operates by using either eye tracking data or image saliency estimates to

inform a series of increasingly fine mean shift segmentations, which are then merged

to create an initial segmentation of the scene. Endpoint interpolating spline wavelets

were used to simplify the initial segmentation interfaces [23]. Finally, edge emphasis

lines were added based on a visual acuity model.

Image editing programs such as Adobe Photoshop have long included image fil-

ters designed to mimic certain artistic styles. For example, a cartoon filter might be

implemented by multiplying the result of an edge finding filter with that of a color

quantization. However, such stylizations are difficult to apply in the case of video data,

as small differences between the image data in successive frames can drastically al-

ter the output of the filters, leading to distracting flickering effects when the stylized

frames are viewed in sequence.
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In 2006, Winnemöller et al. presented a cartoon filter that avoided these temporal

problems [76]. The filter was applied to each video frame in sequence. It did not make

use of any temporal data, such as optical flow or comparisons with neighboring frames.

The authors observed that the flickering effects that resulted from most stylization fil-

ters were typically the result of threshold functions in a component filter, which would

send values on either side of the threshhold to radically different colors. As a value

close to one of these thresholds evolved through time, it tended to move in and out of

the threshold condition, which in turn lead to flickering. Therefore, any component of

the cartoon filter that included such a thresholding step was replaced with a nonlinear

function having smoother behavior. In order to avoid over-smoothing in regions where

sharp thresholds were desired, a spatially varying sharpness field was also defined,

based on filtered image gradients. Using these field values to determine the behavior

of the nonlinear scaling functions tended to increase contrasts in the foreground objects

while leaving the background relatively blurry and abstract.

1.8 Gradient Meshes

Gradient meshes are a vector format capable of representing smooth shaded images.

A gradient mesh uses a collection of spline patches to parameterize smoothly varying

colors over an image. Gradient meshes are supported by vector editing programs such

as Adobe Illustrator, but have traditionally required a large amount of user guidance to

create. However, in 2007, Sun et al. showed that the task of finding an optimal gradi-

ent mesh representation of an input image could be productively approached using a

nonlinear least squares solver [70]. Subsequent work by Xia et al. demonstrated that

arbitrary input images could be represented by relatively simple gradient meshes at a

very high level of accuracy [78].
The primary motivation of gradient mesh generation algorithms has been to sim-

plify the graphic design tasks [56]; however, Sun et al. was able to show that for

simple images, their optimized gradient mesh results led to more compact files than

JPEG compression [70].



2 Image Space Simplification

Art is the lie that tells the truth.

– Pablo Picasso

My vectorization system begins by applying a number of image space operations to

the input photograph. The purpose of these operations is to abstract and simplify the

content of the photograph, thus preparing it for subsequent vectorization.

The image space signification step benefits from the example of many previously

published image stylization filters. The only relative novelties are my use of a nonuni-

form soft quantization function, as detailed in Section 2.4, and the p-value reparam-

eterization discussed in Section 2.2.4. The structure tensor guided image abstraction

developed by Kyprianidis and Döllner [39] includes most of the important features

of my own system. The work of Kyprianidis and Döllner, meanwhile, drew heavily

on the prior image stylization methods of Winnemöller et al. [76], integrating it with

the structure tensor guided adaptive smoothers previously studied by computer vision

researchers such as Weickert, and Kass and Witkin [75, 36].
The image space simplification is composed of three steps. First, the photograph

is converted to grayscale, and a combination of blurring and unsharp masking used to

exaggerate the edges (see Section 2.2). Next, an edge orientation field is generated,

and used to guide a line integral convolution operation, as described in Sections 2.3.1

and 2.3.2. The operation finishes by applying the non-uniform soft quantization filter,

described in Section 2.4.

In Section 2.4.2, I argue that, as a result of the image space simplification step,

the behavior of the image across quantization boundaries becomes predictable. This

is important, as it implies that in the case of the simplified images, Elder’s edge model
problem has a simple solution. That solution allows my system to reconstruct soft

edges more accurately than prior methods, which can lead to vector results that better

preserve shape and shading information, as shown in Figure 4.19.
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2.1 Discrete and Continuous Image Operations

Some image space operations are most naturally described in terms of continuous

mathematics, while others are most simply described in terms of discrete math. While

digital logic requires that any continuous definition be approximated using discrete

data, there are still many cases in which continuous definitions are more clear. Oper-

ations such as “line integral convolution” or “anisotropic diffusion” are most naturally

defined in terms of continuous math.

When defining an image operation using continuous math, an image I is considered

to be a function with domain Ω that returns real number luminance values, where Ω
is a subset of R2 defined as Ω = [0, w]× [0, h]. In cases where a definition requires

evaluating I for a point x outside its domain, the domain of I may be extended to all

of R2 by mapping any x 3 Ω to the closest x′ ∈ Ω before evaluating I .
When defining an image operation using discrete mathematics, an image I is con-

sidered to be a matrix of pixel values.1 While I is a w× h matrix, it is often convenient

to refer to image pixels using a single index i. The image space position of pixel i is the

vector formed from the row/collumn indices of that pixel, and is given by pi.

Occasionally, it is useful to define image operations by mixing both continuous and

discrete conventions, in which case, terms that assume continuous data, such as I(x),
can be assumed to be interpolations of the nearest discrete data stored in the matrix I .

2.2 Blurring and Unsharp Masking

The goal of the image simplification step is to both simplify and clarify the contents of

the input photograph. Unsharp masking is a useful tool for clarifying image features,

while Gaussian blurring is an effective means of simplifying visual content. In the first

phase of the image simplification step, the two operations are combined by applying

an unsharp mask to a blurred image.

2.2.1 Gaussian Blurring

Let G(I ,σ) denote the Gaussian blur of image I using a kernel of standard deviation

σ. I will use the shorthand notation Iσ for the same result.

Iσ(x) := G(I ,σ)(x) :=

∫∫

Ω

I(x− y)
1

p
2πσ2

e−
||x−y||2

2σ2 dy.

1Properly, this is only a semi-discrete image representation, as the value at each pixel is still allowed

to be any real number.
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Recall that repeated Gaussian blurring with two kernels of width σ1 and σ2 is

equivalent to a single blur of width (σ1+σ2), i.e., G(Iσ1
,σ2) = Iσ1+σ2

.

2.2.2 Unsharp Masking

Unsharp masking is a technique first used by darkroom photographers. To perform

an unsharp mask, a photographer uses a negative duplication technique to create a

low-detail version of an original negative. Using the low-detail negative as a mask

when creating a print from the original has the effect of increasing the contrast of the

result [40].
An unsharp mask can be implemented digitally by subtracting a small multiple of

a blurred image from the unblurred source. For example, given a source image I , and

blurred image Iσ, an unsharp mask result Im can be defined as,

Im(p) := I − pIσ + pI . (2.1)

Here p is a scalar that defines the strength of the unsharp masking effect. In equa-

tion (2.1), a small multiple of the source image, pI has been added to the result in

order to compensate for the darkening implied by subtracting pIσ.

2.2.3 Combination of Gaussian Blurring and Unsharp Masking

The result of applying a Gaussian blur followed by an unsharp mask can be expressed

as follows,

Im := Iσ1
+ p(Iσ1

− Iσ2
). (2.2)

In the above, σ1 is the width of the initial Gaussian blur, and (σ2−σ1) is the width of

the blur used to create the unsharp mask.

2.2.4 Parameter Selection

The result of blurring followed by unsharp masking is dependent on three parameters,

the blur widths σ1, σ2, and the unsharp mask strength, p. Of these, σ1 is the most

intuitive. It corresponds to the width of the initial blur, and thus, increasing σ1 has the

effect of removing smaller visual features and details.

The remaining two parameters, p and σ2, however, are interdependent. Their

relation can be clarified by considering the relation of equation (2.2) to difference-

of-Gaussians filtering.
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Input Photograph Gaussian Blur Unsharp Masking

Line Integral Convolution Soft Quantization

Figure 2.1: An overview of the image simplification process. First, a Gaussian blur is

applied to the input photograph. Then unsharp masking is used to reintroduce strong

edges to the blur result. Next, the structure tensor is computed, and used to perform

line integral convolution. Finally, the range adjustment and soft quantization opera-

tions are applied.
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Origional Unsharp Larger σ2, constant p Larger σ2, constant p′

Figure 2.2: Changes to the blur widths σ1 and σ2 will significantly change the unsharp

result, if the unsharp weight p is held constant. In the second two images, the unsharp

result from Figure 2.1 has been changed by recomputing using σ2 = 1.6σ1 rather than

σ2 = 1.1σ1. The relatively slight increase to σ2 causes a dramatic change in the result.

However, reparameterizing the operation in terms of p′, as in equation (2.3), implies

that the change in σ2 has almost no impact on the result.

Difference-of-Gaussians filtering is a simple and effective means of highlighting the

edges in an image. The difference-of Gaussians filter E is defined as,

E := Iσ1
− Iσ2

, where σ2 > σ1.

From equation (2.2), it is clear that Im will be the sum of the edge image E and the

initial blur image Iσ1
. The role of the parameter p is to determine the weighting of the

edge image relative to the blur image. Large p will cause the edge image to dominate,

while small p will cause Im to approach Iσ1
.

However, the range of values in the edge image E will vary with σ1 and σ2. For

example, on the example image shown in Figure 2.1, the variance of the edge image is

Var(E) = 1.34× 10−5, given σ1 = 3 and σ2 = 1.1σ1. However, the variance of edge

response values increases by more than an order of magnitude if the second blur width

is changed to σ2 = 1.6σ1, in which case, Var(E) = 3.66× 10−4.

The closer σ2 is to σ1, the larger p must be to create a noticeable edge enhancement

effect. This makes experimenting with different parameter values tedious, as small

changes to either σ value can dramatically change the effect of different p values.

The parameter space can be substantially simplified by compensating for any changes

in the variance of E when defining p. Thus, the reparameterized blur+unsharp mask
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operation is,

Im := Iσ1
+ p′

È

Var(Iσ1
)

Var(E)
E. (2.3)

This reparameterization causes the original unsharp mask weight p vary as a func-

tion of the image contents. As shown in Figure 2.2, after reparameterizing Im as in

equation (2.3), the ratio σ2

σ1
has relatively little impact on the result. The system de-

fault is to use σ2 = 1.1σ1, mainly because that decreases the costs of computing Iσ2
.

2.3 Edge Aligned Line Integral Convolution

The second image simplification stage is another smoothing operation, designed to

simplify object boundaries. This second smoothing stage also serves to eliminate any

noise introduced by unsharp masking.

The technique of line integral convolution is used to apply a directionally biased

blur. Pixel values are averaged along lines tangent to the strongest edges in the image;

with the result that edges become smoother and more coherent.

2.3.1 The Structure Tensor

The structure tensor is a useful tool for defining vector fields that correspond to the di-

rection of image edges. In 1985, Kass and Witkin proposed a variety of approaches for

inferring edge alignment fields from black and white images [36]. In 1991, Rao and

Schunk showed that one of Kass and Witkin’s field definitions could be equivalently

derived by using the concept of a structure tensor (which they referred to as the mo-
ment tensor) [59]. Structure tensors have since become commonly used tools in image

analysis [75].
The structure tensor has become so pervasive that more modern authors typically

cite its properties without proof or reference. This is unfortunate, as the structure

tensor arises very naturally from the core problem of finding edge alignment fields over

images. In order to clarify the use of structure tensors in my own system, I rederive the

salient properties of the tensor here. In doing so, I follow the original line of argument

given by Rao and Schunk, expanded slightly to cover the case of structure tensor blurs

other than box filters.

Sobel filters, or similar gradient approximation techniques, return a vector field

defined at each pixel in an image. High magnitude gradients are likely associated

with edges. Specifically, at high magnitude gradient points, the edge direction is likely

to be orthogonal to the gradient direction. However, low magnitude gradients will
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Figure 2.3: A grey ribbon on a white background. The implied image gradient vectors

are shown in black. While the gradients frequently point in opposite directions, the

sweep of the edges follows the center line of the ribbon, as indicated by the dotted

line. Generating a vector field corresponding to the dominant edge direction requires

a numerical method in which opposite direction gradients reinforce each other.

have little, if any, relation to the direction of any nearby edge lines, while even high

magnitude edge data is frequently noisy.

However, it is possible to both reduce the noise in the gradient data, while simul-

taneously extending edge direction information stored at high magnitude points to

nearby low magnitude points, by defining an edge direction field u as follows.

If the gradient value at pixel i is given by vi, and N( j) is the set of pixel indices that

correspond to locations near pixel j, let the edge direction vector u j be a solution to

the following optimization problem,

min
u

∑

i∈N( j)

|vi · u j|2 subject to ||u j||= 1. (2.4)

The set of nearby pixels, N( j), is most commonly defined as the set of pixels that lie

inside a radius r box centered at pixel j. However, other definitions may be used

without impacting the following arguments.

Despite the simplicity of equation (2.4), it accomplishes several important goals.

First, it ensures that the impact of any gradient sample vi will be proportional to its

magnitude. The maximum possible penalty associated with a sample vi is ||vi||2, which

occurs in the case that u j is parallel to vi. Second, because the penalty term is the

square of a dot product, two gradients pointing in opposite directions will act to re-

inforce each other. Cases in which two nearby gradients point in opposite directions
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are relatively common, as they occur any time an image contains a long thin object,

see, for example, Figure 2.3. In such cases, blurring the gradient data will cause the

two opposing gradients to cancel each other out. However, if the edge direction is de-

fined as per equation (2.4), the two opposing gradients will both strongly bias the edge

direction of nearby pixels towards a direction that is orthogonal to both gradients.

Finally, note that equation (2.4) does not have a unique minimizer. In fact, it is

clear that if equation (2.4) is minimized by u j, it is also minimized by −u j.

However, finding all minimizers of equation (2.4) turns out to be straightforward.

In the following, let the x and y components of the gradient vectors vi be denoted by

x i and yi. Thus, equation (2.4) can be rewritten as follows,

min
u

∑

i∈N( j)

|
�

x i yi

�

· u j|2 subject to ||u j||= 1.

The sum can be rewritten as,

∑

i∈N( j)

uT
j

 

x i

yi

!

�

x i yi

�

u j = uT
j





∑

i∈N( j)

 

x2
i x i yi

x i yi y2
i

!

u j.

It is now useful to define a matrix equal to the sum in the expression above.

JN( j) :=
∑

i∈N( j)

 

x2
i x i yi

x i yi y2
i

!

.

The matrix JN( j) is the structure tensor. Written in terms of the structure tensor, the

optimization problem simplifies to,

min
u

uT
j JN( j)u j subject to ||u j||= 1. (2.5)

It is now straightforward to prove that minimizing u j must be unit length eigenvectors

corresponding to the smallest eigenvalue of JN( j). Provided that JN( j) 6= 0, there will be

exactly two such eigenvectors, which can be denoted as u j and −u j. In the case that

JN( j) = 0, all unit length vectors will minimize equation (2.4), so the edge direction u j

will be undefined. Note that the case of JN( j) = 0 will arise if and only if all the gradient

vectors vi equal 0, and is thus an expected outcome if and only if the image is constant

valued inside the neighborhood N( j).
To prove that minimizing u j must be eigenvectors corresponding to the smallest

eigenvalue of JN( j) decompose any candidate unit length u j into its eigenvector com-

ponents, and then expand the expression uT
j JN( j)u j. Given u =

∑

i λaiei, where ei are

orthonormal eigenvectors of JN( j), uT
j JN( j)u j =

∑

i λia
2
i . As u j must be unit length,
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∑

i a2
i = 1, thus, the minimum possible

∑

i λia
2
i is achieved when u j = ±ek, and λk is

the smallest eigenvector of JN( j).
2

Notice that the structure tensor and the implied edge alignment field u can be

calculated quickly using box filter blurs. Specifically, if Ix and I y are images that store

the x and y components of the image gradients, and B(I , r) j denotes the result of a

box filter with radius r applied to image I at pixel j, then the three components of the

structure tensor JN( j) will be,

JN( j) =

 

a b
b c

!

, where a := B(I2
x , r) j, b := B(Ix I y , r) j, c := B(I2

y , r) j. (2.6)

In the above, I2
x denotes component-wise squaring of the elements of the image Ix ,

and Ix I y similarly denotes component-wise multiplication. Properly, the expressions in

equation (2.6) are only correct up to a factor of scale, but, given the definition of the

edge orientation vector, correctness up to a factor of scale is sufficient.

With JN( j) expressed as in equation (2.6), a minimum eigenvalue eigenvector will

be given by,

e =







a− c−
p

a2+ 4b2− 2ac+ c2

2b






.

The edge orientation vector u j can then be defined by normalizing e.

Equation (2.6) implies that, from an implementation standpoint, the collection of

structure tensors defined for all pixels j is naturally represented as three blurred im-

ages, B(I2
x , r), B(Ix I y , r) and B(I2

y , r). This raises the question of whether substituting

other blurring operations in place of the box filter might also lead to useful edge ori-

entation definitions. Returning to the original optimization problem of equation (2.4),

notice that it is natural to introduce weighting terms wi j, which can be used to increase

the influence of closer points on the calculated edge orientation vector.

min
u

∑

i∈N( j)

wi j|vi · u j| subject to ||u j||= 1. (2.7)

Provided that all wi j are positive, the derivation of an optimal u j can now proceed as

before, with the exception that the structure tensor will now be defined as,

JN( j) :=
∑

i∈N( j)

w2
i j

 

x2
i x i yi

x i yi y2
i

!

.

2Similar applications of eigenvector analysis are very common in engineering and applied mathemat-

ics. For an excellent review of eigenvector analysis, see Shewchuck [66].
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In the case of wi j = 1, this simplifies to the box-filter case, but, alternate wi j definitions

will correspond to alternate weightings of the nearby gradient values. The form of the

structure tensor that occurs most frequently in practice is Jσ, which is defined as,

Jσ :=
∑

i

e
−||pi−p j ||

2

2σ2

 

x2
i x i yi

x i yi y2
i

!

.

Using Jσ is equivalent to stating that the optimization problem in equation (2.7)

should be solved using Gaussian weighting terms of width
p

2σ. Specifically, the opti-

mization problem becomes,

min
u

∑

i

e
−||pi−p j ||

2

4σ2 |vi · u j| subject to ||u j||= 1.

The separability of Gaussian blurs makes Jσ popular in situations where minimizing

computational costs is desirable. However, Rao and Schunk remarked that box filtering

often seems to produce more attractive alignment fields [59], and the generality of

equation (2.7) makes it clear that any smoothing operation might reasonably be used

as an alternative to either Gaussian blurring or box filtering.

2.3.2 Line Integral Convolution

Line integral convolution gained popularity as a visualization technique in 1993, when

Cabral showed that line integral convolutions of white noise were useful when study-

ing the behavior of vector fields [8]. Later work by Kang et al., and Kyprianidis and

Döllner, demonstrated that line integral convolution was also useful as a post-process

for difference of Gaussian edge images [35, 39].
When defined for a continuous domain image, the line integral convolution L of

image I with vector field v and weighting function w(t) is defined for any point x0 ∈ Ω
by,

L(x0) =

∫

I(C(t))w(t)d t.

C : R→ Ω is a path with the properties that,

C(0) = x0, and
dC(t)

d t
=

v(C(t))
||v||

.

Common choices for the weighting function w(t) include the box function w(t) =

[−r < x < r], and the Gaussian weighting, w(t) = 1p
2πσ2

e
−t2

2σ2 .

Line integral convolution can be implemented efficiently in the case of discrete

image data by taking a series of length 1 steps though the image. Formally, the line
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integral result for the case of discrete image data can be defined as,

L(x0) =
∑

i∈Z
I(C(i))w(i), where C(0) = x0,

and C(i+ 1) = C(i) + v(C(i)), for i ≥ 0,

and C(i− 1) = C(i)− v(C(i)), for i ≤ 0.

(2.8)

In equation (2.8), assume that bilinear interpolation is used to sample image data,

nearest neighbor interpolation used to sample vector data, and that the vector data v

has been normalized.

In the second stage of image simplification, line integral convolution is applied to

the unsharp mask result Im. The system uses a Gaussian weighting function with width

σc, and the edge alignment field u guides the line integration paths, where u is derived

from the structure tensor Jσd
, as described in Section 2.3.1. Thus, the line integral

convolution step introduces two additional parameters, σc and σd .

However, recall that there is an ambiguity in the definition of u. The edge orienta-

tion at any point can be given by ±u j. Thus, when performing line integral convolution

guided by the edge alignment field the direction of any line segment i could be either

of ±u(C(i)).
In cases such as the thin ribbon in Figure 2.3, consistently using the positive u di-

rection will frequently case the path C(t) to double back on itself. Therefore, some

additional logic is needed to ensure that the path is as straight as possible. Each of

the two candidate line segment directions ±u(C(i)) is compared to the direction of the

prior line segment, in order to determine which direction implies a straighter path. For-

mally, for each point x0, the sequence of direction samples u(i) := u(C(i)) is replaced

by u∗(i), where

u∗(i) :=



















u(i) if i = 0.

u(i) if i > 0 and u∗(i− 1) · u(i)> 0.

u(i) if i < 0 and u∗(i+ 1) · u(i)> 0.

−u(i) otherwise.

2.3.3 Coherence Enhancing Anisotropic Diffusion

Coherence enhancing anisotropic diffusion is an adaptive smoothing technique intro-

duced by Weickert [75].3 Qualitatively, the results of edge aligned line integral convo-

lution can be very similar to those of coherence enhancing anisotropic diffusion. This

3Weickert defines image “coherence” in terms of the two eigenvalues of the structure tensor, so that

the coherence at any point is given by (λ1 − λ2)2. In practice, more coherent structures are those that

have sharp but smooth edge lines.
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similarity is unsurprising, as both techniques are designed to smooth images along flow

lines that follow the lower eigenvalue eigenvector of the structure tensor. However, the

implementations of the two techniques are quite different. In practice, I have found

that coherence enhancing anisotropic diffusion tends to produce higher quality results

when a relatively subtle smoothing effect is desired. Line integral convolution has the

advantage of being much faster to compute, and is useful for quickly producing results

having a high degree of smoothing.

My system uses line integral convolution during the image simplification step, as

this is a situation in which aggressive smoothing is desirable. However, coherence en-

hancing anisotropic diffusion is used as a post-process to the image reconstruction step;

a case in which a more subtle edge smoothing effect is required. The significance of

the reconstruction post-processing step is described in Section 4.5, however, I provide

a description of Weickert’s coherence enhancing diffusion operation here, as it is most

naturally described in the context of other image space smoothing operations.

Let I be some source image, and φ : Ω × R+ → R be a function that returns an

image as a function of time t. The Perona-Malik anisotropic diffusion equation is

g(||∇φ||)∇2φ = φt , given φ(0) = I . (2.9)

Under the anisotropic diffusion equation, increasing t causes the image φ(t) to become

increasingly smooth.

In equation (2.9), g may be any function designed to approach 0 for large gradients.

Weickert proposed a generalization of the Perona-Malik model to allow directionally

biased diffusion, which uses a diffusion tensor D as follows,

∇ · (D∇φ) = φt . (2.10)

In order to create a directionally biased diffusion effect that will increase the coherence

of the image, D is defined to be a symmetric matrix having the same eigenvectors as the

structure tensor Jσ. However, the eigenvalues of D are modified in order to increase

the rate of diffusion along the edge orientation direction. Specifically, if λ1 is the

larger eigenvalue of Jσ, and λ2 the smaller eigenvalue, then the two corresponding

eigenvalues of D, λ′1 and λ′2, are defined as,

λ′1 = α

λ′2 =







α if λ1 = λ2.

α+ (1−α)e−(λ1−λ2)−2
otherwise.

(2.11)
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The parameter α controls the amount of diffusion across edge lines, and is set to a very

small value, typically α= .001.

Equation (2.10) is solved for any positive t value using finite difference meth-

ods [75].

2.4 Range Adjustment and Soft Quantization

After applying line integral convolution, the image is modified in such a way that shad-

ows and highlights will be exaggerated. The operation begins by using a linear mapping

to adjust the highlights, midtones and shadows of the image such that they fall into a

standard range. Then a soft quantization operation is applied in order to emphasize the

transitions between shadows, highlights, and midtones, while de-emphasize all other

luminance variation.

The range adjustment step is performed by creating a C0 continuous, piecewise

linear transformation h : R → R, consisting of two linear segments chosen such that

the values b1 = (.45, .75, .85) are mapped to b2 = (.2, .61, .95). Applying this transform

to the line integral convolution result L yields h(L), which will be referred to as the pre-
quantized image.

The final step of the stylization is non-uniform soft-quantization, using the previ-

ously defined bin values b2, and quantization sharpness parameter s = 2. The non-

uniform soft-quantization is defined in the following section. The end result of the

image simplification process is referred to as as the stylized source image.

2.4.1 Non-Uniform Soft Quantization

Given an ordered list of characteristic values, b = (b1, ..., bn), the hard quantization of

a value v is given by,

q(v,b) := bi where bi is the characteristic value closest to v.

To create an analogous soft quantization function, split the interval [b1, bn] into

n− 1 regions, each of which will map to a different sigmoid curve. For v ∈ [b1, bn],
let bi be the closest characteristic value to v. Now define the sigmoid curve index j as

j := i−[bi ≥ v]+[v = b1]. Finally, define the width of sigmoid j as w j := 1
2
(b j+1− b j),

and its vertical shift as c j := 1
2
(b j+1 + b j). Using these variables, create the following

non-uniform, continuous soft quantization function,

p(v,b, s) := w j

sig( s
w j
(v− c j))

sig(s)
+ c j. (2.12)
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Figure 2.4: Two examples of the non-uniform soft quantization function defined in

equation (2.12). Both use the same characteristic values, b= (1.1, 1.4,1.5,2.5). While

the graph on the left approximates a hard quantization function, the graph on the

right uses a very low sharpness value, s = 0.7, which causes the function to approach

the identity transform. For both graphs, the domain of the soft quantization has been

extended by clamping input values to the interval [b1, bn]. The sigmoid function used

in both examples is the hyperbolic tangent.

Note that the the division by sig(s) ensures C0 continuity. Also note that that the deriva-

tive at the border between two quantization regions is independent of the spacing be-

tween bins. Specifically, p′(c j,b, s) = s sig′(0)
sig(s)

. Thus the sharpness of the soft quantization

is controlled exclusively by the sharpness parameter s; it is independent of the spacing

of the characteristic values. For sigmoid functions with sig′(0) = 1, equation (2.12)

converges towards p(v,b, s) = v as s → 0. In other words, the maximally smooth soft

quantization function is simply the identity transform.

Given arbitrary v ∈ R, clamp v to the interval [b1, bn], before applying equa-

tion (2.12), thus extending the domain of the soft quantization function to all R. Ex-

amples of the non-uniform soft quantization function are shown in Figure 2.4.

I choose to perform soft quantization using sig(x) defined to be the exponential

sigmoid, rather than using more commonly seen sigmoidal curves such as tanh or erf.

The choice sigmoid function impacts that edge model used when vectorizing and recon-

structing the stylized image, and using the exponential sigmoid in the soft quantization

step implies that the differential equations in Section 4.2 have simple solutions.

2.4.2 A Solution to the Edge Modeling Problem

When Elder initially proposed his edge-only image format, he identified edge modeling
as a central challenge facing any edge-only format, and one that might limit the utility
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of edge only images in practice. To solve the edge modeling problem, we must be

able to characterize how image data should behave on either side of an edge. For soft

edges, simply sampling the gradient at the edge crossing is not sufficient, it is necessary

to have some model that specifies how luminance will vary as the distance from the

edge increases. Elder’s solution to the edge modeling problem was to assume that all

luminance variations across edges could be modeled by the error function aerf(bx).
The edge model parameter k was then found by fitting this function to the source

image data near the edge [20].
Elder’s edge fitting method relied on a very narrow pixel sampling, but, even so, it

resulted in good results in the context of his own edge-based system. However, per-

forming a high accuracy fit of an edge model function like aerf(bx) to the very smooth

edges that appear in our own stylizations would be both difficult and computationally

expensive.

Yet, in the context of my system, it is not necessary to perform such a model func-

tion fit, as there is additional information that can be used to derive the edge model

functions.

Quantizing the image implicitly partitions it into a set of regions having shared

quantization values. Some of the boundaries between regions will occur in areas hav-

ing low difference of Gaussian response, and thus, they will tend to have smoothly

varying, locally linear luminance values. It is such smooth region boundaries that are

responsible for most of the apparent “smooth shading” in our stylized images. I now

show that, by assuming local linearity near region boundaries, it is straightforward to

derive a single sharpness parameter, k, which models the behavior of the stylized image

across such a region edge.

Let I : Ω→ [0, 1] be a grey scale image, having domain Ω ⊂ R2. Let S : Ω→ R+ be

an image that defines the desired sharpness of the soft quantization at any point in the

image. The soft quantization of I using sharpness image S is thus p(I , S).
Consider the case in which the boundary between quantization regions occurs in

an area where I is approximately linear. More specifically, let x0 be a point on the

boundary between two adjacent regions, and Ω0 be a circular subset of Ω for which

I(x)≈ I(x0) +∇I(x0) · (x− x0), and ∇I(x)≈∇I(x0), ∀x ∈ Ω0.

Now consider a line x(δ) normal to the boundary, where δ denotes the distance from

the boundary point x0. By local linearity, the image value at a point x(δ) ∈ Ω0 can be

approximated using,

I(δ,x0)≈ I(x0) +δ||∇I ||. (2.13)

Substituting equation (2.13) into equation (2.12) yields the result that, for points inside
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the region Ω0, the soft quantization p(I , S) can be approximated by

p(δ,x, s)≈ w j

sig( s
w j
(δ||∇I(x)||))

sig(s)
+ c j. (2.14)

Where the sigmoid index j is chosen to correspond to the sigmoid centered at the

boundary value, such that c j = I(x0).
At a high level, this is not a surprising result. When soft quantization is applied to

sufficiently smooth image data the behavior near region boundaries can be described

in terms of the sigmoid curve used to define the soft quantization, and the gradient

magnitude of the source image.

In general, if an image has been aggressively smoothed, then luminance variations

throughout the image are likely to be both small and locally linear. However, if an

image has been sharpened, then luminance variations near edges are likely to be large

and discontinuous.

In areas with high edge response, I thus model edges as sharp step functions, which

are represented as edges with infinitely large sharpness parameter, k. For low edge

response cases, however, I use the edge model function
w j

sig s
sig(kx). The k value used

in my system is close to that implied by equation (2.14), though the small scaling factor

sig(s)−1 is ignored, for reasons discussed in Section 4.2.5. Removing the scaling factor

yields k = s
h j
||∆I ||.

2.5 Tracing on the Right Side of the Brain

The boundaries between quantization regions will form the starting lines input to the

tracing algorithms. As the image shadows and highlights are exaggerated by the un-

sharp masking step, and then quantized using bin values chosen to divide the image

into extremes of light and dark regions, there is a sense in which the system’s approach

to combined stylization and vectorization follows the advice given by Edwards in her

famously effective instructional book, Drawing on the Right Side of the Brain. Rather

than attempting to trace the the outlines of individual objects, it simply focuses on

tracing patterns of light and dark tones [19].



3 Vectorization

/* A number that speaks for itself, every kissable digit. */
#define PI 3.14159265358979323846264338327950288419716
/* Another fave. */
#define SQUAREROOTTWO 1.414213562373095048801688724
/* And here’s one for those of you who are intimidated by math. */
#define ONETHIRD 0.3333333333333333333333333333333333

– Jonathan Richard Shewchuk

The vectorization algorithm converts the image space stylization result of the previous

chapter to a set of curves. It begins by using the results of the image space stylization

to define an initial segmentation of the image. Then small regions are eliminated.

After extracting curves from the region, the curve set is simplified, and a set of edge

sharpness parameters are sampled for the simplified curve set.

Finally, the vectorization algorithm records the characteristic luminance value in-

side each closed region, with the result that the curve data can be used to construct a

piecewise constant approximation to the source image.

The complete vector format thus consists of the region boundary curves, an ad-

ditional parametric curve that stores the sharpness parameter k at each point along

the boundary, and a set of luminance samples, defined for each connected component

implied by the boundary curve set. The vector tracing algorithms are described in

Section 3.1.

After the vector data has been sampled, much of the edge sharpness data is dis-

carded, in order to allow for more efficient encoding. This final sharpness simplifica-

tion, and the encoding procedure, is described in Section 3.2.

Completing the vectorization process quickly requires a fast operation that can be

used to identify the connected components implied by the curve set. The graph cutting

and connected components labeling algorithms described in Sections 3.3.1 and 3.4.1

allow connected components to be calculated quickly. Both algorithms are reused as

components of the image reconstruction step, described in Chapter 4.
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3.1 Tracing

3.1.1 Small Region Elimination

The first step is to create a segmentation based on the the stylized image. This is done

by simply setting each pixel to the characteristic value of the closest quantization bin,

thus creating the hard-quantization associated with the soft-quantization generated in

Chapter 2. (The luminance value that characterizes a quantization bin is referred to as

the characteristic value of that bin.)

The resulting quantization is then simplified, by eliminating any small regions that

may have resulted from the quantization. The result of this simplification will be re-

ferred to as the simplified quantization.

Specifically, for each region R formed by 4-connected pixels that share the same

quantization bin, I define an energy over all pixel locations p ∈ R. The energy con-

tributed by each pixel is a function of b, the characteristic bin value of the region, w,

b between the maximum and minimum luminance values falling into the region’s bin,

and sq(p), the value in the soft-quantized source image. The region energy is defined

as,
∑

p∈R

min(2 ·
�w

2
− |b− sq(p)|

�

,ε).

A pixel with a soft-quantized luminance value very close to the edge of the bin will thus

contribute ε to the region’s energy, while a soft-quantized value that exactly matches

the region’s characteristic value will contribute w. I eliminate any region with a total

energy below ω. Both ω and ε are parameters of the region elimination step. The

default values used by the vectorization system are ε= .2,ω= 3.

After deleting a region, all pixels inside the deleted region must be assigned to one

of the neighboring regions. It is important that no new closed regions are created as

a result of this operation. The necessary infilling is achieved using a simple greedy

search. The search starts by considering all border points in the region to be deleted,

i.e., all points p ∈ R that have neighboring points p′ inside other regions R′. The point

with sq(p) closest to the characteristic value of a neighboring p′ ∈ R′ is assigned to the

region R′. The set of border points is then updated, and the operation is repeated until

the region has been entirely filled in.

3.1.2 Generating Curve Segments

For each of the quantization bin values, bi, a binary image can be created, by simply

setting each pixel in the image to 1 if bi is the value in the simplified quantization, or 0
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otherwise. An initial set of boundary curves is then created by applying the marching

squares algorithms to each of these binary images.

Marching squares is, itself, a simplification of the commonly used marching cubes

boundary tracing method [45, 77]. The algorithm operates by traversing the set of all

pixel corners. When a pixel corner is encountered that lies on the edge of the region

boundary, it triggers a border tracing event, in which the algorithm “marches” along

the border of the region, adding pixel corners to the boundary set until it returns to the

starting point. After marching past any point, it is marked as having been processed;

points that have already been processed do not trigger border tracing.

Thus, when specifying the marching squares algorithm, one must specify where

the next pixel center in the march will lie, given the binary values stored in the four

adjacent pixels. To derive this specification, imagine that the binary image defines the

boundaries of a maze, which is being explored by a hero. In order to avoid getting lost,

the hero places his left hand against the side of the maze, and then walks forward. In

most cases, this “left hand rule” makes it clear what the next point in any marching

sequence must be. For example, in the case that the four adjacent pixels have the

following values, the left hand rule implies moving up.
 

1 0

1 0

!

However, there are two special cases, in which the result of the left hand rule is

unclear. For example, given a pixel corner for which the four adjacent pixels have

either of the following values, it is unclear whether the left hand rule implies moving

up or down.
 

1 0

0 1

!

,

 

0 1

1 0

!

When encountering one of the two 2x2 checkerboard patterns, the location of the

prior point in the marching sequence is used to determine which of the two possible

choices to make, in order to ensure that the marcher passes between the two diagonally

adjacent pixels. In the special case that the first point added to the boundary is an

ambiguous case, the direction is always set to either left or down, this ensures that in

larger checkerboard cases, such as the 3x3 case, each pixel’s boundary will be traced

exactly once.

The interfaces found by marching squares take the form of closed loops around

each region of the simplified quantization. These closed loops are used to represent

region interfaces during the previously described small region detection and infilling

steps.



37

However, such closed loops are not a desirable representation of the boundary in-

formation during later stages of the pipeline. Boundary points at the border between

two regions will be represented twice, as they belong to the closed loops found for two

of the implied binary images.

There are two problems with this data redundancy. First, the boundary curve data

will form the bulk of the information stored in the vector format, and thus a more

efficient representation of the boundaries is desirable. Second, simplifying or smooth-

ing the boundary curve data is complicated when each boundary point belongs to two

independent curves.

Thus, before proceeding any further, the vectorization algorithm converts the closed

loops returned by marching squares into a series of curve segments, such that every

boundary point appears only once.

This is done as follows. The marching squares results take the form of lists of

integer pairs, which represent the indices of pixel corners on the boundaries of the

regions. Any point on the boundary curve is defined to be a boundary corner if the

adjacent pixels belong to three or four different regions.

The marching squares results are then converted into a set of curve segments, such

that each segment connects two boundary corner points. This is done by iterating over

the entire set of recorded boundary points, and adding each corner-to-corner sublist to

the set of boundary segments, unless that segment is already included in the set. In

the special case that a closed loop contains no corner points, it is converted to a single

closed boundary curve.

Boundary points that match either of the 2x2 checkerboard cases are also consid-

ered to be boundary corners, for the purposes of this algorithm. Depending on the

surrounding quantization data, the checkerboard cases may be adjacent to as many as

four different connected components, or as few as two different components. Inserting

a corner point in the case that only two components are bordered will not cause any

problems later in the algorithm, other than a small potential loss of memory efficiency.

Failing to insert a corner point in cases in which more than two different connected

components are bordered, however, can lead to serious problems. For an example of

such a problem case, consider the 3x3 image having the following values,








1 0 1

0 1 0

1 0 1









.

If the pixel boundaries adjacent to the center pixel are not all considered to be boundary

corner points, the line segments found by the curve segment definition algorithm may

not contain any boundaries around the center.
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3.1.3 Boundary Curve Simplification

At this point in the process, the boundary curve data is represented as lists of pixel

corner points. Those lists can be interpreted as parameterizing C0 continuous curves,

defined as a list of vertical and horizontal line segments, where each segment is exactly

one pixel width long.

The curve simplification step converts these small line segments into a more effi-

cient format.

Given an initial list of line segment endpoints V = (v0, ...,vm), the simplification

step extracts a sublist Z = (z0, ...,zn), which contains the list of line endpoints for

the simplified curve. To determine which of the vi should be included as elements of

Z , I use a straightness constraint, similar to that used in Selinger’s polygon extraction

phase [65]. Specifically, a sequence of points (vi, ...,v j) is called δ-straight if and only

if the line segment with endpoints at vi and v j intersects a square of radius δ centered

at every vk, for k ∈ [i, j).
Starting with vi=v0, the simplification algorithm walks through the remaining points

in sequence. When it encounters a point v j that fails the δ-straightness constraint, v j−1

is added to the simplified line segment list Z . The traversal then continues, with v j

taking the place of vi in the next set of straightness tests. The final point in the curve,

vm, is always added to Z , this is ensures that the endpoints of boundary line segments

never change as a result of the simplification step.

The choice of the parameter δ in the above algorithm makes it possible to control

how much the simplified curves can deviate from the initial boundary. However, there

are some types of boundary curves that create error cases for the above simplification

algorithm. For example, with δ > .5, a long, single-pixel wide closed loop will reduce to

a segment only one pixel-width long. In such cases, the algorithm can travel arbitrarily

far from vi, and then travel all the way back to vi without ever breaking the straightness

constraint. To disallow such behavior, I add an additional constraint that must be

satisfied before adding each new vertex v j. This constraint states that the magnitude

of ||v j − vi||2 must be at least ||vk − v j||2−
1
2
δ2, for all k ∈ (i, j).

3.1.4 Edge Sharpness Sampling

While performing the boundary simplification step, I sample the gradient magnitude

of the underlying stylized image data. In Section 2.4.2, I argued that, for the purposes

of modeling the edge behavior in the soft-quantized result, the pre-quantized image

h(Im) is actually a better source of information than the final result image. Thus, to

calculate edge sharpness data corresponding to the soft-quantized result, the gradient
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magnitude is calculated at every point of the pre-quantized image.

Sobel convolution filters are used to approximate the x and y components of the

gradient are, they are defined as follows:

Sx :=
1

8









−1 0 1

−2 0 2

−1 0 1









, Sy :=
1

8









1 2 1

0 0 0

−1 −2 −1









.

A max filter is then applied to the gradient magnitude image. This filter sets every

gradient magnitude sample to the maximum value within radius rg of the pixel’s center.

The application of a small radius max filter has the effect removing high frequency

components of the gradient data, while additionally biasing the results of the sampling

towards sharper edges.

Gradient samples are then recorded as follows. For each line segment found by

the boundary curve simplification step, one gradient sample is recorded for each of

the pixel wide vertical or horizontal line boundary line segments implied by the pre-

simplified data. The gradient sample for each such line segment is the average of the

two gradient values stored on either side of the line segment. The gradient samples

are then converted to a list of scalar tuples, which allows a continuous gradient value

to be defined at every point along the boundary curve.

Specifically, a list of t-value samples is generated for the gradient samples associ-

ated with each simplified line segment. If the list of gradient samples for the simplified

line (xi,xi+1) is (g1, g2, .., gm), then the t value created for sample g j is,

t j := i+
j− 1

m
.

These t values allow the gradient at any point on the curve to be evaluated as a

linear spline, defined for knot points given by (t j, g j). The gradient values g j are then

converted to sharpness values k j, according to the formula derived in Section 2.4.2.

The gradient sampling method generates data that is typically much denser than

necessary, but, as explained in Section 3.2.1, this data is dramatically simplified prior

to encoding.

3.1.5 Luminance Sampling

The final step of the vectorization process is to record a characteristic luminance value

for each of the connected components implied by the boundary curves.

This is potentially a difficult problem, for several reasons. First, it is possible that

the boundary line simplification step may have introduced self intersections into the
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curve set. Occasionally, a narrow region in the simplified data will have boundary

curves that reduce to identical lines, effectively causing it to disappear.

Image reconstruction will require a piecewise constant image created from the lu-

minance samples and boundary curves. Therefore, it is necessary that the results of

the luminance sampling, taken together with the curve data, be capable of reliably

generating such a piecewise constant image.

The method I have chosen to use for luminance sampling is computationally effi-

cient but it does not make any direct attempt to remove self intersections or degenerate

regions from the boundary curves.

First, a 4-connected pixel adjacency graph is generated for an image of resolution

w′ × h′, which is defined to be three times the resolution of the source image. The

boundary curve data is then scaled to cover that image, and the line segment driven

graph cutting algorithm, described in Section 3.3.1, is used to remove the edges of the

pixel adjacency graph that intersect the boundary curves.

Labeling the connected components of the cut adjacently graph then becomes a rel-

atively straightforward operation, as degeneracies or self intersections in the boundary

curve set no longer complicate the task of identifying connected regions.

The component labeling operation is performed using a variation on the stan-

dard image-based connected component labeling algorithm, described in detail in Sec-

tion 3.4.1. The result of this labeling is an image in which each pixel contains an

integer ID indicating the component to which it belongs, and the range of those IDs is

[0, n− 1], where n is the total number of connected components in the cut graph.

The simplified quantization is upscaled to the resolution of the connected compo-

nent data, using nearest neighbor sampling. For each connected component, the lumi-

nance sample recorded for that component is the most frequently occurring simplified

quantization value inside the connected component.

In the case that the δ parameter used during boundary simplification is 0, all con-

nected components will contain the same simplified quantization value. However,

larger δ values will cause the boundaries of the connected components to shift relative

to the simplified quantization. There will often be some pixels, near the boundaries of

each component, in which the simplified quantization value does not match the most

frequently occurring value for that component.

Given the luminance samples, and the boundary curve data, a piecewise constant

image can be calculated at arbitrary resolution as follows. First, the cut adjacency

graph and implied component label image are recalculated from the boundary curve

data, at the resolution w′ × h′. Then, a piecewise constant image Ichar is generated at

that resolution, by setting each pixel to the luminance value stored for its connected
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component. Finally, nearest neighbor sampling is used to resize the w′ × h′ resolution

piecewise constant image Ichar to the target resolution. The value for each connected

component label is set to the most frequently occurring resized label image value inside

that component.

This method may seem overly complex, but, in practice, it has two important advan-

tages. First, it is fast—performing the graph cuts, labeling the connected components

in the image, and setting each pixel to the most frequent value in its component are

all cheap operations. Formally, there is no guarantee that connected component label-

ing will complete in linear time, but, in practice, the labeling operation is significantly

faster than most image filtering operations.

Secondly, by generating a cut graph at the target resolution, resolution dependant

artifacts such as “jaggies” are eliminated. Thus the edges between the piecewise con-

stant regions will always be as smooth as possible, given the resolution of the grid and

the recorded boundary curve data.

3.2 Encoding

In order to generate memory efficient vector data, I further simplify the traced data, as

described below.

3.2.1 Sharpness Data

First, the edge sharpness data sharpness samples (t, k) are resampled using sampling

frequency fk, where fk is defined relative to the image space distance between two con-

secutive sharpness samples. This resampling requires converting the t j values, which

parameterize sharpness relative to the boundary line sample positions, to x j values,

which parameterize sharpness relative to their image space distance along the bound-

ary line.

I then define kmax , a maximum bound on the edge sharpness parameter k, and

threshold all samples using this upper bound. Next, I lower the resolution of the k
values, by limiting each k sample to one of nk values, which are found by applying

k-means clustering to the set of sharpness samples for which k < kmax . The system

defaults to kmax = .6, fk = 1.7, nk = 5. After these simplifications, edge samples of the

form (x i, k) can be eliminated, if both adjacent edge samples store the same k value,

because such samples correspond to redundant knots in the linear spline that defines

the sharpness values at any point.

After those simplifications have been applied, the k sample data is stored using
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Huffman coding [33]. This requires storing frequency information for both each k j

value, and each sample position, x j. To improve on the efficiency of this coding, the

position data x i in reexpressed in terms of a sequence of offsets, di = x i+1− x i.

3.2.2 Luminance data

Luminance information makes up a very small part of the vector format. The set of

possible luminance values is stored as an uncompressed double array, and an integer

index mapping into that array is stored for each of the connected components implied

by the edge data. As the system defaults to three value luminance quantization, this

implies that each luminance entry requires 2 bits of storage space.

3.2.3 Edge Data

After the edge model data simplifications have been applied, by far the largest portion

of the vector data is the edge lines themselves. These are stored using Huffman encod-

ing, after reexpressing each edge line in terms of its start point, and a sequence of delta

values that define each successive point in the edge.

3.2.4 Format Details

The details of the encoding format are summarized in Figure 3.1. The format is most

simply described in terms of the following primitives:

Integer Arrays A list of unsigned integer values, L = (i0, ..., in). Integer arrays are

encoded by first storing the number of elements, followed by the number of bits

b needed to encode any element of array, calculated as b = dlog2(max(L))e. Both

n and b are stored as 32-bit integers. Finally, the elements (i0, ..., in) themselves

are stored using b bits each.

Compressed Integer Array A slightly more memory efficient variant on an integer

array. For a list of unsigned integer values, (i0, ..., in), the number of elements n
is recorded, followed by the the maximum integer m=max(L). Then a huffman

encoding for the integers between 0 and m is generated by assuming that all

integers in that range are equally probable. If m is a power of two, a compressed

integer array encoding will be nearly identical to the uncompressed encoding. In

other cases, it may be slightly more memory efficient.
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Double Arrays A list of 64 bit floating point values, (d0, ..., dn). Double arrays are

encoded by first storing the number of elements, followed by the 64-bit represen-

tation of each element of the array.

Huffman Coded Data Store a list of unsigned integer values L = (i0, ..., in), using a

matching list of probabilities p0, ..., pm. The probability data is generated by cal-

culating the frequency of each integer value, and then setting pi equal to the

number of times i occurs in L. The probabilities are used to generate Huffman

coding strings for each element of L, which are then used to store each element

of L. In order to store data in this format, the probability data (i.e., the data

histogram) must be stored in a separate integer array.

Typically, the Huffman encoded integer list will contain indices into a set of either

floating point or integer values. Thus a list of source double values (d0, ..., dn) might

be coded by first finding the set of all unique d j values. Represented as a double array,

that set defines a mapping between the double values d and integers i. A histogram

for the implied integer list (i0, ..., in) would then be calculated. As written to disk, the

source double array (d0, ..., dn) would represented as the combination of its mapping

data, histogram data, and the Huffman coded indices (i0, ..., in).
The edge and sharpness data are both stored using flattened lists. Position data for

all edges is concatenated into a single list, while the number of points in each edge is

stored as a separate integer array.

It is often the case that all points on an edge line will be “infinitely sharp”. No

sharpness data is stored for such edge lines. To facilitate this, edges are arranged into

a list having the property that the first nin f edges fall into the “infinitely sharp” case.

Thus, the number of sharpness splines stored is equal to the total number of edge lines,

minus nin f .

3.3 Edge Cutting

Quickly and accurately creating pixel adjacency graphs based on a sequence of line

boundary segments is a core operation of the system. Such operations are required

in both the luminance sampling and image reconstruction steps, described in Sec-

tions 3.1.5 and 4.3.4. In principle, creating these graphs is a fairly straightforward

problem. Removing the edges of a regular grid graph is not unlike drawing a line, and

minor modifications to Bresenham’s line drawing algorithm would allow it to act on

pixel adjacency graphs, rather than bitmaps. However, in practice, the edge cutting

cutting task proves to have some special complications.
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Luminance IDs

Integer Array

Double Array

32-bit Integer

64-bit Double
w h w’ h’

Header

Characteristic Values

Luminance Data

Delta Histogram

Edge Data

Delta Value Mapping

Edge Lengths

Edge Start Points

Huffman Coded Data

Delta Indices

Edge Sharpness Data

kmax fk ninf

Compressed Integer Array

k Value Mapping

k Histogram

k Indices

x Value Mapping

x Histogram

x Indices

Spline Lengths

Figure 3.1: Encoding Format. The header includes the resolution of the source image,

as well as the resolution of the label image used when calculating connected compo-

nents (the significance of the label image resolution is discussed in Section 3.1.5). The

edge sharpness data includes the sampling frequency of the position data, fk, along

with the maximum sharpness bound kmax (see Section 3.2.1). The integer nin f records

the number of edge lines for which the sharpness is uniformly infinite, nin f (as dis-

cussed in Section 3.2.4). The histogram calculated for edge delta values is slightly

compressed; in that the edge delta histogram is forced to be symmetric about the ori-

gin. For example, if there are three delta values equal to −4 and one value equal to 4,

the recorded histogram will consider the frequency of both 4 and −4 to be two.
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3.3.1 Edge Cutting Algorithm

To define the edge cutting algorithm formally, consider an image of resolution w × h.

Arrange a regular grid of points having the given dimensions. These points will be

referred to as pixel centers. Let pi refer to the position of the i-th pixel center, which

can be represented as a pair of integers in the range ([1, w], [1, h]).
The pixel centers will form the vertex set of the pixel adjacency graph. The adja-

cency graph is defined by stating that there is an edge between any two pixels that are

immediate horizontal or vertical neighbors of each other. Thus, each pixel is neighbors

with at most four other pixels. Notice that pixels on the boundaries of the image are

neighbors with at most three other pixels, while the corner pixels have only two neigh-

bors. Despite this, graphs formed in this fashion are referred to as 4-connected pixel

adjacency graphs.

The purpose of the edge cutting operation is to create a graph in which the con-

nected components reflect the regions of R2 implied by the line boundary data. How-

ever, creating an adjacency graph with the property that each pixel shares a connected

component with exactly those pixels having centers that lie in the same region is an

under-defined problem, as it is not clear how pixel centers that lie on the border be-

tween two regions should be handled. For example, the boundary lines shown in Fig-

ure 3.2 include one line that passes through a pixel center, thus, there are two possible

adjacency graphs that provide equally good discrete approximations to the implied re-

gions. For the purposes of my algorithms, either of these adjacency two graphs would

serve equally well.

Given an edge in the pixel adjacency graph that connects the pixels i and j, the

closed line segment with endpoints at pi and p j is referred to as the edge line. Given a

set of boundary line segments, removing all edge lines from the adjacency graph that

intersect any boundary line is a fairly straightforward problem. And, if no pixel centers

lie on boundary lines, such a cut graph will partition the set of pixels into connected

components that reflect the regions of R2 implied by the boundary curves.

The cases in which pixel centers do lie on boundary lines are resolved by first modi-

fying the input line segments to ensure that no segment endpoint lies exactly on a pixel

center. Thus, any integer valued line endpoint coordinate is incremented by 2−9. How-

ever, note that after this step it is still possible for pixel centers to lie inside boundary

line segments.

Strictly vertical or strictly horizontal boundary lines are then handled as special

cases. The increment by 2−9 ensures that the boundary lines in the axis aligned cases

will not contain any pixel centers, thus, computing the set of cut edges in such cases

is straightforward. A strictly vertical line from (x0, y0) to (x0, y1) will cut all horizon-
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Cut Edges Connected Components

Figure 3.2: Cut Edges and Connected Components. The boundary lines (blue) divide

the image domain into two regions, which, formally, are disjoint subsets of R2. The

cut edges, shown in orange, are a selection of the edge lines intersecting the boundary

lines. The connected components of the graph formed when the cut edges are removed

are discrete approximations of the regions formed by the boundary lines.

tal edge lines having endpoints (bx0c, y), (dx0e, y), with integers valued y such that

y0 < y < y1. Strictly horizontal boundary lines similarly cut sets of vertical edge lines.

For the case of diagonal edges, the edge cutting algorithm proceeds by choosing

one pixel center as a starting position, then entering into a loop in which the current

position may be changed to the pixel center of one of the neighboring pixels, cutting

an edge in the process. As each position change is associated with exactly one edge

removal, it is possible to ensure that a pixel center that lies on a boundary line will

have exactly two of its edge lines removed as a result.

Given a boundary line with endpoints p0 = (x0, y0) and p1 = (x1, y1), consider

the special case in which x0 ≤ x1, and y0 ≤ y1. The current position is initialized to

be (i, j) = (bx0c, by0c). Two candidate edge lines are tested for intersection with the

boundary. The first edge line tested is the horizontal edge line immediately above the

current position, having end points (i, j + 1), (i + 1, j + 1). If that edge intersects the

boundary, the current position is immediately incremented by (0, 1), and the algorithm

repeats. Otherwise, the vertical line immediately to the right of the current position is

tested, which has endpoints (i+1, j), (i+1, j+1). If that line intersects the boundary,

the current position is incremented by (1,0), and the algorithm repeats. If neither line

is intersected, the algorithm terminates.

In the case that x0 > x1, the algorithm proceeds as above, but, decrementing i



47

p0

p1

Start State

p0

p1

After First Cut

p0

p1

After Second Cut

p0

p1

After Third Cut

p1

p0

Alternate Result

Figure 3.3: Edge Cut Example. Pixel centers are shown as circles, the current position

is red. In each step, the two candidate edge lines (orange) are checked for intersection

with the boundary line (blue). If one of the candidate edge lines intersects the bound-

ary, then the edge is removed, and the current position updated. The candidate edge

line that is removed in each step is shown as a solid line, while the edge left uncut is

shown as a dashed line. The current position is changed by (1,0) in the case of a ver-

tical edge line, and (0,1) in the case of a horizontal edge line. As edges are removed,

the emerging boundary between connected components is shown in purple. Intersec-

tion with horizontal edge lines is checked first; thus, in the case that the boundary

passes through a pixel center, the current position will move vertically, before moving

horizontally. Therefore, the connected components implied by edge cutting can differ,

depending on the order in which the endpoints of the boundary line are specified, as

shown in the alternate result.
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Cut Edges and Component Boundary Boundary Lines and Component Boundary

Figure 3.4: Boundary Comparison. Each edge removed from the adjacency graph im-

plies a length 1 vertical or horizontal line segment. The removed edges are shown in

orange, while the boundaries of the implied connected component are shown in purple.

Notice that the connected component boundaries form a fairly good approximation for

the boundary line segments used to perform the edge cutting operation.

in place of incrementing it, and starting the initial position at i = dx0e. The case of

y0 > y1 is handled similarly. An example of the edge cutting algorithm given a short

boundary line segment is shown in Figure 3.3.

During the early phases of image reconstruction, described in Section 4.3.4, it is

necessary to find not only the set of cut edges, but, also a sharpness sample k for each

cut edge. Such a sample is found by calculating the intersection point of the boundary

line and the edge line, and evaluating the sharpness spline at that point, using the

linear spline data gathered in Section 3.1.4.

A formal proof that the connected components of the cut graph will be, in some

sense, a “good discretization” of the regions formed by the boundary lines is beyond the

scope of this dissertation. Furthermore, it is unclear how exactly such a proof should

be approached, as a formalization of the “good discretization” concept is likely to be

complex. For example, consider the case of a region that contains no pixel centers.

Such a region need not have any matching connected components in the adjacency

graph, but, such a region might, or might not, have an associated connected component

in the case that at least one pixel center lies on the region’s border.

Thus, rather than attempting such a formal proof, I will simply state that, in prac-

tice, this edge cutting algorithm has proven to reliably create connected components

that are close matches for the simplified quantization data from which the boundary
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curves are derived.

3.3.2 Ensuring Exact Intersection Tests

The edge cutting algorithm described in Section 3.3.1 requires a reliable means of

determining whether any boundary line segment intersects any edge line. To avoid

“leaks", cases in which the connected components implied by the graph cover more than

one region, it is essential that the line intersection test be exact. Both false positives

and false negatives are problematic. Either case will cause cascade errors in the edge

cutting algorithm, and logic capable of identifying and correcting for such errors would

be both complex and computationally expensive.

While the point sets generated during the boundary curve simplification process

will be integer valued, the vector data may be rasterized at any resolution. Thus, the

boundary line points input to the edge cutting algorithm will often be floating point

values. It is possible that precision errors in the line intersection test computations may

lead to incorrect results. To avoid such precision errors, both the input data and line

intersection algorithm are modified, to ensure that the results of the line intersection

test will always be correct.

The strictly vertical and strictly horizontal boundary line special cases both require

no floating point calculations, beyond the initial floor and ceiling operations, thus, it is

only the diagonal case that requires special treatment to avoid precision problems.

First, assume the boundary line segment is parameterized by:

L(t) := p0+ t(p1− p0), t ∈ [0, 1].

To simplify the following discussion, further assume the algorithm needs to check the

intersection of L(t) with the horizontal edge line (i, j) − (i + 1, j), and that both of

p0’s coordinates are less than p′1s coordinates. In order to avoid the potential loss of

precision from floating point division operations, the y-coordinate intersection check

is performed as follows:

j = y0+ t(y1− y0) → t(y1− y0) = j− y0.

The boundary line passes through the line y = j if the above equation is satisfied for

some t ∈ [0, 1], or, equivalently, if ( j− y0) ∈ [0, y1− y0]. Checking the latter condi-

tion requires only floating subtraction and comparison operations. If the condition is

passed, then the boundary line will intersect the edge line if L(t)x ∈ [i, i + 1]. This

condition can be reexpressed as follows,

x0+ t(x1− x0) ∈ [i, i+ 1]

⇒ x0(y1− y0) + j(x1− x0)− y0(x1− x0) ∈ [i(y1− y0), (i+ 1)(y1− y0)].
(3.1)
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Thus, the line intersection test can be performed without the possibility of error if

the floating point multiplication, addition, and comparison operations in equation (3.1)

can be evaluated without precision errors.

I now derive conditions sufficient to ensure exact evaluation of equation (3.1),

assuming IEEE 64bit floating point numbers.

First consider the case of two positive numbers expressed as fixed point bitstrings

I ,
f =

∑

i∈I⊂[i0,i1]

2i.

Clearly, any product of the form f1 f2 must lie in the range [22i0 , 22i1+2). (The largest

possible product is that when f1 = f2 = 2i1+1−2i0 , which is slightly smaller than 22i1+2.)

Therefore, all such products can be expressed as fixed point bitstrings J of the form,

f1 f2 =
∑

j∈J⊂[2i0,2i1+1]

2 j.

Somewhat more simply, note that:

f1− f2 =
∑

i∈I⊂[i0,i1]

2i, if f1 >= f2.

And

f1+ f2 =
∑

i∈I⊂[i0,i1+1]

2i.

Thus, by guaranteeing that the smallest significant bit of any line coordinates will be

i0, and the largest significant bit will be i1, it is possible to guarantee that the expression

(x1 − x0) will share the same significant bit bounds. The significant bit bounds of

y0(x1− y1) are 2i0 , 2i1+ 1. And the bounds of

x0(y1− y0) + j(x1− x0)− y0(x1− x0)

are 2i0, 2i1+2. (The maximum of any of the summed expressions is less than 22i1+1, so

a sum of three such expressions must be less than 22i1+3, therefore, the largest possible

result is 22i1+2. As a concrete example, consider, 3× 7< 32. )

Now all that remains is to choose values of i0, i1 such that the resulting expressions

will imply numbers that do not overflow the precision of IEEE 64bit floating point.

The multiplication algorithms used by most CPUs are proprietary, so the exact point at

which precision errors can result is unclear. However, given that there are 52 mantissa

bits in a 64 bit float, it is safe to assume that a significant bit range of 50 or less will be

sufficient to ensure that all computations are exact. This, in turn, requires choosing i0
and i1 such that

2i1+ 2− 2i0 ≤ 50⇒ (i1− i0)≤ 24.
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Choosing i0 = −9, i1 = 15 provides a range of allowed line coordinate values

that should be more than sufficient to handle any reasonable boundary line inputs. I

trusting users to never input coordinate values larger than 2i1 , while I enforce the least

significant bit constraint by truncating the input line endpoint coordinates such that

any bits corresponding to powers smaller than 2i0 are set to 0. An even larger range of

significant bits could be allowed by implementing the line intersection tests with 64 bit

integers, after scaling all input points by 2−i0 .

While using 64 bit floats makes it possible to choose comfortably large bounds, 32

bit floats would force some unpleasant choices. The maximum significant bit range of

32 bit floats is 24, which requires i1 − i0 ≤ 11. As a very high resolution render might

reasonably involve a 212 × 212 grid, this is an unacceptable constraint. That said, if

speed or hardware constraints did force the use of 32 bit floats, it could be possible to

vary i0 and i1 depending on the grid resolution – thus allowing low resolution image

reconstructions to use points specified with sub pixel accuracy, while the maximum

resolution images would limit line coordinates to pixel corners. Even so, such a system

could still render, at best, 2048x2048 images. Use of the sign bit might make it possible

to push the effective maximum resolution close to 4096×4096. Additionally, inserting

additional control points into boundary line segments to lower the bit range of any

difference terms could further increase the maximum possible resolution. Doing so

would require careful engineering, however, and at present, the edge cutting algorithm

is one of the fastest components of the system, even given the use of 64 bit floating

point computations.

3.4 Locally Sequential Image Operations

Gathering luminance samples requires an algorithm for generating an integer label cor-

responding to each connected component in the pixel adjacency graph. The algorithm

used to find these labels is a member of a larger family of algorithms, and several other

algorithms belonging to that family are used in other parts of my system.

In 1966, Rosenfeld and Pfaltz identified several related digital image processing

problems for which local sequential processing would, necessarily, be more efficient

than local parallel computation [61]. Two of these operations were connected compo-

nents labeling and distance function computation. In my system, both operations are

used frequently during image vectorization and reconstruction, and their implementa-

tions are both similar to the original “local sequential” definitions given by Rosenfeld

and Pfaltz.

Formally, the connected components of an undirected graph having vertices V and
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edge set E are a partitioning of V into components C ⊂ V having the property that if

vertex i ∈ C , then for every j ∈ C it is possible to form a list of adjacent vertices that

includes both i and j.
The connected components labeling problem is defined as follows. Given a pixel

adjacency graph, find an integer label L(i) for each i ∈ V that identifies the connected

component to which each pixel index i belongs. Additionally, find n, the number of

connected components in the image, and ensure that L(i) ∈ [0, n− 1], for all i ∈ V .

When the connected components problem occurs in an image processing context,

the graph (V, E) can typically be assumed to be a subgraph of either the 4-connected

or 8-connected pixel adjacency graph. In the following discussion, I assume the 4-

connected case, thus edges are only allowed between pixels that are immediate hori-

zontal or vertical neighbors.

The connected components labeling problem sometimes occurs when there is a

need to assign a unique identifier to each of the regions found by a quantization op-

eration. In such cases, the edge set E is defined as a function of the quantized image

values, q(i), as follows,

E := { (i, j) | q(i) = q( j), and the grid position of i is adjacent to that of j }.

However, the edge set E can also be defined using the result of the edge cutting algo-

rithm given in Section 3.3.

Given p(i), the image space position of any pixel i, and a set of pixels U ⊂ V , the

distance function problem requires calculating values D(i) such that,

D(i) =min
k∈U
||p(i)− p(k)||.

Closely related to the distance function problem is the nearest point problem, which

requires calculating, for each pixel i, the set of points S(i)⊂ U such that,

S(i) = {k | k ∈ U ,p(k) is minimally distant from p(i)}.

Connected components labeling, distance function computation, and nearest point

computation are all related, in that they can be solved by iteratively applying a local

update function.

A local update operation is an operation that updates a value stored at each pixel

of an image based on the values stored in the pixel’s neighbors. Let N(i) be the set of

neighbors of i, expanded such that i ∈ N(i). Formally, define

N(i) := { j | (i, j) ∈ E or j = i}.
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In the case of the connected components labeling problem, a useful local update oper-

ation is,

L(i) = min
j∈N(i)

L( j). (3.2)

If the label values at each pixel are initialized to L(i) = i, and equation (3.2) is applied

to all pixels repeatedly, L(i) will eventually converge to a unique id for every connected

component in the image. Then all that remains to solve the connected components

labeling problem is to relabel the pixels such that L(i) ∈ [0, n− 1].
In the case of the nearest point problem, a useful local update operation is,

S(i) = {k|k ∈ S′,p(k) is minimally distant from p(i) },

S′ := union of all S( j), where j ∈ N(i).
(3.3)

If S(i) is initialized to the empty set for all i 6= U , and {i} for all i ∈ U , then applying

equation (3.3) repeatedly will eventually lead to a stable state which solves the nearest

point problem. Solutions to the nearest point problem also imply solutions to the

distance function problem, as D(i) can simply be defined as the distance between i and

any element of S(i).
As demonstrated by Rosenfeld and Pfaltz, sequentially applied local update opera-

tions have the potential to propagate information very quickly throughout an image.

The number of times that an update operation must be applied to all pixels before con-

vergence depends on both the complexity of the input and the order in which the image

data is traversed, with row-major traversals being effective in many situations [61].

3.4.1 Connected Components Labeling

In the general case, identifying the connected components of an arbitrary graph is a

common software engineering problem. And a general purpose connected component

algorithm can be found in Chapter 21 of Cormen et al.’s Introduction to Algorithms [15].
As an alternative to using local update functions, the standard connected compo-

nent algorithms given in Cormen et al. can be used to generate a connected components

labeling in images. A set of equivalence classes, which can be formally expressed as a

set of disjoint sets, S = S1, ...,Sk, is initialized by adding a single element set Si = i
corresponding to each vertex of the graph. Then, for edge in the graph, the equiva-

lence classes of the two incident vertices are merged. Finally, the label of each vertex

is assigned based on the identifier of its equivalence class. As discussed in Cormen et.

al, there is a necessary trade off between the time required to merge two equivalence

classes, and the time required to identify the equivalence class to which a given vertex

belongs; but a category of techniques called disjoint set forests allow both operations to
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be performed quickly. It is possible to prove that by using disjoint set forests, the run-

time bound of connected components labeling on 4-connected image adjacency graphs

will be O ( |V |α(|V |) ), where α is a function which grows so slowly that α(|V |) can be

relied on to be at most 4 in any practical situation. Thus, the runtime a disjoint set

forest implementation of connected components labeling is effectively linear.

However, in practice, the overhead costs of a disjoint forest implementation on a

megapixel sized pixel adjacency graph are significant. In a naive application of the

method, representing the disjoint set forest will require as much memory as represent-

ing the source image. Given megapixel images, that implies that read or write opera-

tions into the disjoint forest data are likely to be made significantly more expensive as

a result of frequent L1 cache misses.

The overhead costs of a disjoint forest implementation can be substantially reduced

by applying one or more passes of the local label update operation, given in equa-

tion (3.2). For example, assuming a 210 × 210 image, applying the disjoint forest al-

gorithm directly would imply initializing storage space for 220 separate equivalence

classes. However, a single row-major sequential pass of equation (3.2) typically reduces

the number of distinct labels by 2 or 3 orders of magnitude, which in turn implies a

dramatic reduction in the memory overhead of the datastructures needed to represent

the disjoint set forest, and thus a dramatic reduction in the chances of cache misses

when performing the equivalence class operations.

Ali Rahimi’s Fast Connected Components on Images webpage includes an optimized

implementation of such a combined local sequential, disjoint forest connected com-

ponents labeling algorithm [58]. It performs a single row-major sequential pass of

the local update function, and implements the disjoint set forest operations using a

variation on the path compression heuristic described in Cormen et al. The connected

components labeling algorithm used in my system is based on Rahimi’s, but modified

to be compatible with the adjacency graphs created by the edge cut algorithm of Sec-

tion 3.3.

3.4.2 Nearest Point Propagation

A naive, nonlocal implementation of the nearest point algorithm requires checking the

distance between each pixel vertex and each element of the point set U , for a total of

O(|V | · |U |) operations. As explained in Section 4.3.4, nearest point sets must be found

for each pixel using sets U that correspond to the edges removed by the edge cutting

algorithm, thus |U | is typically large. For a megapixel image, generating an initial point

set as discussed in Section 4.3.4 will typically result in |U | > 214, thus the number of

distance calculations required for a naive solution to the nearest point algorithm will
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be at least 234, an impractically large computational expense.

The local update operation in equation (3.3), however, is relatively cheap to apply.

Specifically, the cost of updating the nearest point set S(i) for each pixel in the image

is O( |V | ·maxi(|S(i)|) ). While it is possible to construct pathological cases in which

a single pixel is equidistant from all points in |U |, in practice, maxi(|S(i)|) tends to be

small – pixels equidistant from more than 4 edge points are very unusual.

As is the case in the L1 distance function algorithm discussed by Rosenfeld and

Pfaltz, the convergence speed of the nearest point algorithm can be significantly im-

proved by varying the the sequence in which the pixel set is traversed [61]. For ex-

ample, in the special case in which the point set U contains only a single point k, and

p(k) = (0, 0), the algorithm will converge after a single pass through the image, given

row-major traversal order. However, if p(k) = (w−1, h−1), the algorithm will require

max(w − 1, h− 1) passes before convergence. Alternating row-major and reverse row

major traversal orders will guarantee convergence in 2 passes, for any case in which

there is only a single element of in U . For the L1 distance case discussed by Rosenfeld

and Pfaltz, the 2 pass convergence guarantee holds for arbitrary U ⊂ V . However,

for the purposes of image reconstruction, the nearest point set relative to standard

Euclidean distance is required, thus, more than 2 iterations are typically necessary.

As illustrated in Figure 3.5, the order in which the pixels are updated impacts

whether or not it is possible that information changed at one pixel may affect the

result at any other. In the case of a row major traversal, a pixel at (i0, j0) may inherit

information from a pixel at (i1, j1) if i0 ≤ i1 and j0 ≤ j1. Note that the results of a

row major traversal of the image will always be identical to that of a column major

traversal, as the two traversal orders imply identical information flow.

As shown in Figure 3.6, there are three simple variations on row major traver-

sal which imply different patterns of information flow. Alternating between these 4

traversal orders causes the nearest point set update to converge quickly. Even on large,

complex images, convergence is typically achieved after less than 10 passes. Thus,

solving the nearest point set problem is typically a cheap operation, in comparison to

the linear solver iterations that form the main bottleneck of the reconstruction process.

Because they depend on sequential execution, neither the connected components

algorithm nor the nearest point algorithm would be natural to port to graphics hard-

ware. Yet both algorithms are foundational tools for many image analysis tasks, thus,

it is likely that nearest point and connected component algorithms that can execute

quickly on graphics hardware will soon be developed. Rong has recently explored GPU

algorithms for the related problem of distance function evaluation, and similar meth-

ods could be used for nearest point computation [60].
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Figure 3.5: Information Flow, in the case of a local update operation applied during

row major traversal of a 4-connected image. Pixels have a chance of inheriting infor-

mation from neighboring pixels that were updated before the traversal reached it. The

brightness of each pixel in the 8× 6 image above corresponds to the number of pixels

that may inherit information from it.
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Row Major Reversed-x

Reversed-y Reversed Row Major

Figure 3.6: Information flow, for the four traversal orders used during a nearest point

set solve. The order of traversals used by the system is row major, reversed row major,

reversed-y , and reversed-x . A total of 8 traversals is typically sufficient to ensure

convergence of the nearest set values.



4 Image Reconstruction

Was nicht translationsinvariant ist, ist Scheiße in jeder Dimension.

– Joachim Weickert to Thomas Brox, on the topic of discrete
methods for solving anisotropic diffusion equations.

The boundary curve data gathered in Chapter 3 implies a segmentation of the image

pixels into connected components. The characteristic luminance values stored for each

of these components can be used to construct a piecewise constant image. That piece-

wise constant image is henceforth referred to as the target image.

Calculating the target image is straightforward, given the connected components

labeling algorithm defined in Section 3.4.1. The central image reconstruction problem

is thus to modify this piecewise constant image to create a piecewise smooth image that

reflects, as accurately as possible, the edge sharpness values stored along the boundary

lines.

This chapter describes how anisotropic regularization can be used to generate such a

piecewise smooth image. Anisotropic regularization is a an image smoothing technique

closely related to Poisson’s equation [5]. I show how regularization weights may be

chosen to minimize deviations from the edge model derived in Section 2.4.2, while

simultaneously providing a result that avoids introducing creases or high gradients at

points other than the established edge set.

4.1 Chapter Overview

Sections 4.2 and 4.3 are concerned with the problem of finding a regularization def-

inition that will imply that edges are reconstructed as accurately as is possible. By

considering the very simple case in which the image consists of only a single edge, I

identify a large class of regularizations that, for the single edge case, imply regular-

ization results that are perfect matches for the edge model curves. In Section 4.2.1, I

identify a specific regularization which is related to this class, and which is suitable for

generalization to the multiple edge case. Importantly, this regularization definition is

designed to avoid creasing artifacts that would otherwise arise in the 2D, multi-edge
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case. The full 2D regularization definition is given in equation (4.10).

The regularization definition found in Section 4.2.1 assumes that the regulariza-

tion operation can be implemented using continuous functions. To obtain more accu-

rate reconstructions given discrete image data, I convert the continuous regularization

problem given in equation (4.2) to a system of linear equations, using a standard fi-

nite difference scheme. Sections 4.3.2 and 4.3.3 adapt the continuous arguments from

Section 4.2.1 to the discrete 1D case, thus deriving a natively discrete regularization

definition. This discrete definition is significantly more complex than the continuous

definition found in Section 4.2.1. Generalizing the 1D, single edge definition to a 2D,

multiple edge definition is also more complex in the discrete case. Section 4.3.4 defines

the 2D regularization for the discrete case.

In Section 4.4, I show that the additional complexity of the discrete definitions is

justified, as it leads to significantly more accurate edge reconstructions, while mini-

mizing the sensitivity of the reconstruction to the resolution of the discrete grid. Sec-

tion 4.4 also includes studies of the interactions of the key parameters used in defining

the regularization equations. Specifically, k, K , ε, and h. In Section 4.4.3, I show that

anisotropic regularization is both faster and produces higher quality results than the

related image reconstruction algorithms of Elder [20] and Orzan et al. [52].

4.2 Regularization

Consider first the very simple case in which the piecewise constant target image can be

described as a step function, defined in Iverson notation as,

v(x) := [x > 0]− [x < 0].

This requires the assumption that, though the image is two dimensional, the value

at any point is determined solely by the x-position. Additionally, assume that the do-

main of the x-coordinates of the image is given by Ωx = [−r, r], thus r is half the width

of the image.

There is only one boundary line in this image. It occurs at x = 0. Assume that the

edge sharpness parameter at this edge is k, so the correct smooth image is defined by

the exponential sigmoid curve,

esig(kx) =







1− e−kx if kx ≥ 0,

ekx − 1 otherwise.
(4.1)
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Now assume that f (x) must be reconstructed from v(x) using an energy minimiza-

tion process, in which f (x) is defined as the minimum of the following functional,

min
f

∫ r

−r

w1(x)| f ′(x)|2+w0(x)( f (x)− v(x))2d x ,

subject to f ′(r) = f ′(−r) = 0.

(4.2)

Here w0(x) is a weighting function that determines how strongly f (x) is attracted to

the target image v(x), while w1(x) is a weighting that causes f (x) to tend towards

smooth functions.

Equation(4.2) is an anisotropic regularization problem [5]. Minima of the func-

tional will be smoothed versions of the target image v(x), and are referred to as reg-
ularizations of v(x). Regularization functionals occur frequently in computer vision

applications, and many different choices for the weightings functions w1 and w0 have

been studied in that context. Perhaps the most famous weighting definition is total
variation regularization. Repeated applications of total variation regularization can be

used to implement total variation diffusion, an algorithm which has proven useful in

the contexts of edge detection, image segmentation, texture classification, and optical

flow estimation. Indeed, total variation methods have become sufficiently popular that

they may be considered a significant area of study in and of themselves [10].

4.2.1 Solutions of the Variational Problem

Depending on the choice of weighting functions, equation (4.2) may be ill-posed. For

example, in the case that w0(x) = 0, w1(x) = 1, the functional will be minimized by

any constant valued f . Also note the discontinuity in v, which implies that applying

the Euler-Lagrange equation directly to equation (4.2) will yield a differential equation

that is merely a necessary condition for minimizers, rather than a sufficient condition,

as would be the case if v were C2 continuous [22].
However, assuming that w0 and w1 are even and strictly positive implies that any

minimizing f of equation (4.2) must be odd—a short proof is given in Section 4.2.2.

Strictly positive, even weighting functions simplify the task of generalizing the regular-

ization definition to the case of more complex edge sets, so in practice little is lost by

making this assumption.

To avoid the presence of undefined terms in equation (4.2), f must be C1 con-

tinuous. Given f both C1 continuous and odd, it is possible to re-express the initial

regularization in a simpler form. Given odd, continuous f , it follows that minimizing
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equation (4.2) is equivalent to minimizing,

min
f

∫ r

0

w1(x)| f ′(x)|2+w0(x)( f (x)− 1)2d x ,

subject to f ′(r) = f (0) = 0.

(4.3)

Given the prior assumption of strictly positive weighting functions, the functional

in equation (4.3) is convex, and thus the regularization is provably well-posed [21].
Upon finding a set of function definitions that minimize equation (4.3) in the do-

main of x ∈ [0, r], those definitions can be extended to the range [−r, r] using,

f (−x) :=− f (x), w1(−x) := w1(x), w0(−x) := w0(x), ∀x ∈ (0, r].

The single dimensional Euler-Lagrange equation may be written as follows:

f minimizing

∫

L( f , f ′)d x must satisfy
∂ L

∂ f
=
∂

∂ x

�

∂ L

∂ f ′

�

.

Applying the Euler-Lagrange equation to equation (4.3) yields the result that any

minimizing f must satisfy the second order ordinary differential equation,

w0(x)( f (x)− 1) = f ′(x)w′1(x) +w1(x) f
′′(x). (4.4)

By forcing the regularization result f (x) to be a perfect reconstruction of the correct

image esig(kx), equation (4.4) can reinterpreted as a constraint on possible choices

for w1 and w0. This transformation of a minimization problem in f to a differential

equation in w may seem unusual, but there is ample precedent for it. Any physics

problem that requires recovering the set of forces capable of implying an observed

motion path may be solved using the same method. Such physics applications are

known as inverse problems, and both the theory and the history of inverse problems are

closely related to variational calculus [26]. In fact, the edge reconstruction method

presented here is multiply indebted to the history of inverse problems, as before they

were adapted to the fields of computer vision or computer graphics, regularization

energies were used by physicists as a tool for narrowing down the solution sets of

inverse problems [3].
After assuming f (x) = esig(kx) for x ∈ [0, r], equation (4.4) simplifies to the

following differential equation, 1

w0(x) + kw′1(x)− k2w1(x) = 0. (4.5)

1Weight functions for alternate sigmoidal model curves can be derived by substituting other sigmoids

into equation (4.4). I have chosen to use the exponential sigmoid as my edge model because it leads

to an unusually simple family of differential equations. Note that the exponential sigmoid is the only

sigmoidal curve that can be expressed as the regularization of a step function using constant-valued

weight functions.
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Note, however, that forcing f (x) to equal esig(kx) introduces a complication, as

esig(kx) does not obey the boundary conditions set in equation (4.3), except in the

limit as r →∞. Thus, given finite r, weight functions derived by solving equation (4.5)

will never exactly imply f (x) = esig(kx). However, it is reasonable to assume that

f (x) will approach esig(kx) in the case of large images. In Section 4.4, I show several

experimental results that strongly support this assumption.

4.2.2 Proof that f is odd

The following is a short proof that f is odd, a result necessary to derive equation (4.3).

Recall first that any function f may be uniquely decomposed into even and odd

components fe and fo, using,

fe(x) =
1

2
( f (x) + f (−x)), fo(x) =

1

2
( f (x)− f (−x)).

For brevity, I will now write functions f (x) using single letter variables f . Equa-

tion (4.2) may be rewritten as,
∫ r

−r

w1

�

( f ′o )
2+ 2 f ′o f ′e + ( f

′
e )

2
�

+w0

�

( fo − v)2+ f 2
e + 2 fe( fo − v)

�

d x .

Recall that the sum of any two odd functions is odd, and the product of an even and

odd function is odd. Also, the integral from −r to r of any odd function will be 0.

Finally, recall that the derivative of an even function f ′e must be odd, and that the

derivative of an odd function f ′o must be even. Thus, assuming even w1, w0 implies,

∫ r

−r

w1(2 f ′e f ′o ) +wo(2 fe( fo − v))d x = 0.

Additionally assuming w1, w0 > 0 implies,
∫ r

−r

w1

�

( f ′o )
2+ ( f ′e )

2
�

+w0

�

( fo − v)2+ f 2
e

�

d x

≥
∫ r

−r

w1( f
′

o )
2+w0( fo − v)2d x .

Thus proving that even, strictly positive weighting functions force any f minimizing

equation (4.2) to be odd.2

2This short proof was shown to me by Reinhard Illner; to whom I am indebted not only for this proof,

but also for several helpful conversations on the topic of the calculus of variations and related inverse

problems.
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4.2.3 Weight Function Definitions

There are many weighting functions that satisfy equation (4.5). And if the only images

input to the system were very large images that contained only a single straight edge

line, any of these possible definitions would work equally well. However, while it is

important that the reconstructed image be correct in the single edge case, it is also

important that any weighting function definitions lead to reasonably good reconstruc-

tions given much more complex edge sets. I have found that some weighting function

definitions lead to better reconstructions of complex edge images than others, even if

both functions produce perfect results in the single edge case.

I now provide the w definitions used in my system. These definitions have proven to

yield good reconstructions even given complex edge information and gradient samples,

but they are derived by enforcing the condition that the regularization produce nearly

perfect results when the image to be reconstructed contains only a single edge.

In order to find solutions to equation (4.5), additional constraints must be placed

on the weighting functions. The first of these constraints is that the weighting functions

take on the values w1(x) = 1 and w0(x) = K2, for some large value of x . Formally, this

constraint is stated as follows:

w1(y) = 1, w0(y) = K2, for y such that 1− esig(k y) = ε. (4.6)

I use a different set of weighting function definitions depending on whether or

not the edge sharpness parameter k is less than K . Reconstruction errors become

increasingly likely when k is either much greater or much smaller than K , thus it is

beneficial to set K to be a value that represents an average level of edge sharpness. I

use K = 0.3.

For the case of a low sharpness edge, in which k ≤ K , I use a constant data weight-

ing function w0(x) := K2. This reduces equation (4.5) to a first order ordinary differ-

ential equation. It can be solved as an initial value problem given the constraints in

equation (4.6) [55]. Solving for w1 and then extending the definition to R by enforcing

the assumption that w1 is even yields,

w1(x) =
K2

k2 + ek|x |ε(1−
K2

k2 ). (4.7)

This weighting function definition implies that for values of k smaller than K , the gra-

dient smoothness weight w1 will be large close to the edge line at x = 0. However, w1

decreases as the distance from the edge increases. The data weight w0 will, meanwhile,

be constant at all points in the image. Note that for the average edge sharpness case,

defined by k = K , the equation for w1 simplifies to w1(x) = 1. The main drawback of
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these weighting function definitions is that w1(x) is negative for very large x . However,

clamping w1 to have a minimum value of 1 causes minimal reconstruction errors, pro-

vided that ε is sufficiently small. The default setting used by my reconstruction system

is ε= .005.

A different pair of w definitions is needed to handle the high edge sharpness case,

in which k is larger than K . I derive weighting functions for this case by enforcing the

constraint that,

w0(x)K
2 = w1(x).

Solving equation (4.5) given this constraint yields,

w1(x) = e(k−
K2

k )|x |ε1− K2

k2 , w0(x) = K2w1(x). (4.8)

Like the low sharpness solutions, these weighting functions have undesirable behaviors

far from x = 0. In this case, the problem is that the exponential increase in the two

functions leads to unreasonably large weighting terms. However, as in the low sharp-

ness case, the values can be clamped so that w1(x) is at most 1, and w0(x) at most

K2. Given a sufficiently small choice of ε, reconstruction errors due to clamping are

minimal. Note that, after clamping is applied, these equations imply that for very large

k, w1(x) approaches a constant function having a point discontinuity, specifically,

w1(x)≈







ε if x = 0,

1 otherwise.
(4.9)

This suggests that very sharp edges may be modeled using weighting functions defined

as in the average k = K case, but ignoring pixels in neighboring regions whenever

calculating the gradient term associated with the smoothness weight, w1| f ′|2. This is

a concept that will prove important when defining the finite difference equations in

Section 4.3.3.

Continuous Extension to 2D

In the general case, the reconstructed image f (x), defined over image domain Ω⊂ R2,

is found by solving the 2D regularization problem,

min
f

x

Ω

w1(x)||∇ f (x)||2+w0(x)( f (x)− v(x))2dx. (4.10)

The 2D weighting functions w1(x) and w0(x) are defined by choosing the weighting

function definition implied by the edge sharpness value k of the closest edge point xe,

and evaluating those functions with x = ||x − xe||. The partial differential equation

implied by equation (4.10) may then solved using finite difference methods [63].
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4.2.4 Box Function Regularization

Thus far, all my arguments for deriving regularization function weights have depended

on assumptions that will never be true in practice—specifically, the assumptions that

the image will contain only a single edge, and that the image will have infinite width.

The gap between the image reconstruction problems that occur in practice and the

idealized case is significant.

This is not an uncommon problem—Elder’s model-functions for edge interfaces are

derived using the same faulty assumptions [20]. However, the errors introduced by

these assumptions are typically less serious than they might first appear. Additionally,

there are good reasons to ignore many of the “errors” caused by the mismatch between

the sigmoidal edge model functions and the results of a regularization operation. The

most important reason is that the sigmoidal curves themselves are a necessarily imper-

fect approximation of the source image data.

For large regions one can reasonably expect the differences between the regulariza-

tion results and the model sigmoid curves to be small. However, consider the case of

a small narrow region—in which the underlying luminance briefly moves up into the

neighboring quantization bin, before moving back down to its original bin value.

A one dimensional analog to this case can be represented as a box-function regular-

ization. Applying the average case, k = K weight functions w1(x) := 1, w0(x) := k2 to

an arbitrary target image v(x) implies that the the differential equation characterizing

the regularized image f will be:

f ′′(x)− k2 f (x) = k2v(x). (4.11)

A function definition that corresponds to the problematic case of a box function

regularization is v(x) := c[x0 < x < x1]. This reduces equation (4.11) to a second

order nonhomogeneous linear ordinary differential equation, having constant coeffi-

cients [67]. Applying the variation of parameters method to the equation, and enforc-

ing the boundary condition that f (x)must converge towards 0 at either extreme of the

real line yields:

f (x) =
c

2











ekx(e−kx0 − e−kx1) if x < x0

2− e−k(x−x0)− ek(x−x1) if x0 ≤ x ≤ x1

e−kx(ekx1 − ekx0) if x > x1

(4.12)

These curves will be very similar to the exponential sigmoid, when the interval
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characterizing the box function is large. For example, consider the following plot:

-5 0 5
x

0.2

0.4

0.6

0.8

1.0

The target value function v(x) is shown in blue, the regularization result as defined

by equation (4.12) is shown in purple, and the piecewise combination of exponential

sigmoid curves implied by the sigmoidal edge model is shown in yellow.

Notice that while the difference between the regularization result and the sigmoidal

curves is very slight at most x values, there is a noticeable separation at the center of

the box function. This separation is greatest at the transition point between the two

edge model curves, where the piecewise-sigmoidal curve forms a visible crease. Such

a crease implies that somewhere in the original image, the local linearity arguments

used to justify sigmoidal edge model curves have failed to hold (see Section 2.4.2). In

fact, the presence of such creasing artifacts is the main justification for the complex-

ity of both Elder’s and my own image reconstruction methods [20]. Were it not for

the frequent occurrence of creasing artifacts, images could be reconstructed by simply

assigning each pixel to the value implied by the model curve of the closet edge point.

Using a narrower box function yields more visible differences between the regular-
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ization and the model curves:

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0

Notice that even in this case, the behavior of the two curves is similar near re-

gion boundaries, while the most visible difference is that the regularization lacks the

pronounced crease that occurs in the piecewise sigmoidal curve.

Note that the derivatives of f (x) at the region boundaries are given by,

f ′(x0) =− f ′(x1) =
c

2
k(1− ek(x0−x1)).

Thus the maximum gradient magnitude may stay relatively close to the expected

value for a region interface, i.e., | f ′(x0)| ≈
c
2
k, even while the value of the function

at the center of the region is much less than c. This is significant, as it is typically the

deviations in luminance gradient, rather than changes to the maximum and minimum

luminance values, that will be most noticeable to a human observer.

The following plot shows the absolute values of the derivatives of the exponential

sigmoid curves (yellow) and the regularization result (purple) in the narrow box case.
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The dashed blue lines show a scaling of the narrow box function, 1
2
v(x).
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x
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Again, note that the largest differences occur near the center of the box function, which

is also the region in which the sigmoidal edge model is least likely to be correct.

4.2.5 Relating the Edge Model to Target Image Regularization

All the equations for weight functions derived up until this point have assumed that

the target image v will be limited to the values −1 and 1. In practice, the target image

will have values defined by the quantization bin locations; for example, the bin values

defined in Section 2.2 are b= (.2, .61, .95).
It is reasonable to expect that, if the target image v is changed to be some scaled,

shifted version of itself, then the implied regularization result will be similarly scaled

and shifted. For example, consider the following vc definition, which would describe

the target image for a single edge case in which the two region characteristic values

are c2± c1.

vc(x) := c1v(x) + c2.

Notice first that the energy term in equation (4.2) can be multiplied by any strictly

positive constant c2
1 without changing the minimizing function f .

min
f

∫ r

−r

w1| f ′|2+w0( f − v)2d x =min
f

∫ r

−r

w1|c1 f ′|2+w0(c1 f − c1v)2d x .

Adding 0= c2− c2 to the w0 term yields the result that minimizers f of equation (4.2)

can be used to generate minimizers for any regularization problem of the following
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form:

min
fc

∫ r

−r

w1| f ′c |
2+w0( fc − vc)

2d x , where fc(x) = c1 f (x) + c2. (4.13)

This formally proves a relation that was previously stated as intuition; if the target

function can be represented as a scaled, shifted version of the base target function

v(x) := [x > 0]−[x < 0], then the implied regularization fc will be a similarly shifted,

scaled version of the minimizer f of equation (4.2). Importantly, proving this relation

required no changes to the weighting function definitions w0 and w1. This has practical

importance, as it implies that as long as the edge curves which we wish to reconstruct

have the form of a shifted, scaled exponential sigmoid, the weighting function defini-

tions do not need to be modified relative to the derivations in Section 4.2.3, regardless

of the values of the scaling coefficients c1 and c2.

The edge model function found in Section (2.4.2) is such a scaled, shifted expo-

nential sigmoid. Specifically, the behavior of the non-uniform soft quantization result

across an edge j found in equation (2.14) is,

p j(x , s)≈ h j

esig( s
h j
||∆I ||x)

esig(s)
+ z j.

In the above, x is the distance from the center of the edge, j is the index of the edge’s

sigmoid, h j is the height of that sigmoid, and z j is the edge’s shift term. The parameter

s holds the sharpness of the soft quantization, for which the system default is s = 2.

Thus, the edge model curve p j(x , s) has the form fc(x) given,

c1 :=
h j

esig(s)
, c2 = z j. (4.14)

This implies that the edge model curve is a minimizer of equation (4.13), if and only if

esig(kx) is a minimizer of equation (4.2), and the sharpness term k is given by,

k :=
s

h j
||∆I ||. (4.15)

However, note that the constant definitions necessary to put the edge model curve p j

into the form of fc also imply that the target image function vc must be given as,

vc(x) =
h j

esig(s)
v(x) + z j.

This is problematic. The piecewise constant image reconstructed from the sampled

quantization bin values b will, near any edge j, have the form,

vb(x) = h j v(x) + z j.
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This is slightly different from the target image vc. The problem is the division by esig(s).
This division was introduced into the soft quantization to ensure that the function was

C0 continuous. However, it also implies that the convergent values of the model curve

for any edge will be either slightly above or slightly below the characteristic bin values

on either side of the edge. In practice, the difference between vb and vc is slight, as

given the values of s used in the system, esig(s)≈ 1.

It is possible to create a target image that is a multi-edge generalization of vc, simply

by defining j relative to the closest edge point. However, such a target image will

contain discontinuities at the centers of quantization regions, and those discontinuities

would lead to artifacts in the resulting reconstruction.

The purpose of including the division by esig(s) in the initial definition of the

nonuniform soft quantization function was to avoid cases in which visible disconti-

nuities would be introduced at the centers of quantization regions. Ironically, that

adjustment now implies that reconstructing the edges in the soft quantization result as

accurately as possible would require introducing exactly the same kinds of discontinu-

ities into the target image.

It is thus useful to consider two different types of non-uniform soft quantization.

One is the C0 continuous definition given in Section 2.4, which includes the esig(s)
division, and the other is an otherwise identical definition that omits the division by

esig(s). The C0 definition leads to image-space stylizations that are free of any artifacts

at the centers of regions. However, it is the discontinuous, uncorrected definition that

will most closely match the reconstruction results near image edges.

4.3 Finite Difference Implementation

Using classic finite difference approximations to solve equation (4.10) has a signifi-

cant draw back. When the edge model functions esig(kx) are sufficiently sharp that

they cannot be closely approximated by piecewise linear functions over the given grid

discretization, then the shape of the reconstructed edges tends to vary significantly,

depending on the number of points in the discretization. This is a problem, as the grid

discretization will vary depending on the resolution at which the system is rendering

the vector image, and, ideally, vector image renderings should be resolution indepen-

dent.

This resolution dependence can be greatly reduced, however, by deriving a discrete

analog to the differential equation (4.4). Using arguments that parallel those in Sec-

tion 4.2.3, I derive weight function definitions that will imply f (x) = esig(kx) at all

points in the grid. Unlike the definitions given in equations (4.7) and (4.8), these
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P-1 P0

x=0 x=h x=2h

P1 P2
q0 q1 q2

Figure 4.1: 1D Discretization coordinates. Functions that are most naturally defined at

pixel centers are sampled at the circles, while functions more naturally defined on the

edges between pixels are sampled on the vertical lines.

weight function definitions will depend on the discretization parameter h. As shown in

Section 4.4.1, that dependence serves to correct for most of the distortions that would

normally result from using coarse grids.

4.3.1 Discretization of the 1D Problem

In the discrete, one dimensional case, assume the edge weights w1 are sampled at

the positions between pixels. Therefore the sample positions are given by qi := ih
for i ∈ Z. The data weight values, and reconstructed image function function values,

however, will be sampled at pixel positions, which are offset relative to the edge sample

positions. They will be sampled at the x-values pi := ih+ h
2
. Figure 4.1 illustrates the

relation between the two sampling coordinates. Assume that the image is 2m pixels

wide, so r = mh.

Discrete samplings of w1, w0 and f are then defined as follows,

gi :=
w1(qi)

h2 , di := w0(pi), ui := f (pi),

with qi := ih, pi := ih+
h

2
.

(4.16)

Now the variational problem in equation (4.3) can be discretized as,

min
u

∑

m>i≥0

di(1− ui)
2+ gi(ui − ui−1)

2, with u−1 :=−u0. (4.17)

This discretization enforces the assumption that f is odd by defining u−1 :=−u0. The

use of backward differences implies a discrete analog to the Neumann condition f ′(r) =
0, as enforcing the boundary condition um− xm−1 = 0 is equivalent to defining gm := 0,

or, as in equation (4.17), not including any gm term in the formula.

As equation (4.17) is a linear least squares problem, minimizing x are characterized

by the following system of m linear equations,

di(1− ui) = gi(ui − ui−1) + gi+1(ui+1− ui), ∀i ∈ [0, m), with gm := 0. (4.18)
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Figure 4.2: Relation between the data weights di, edge weights gi, and the discrete

reconstructed image ui. The relationships are similar to those of a spring system. Each

pixel value ui is attracted to the value 1 by the dataweight di, but, it is also attracted

to the values of its neighboring pixels, as a result of the edge weights gi and gi+1. The

boundary condition u−1 := −u0 is what causes the sigmoidal bend in u – without that

condition, all the pixel values would snap to 1.

As in Section 4.2.1, replacing the reconstructed pixel values ui with the model edge

curve esig(pi) results in an under constrained linear system for the weight vectors g
and d. Specifically, it results in a linear system of m equations having 2m unknowns.

di(1− esig(pi)) = gi(esig(pi)− esig(pi−1)) + gi+1(esig(pi+1)− esig(pi)). (4.19)

Equation (4.19) is thus the discrete analog to the differential equation (4.4). Figure 4.2

illustrates the relationships between the variables d, g, and u.

Definitions for w1 and w0 are now derived by following the arguments in Sec-

tion 4.2.3, with the modification that the linear system (4.19) is used in place of the

differential equation (4.5).

As in the continuous case, it is helpful to consider the linear system (4.19) in the

limit as m approaches infinity. There are two reasons for this. The first is that, in the

multiple edge case, the choice of m that would imply the best possible reconstruction of

the grey values at a given pixel is not typically half the width of the image. Rather, it is

likely to be a complex function of both the size and shape of the connected component

to which that pixel belongs, making an optimal m difficult to calculate in practice.

Assuming m→∞ removes a potentially complex unknown from our system.

Assuming m → ∞ also changes the finite linear system (4.19) into a recurrence

relation in gi. This makes it possible to find closed form expressions that satisfy the
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weighting function constraints [29].

4.3.2 Corrected Definitions for the Soft Edge Case

I begin by searching for an analogue to the w1 = 1, w0 = K2, case that defines the fixed

points in equation (4.6). If gi = 1, and k = K , equation (4.19) implies,

di = 2(cosh(hK)− 1), ∀i ≥ 1.

This is a promising start, as this definition approaches the continuous case as h ap-

proaches 0. When the weight functions w1 = 1, w0 = K2 are discretized, they imply

gi := 1
h2 and di := K2. That discretization is equivalent to di = K2h2 and gi = 1. And

L’Hôpital’s rule implies that,

lim
h→0

2(cosh(hK)− 1)
h2 = K2.

However, there is a complication. Setting gi = 1 for all i implies,

d0 = 2e
hK
2 + e−hK − 3.

This is problematic, as it implies that for some values of h and K , d0 may be negative.

As a general rule, any discrete weighting functions that satisfy (4.19) will require

that either d0 or g0 be defined as a special case. This is because in all but the i = 0

case, esig(pi− 1) can be simplified to 1− eih− h
2 . However, in practice, treating g0 as a

special case is generally preferable to taking d0 as a special case. For example, in the

k = K case it is preferable to define di := 2(−1+ cosh(hK)) for all i, and gi = 1 for all

i ≥ 1, which implies,

g0 =
1

2
(1+ e

hK
2 ).

To extend this definition to the more general case of k <= K , begin by setting,

di = 2(cosh(hK)− 1). (4.20)

Now observe that together, equations (4.19) and (4.20) imply that for i ≥ 1,

2(cosh(hK)− 1)e−hk(i+ 1
2
) = gi(e

−hk(i− 1
2
)− e−hk(i+ 1

2
)) + gi+1(e

−hk(i+ 3
2
)− e−hk(i+ 1

2
)).

This is a recurrence relation in gi. It is satisfied by any gi of the form,3

gi =
cosh(hK)− 1

cosh(hk)− 1
− εeihk cosh(hK)− cosh(hk)

cosh(hk)− 1
. (4.21)

3Finding solutions for these recurrence problems requires either a real passion for concrete mathe-

matics, or a passing familiarity with Mathematica’s RSolve[] function.
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In the solution given above, the free parameter ε has been chosen so that gi = 1 given

i for which 1 − esig(ihk) = ε, mimicking the constraint in equation (4.6). Like the

definition for w1(x) given in (4.7), equation (4.21) has the form b− aekx , and is thus

negative for large i. However, by choosing a sufficiently small ε, and clamping gi to

be at least 1, the negative values can be avoided while causing minimal reconstruction

errors. See Section 4.4.1 for further discussion of the ε parameter.

Note that while equation (4.21) was derived by considering the discrete edge re-

construction problem, gi is smooth for all i ∈ R+. It can thus be converted into a

continuous definition for w1(x), by replacing ih with x . Converting back to a contin-

uous weighting definition is important, as when the definition is generalized to 2D,

the distance between any grid position and the nearest edge point will not always be

integer valued.

Given g1 defined as per equation (4.21), we can now solve for g0,

g0 =
ε(cosh(hk)− cosh(hK)) + cosh(hK)− 1

e−hk + 2 sinh(hk
2
)− 1

. (4.22)

Note that this g0 definition is strictly positive, given K ≥ k > 0, h > 0, and ε > 0 and

sufficiently small.

4.3.3 Corrected Definition for the Sharp Edge Case

In order to model an edge that is sharper than the average case, the ratio di

gi
must

become larger than K2 as we approach the edge. Large data weights di tend to cause

problems in the multiple edge case. When a region is bordered by both both a sharp

edge and a soft edge, the large data weights implied by the sharp edge can lead to

visible discontinuities in the region’s interior. Such discontinuities may be avoided by

forcing the ratio of the edge weights gi and data weights di to remain constant at any

point. Specifically, by enforcing the condition,

di = 2(cosh(hK)− 1)
gi + gi+1

2
. (4.23)

This ensures that the ratio 2di

gi+gi+1
will reach its maximum in the average sharpness

k = K case, and remain there for all k > K .

Once again, equations (4.23) and (4.19) combine to imply a recurrence relation in

gi, and the recurrence has a closed form solution when considered in the case of i ≥ 1.

(cosh(hK)−1)e−hk(i+ 1
2
)(gi+ gi+1) = gi(e

−hk(i− 1
2
)− e−hk(i+ 1

2
))+ gi+1(e

−hk(i+ 3
2
)− e−hk(i+ 1

2
)).
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In this case, the recurrence is satisfied by any gi of the form

gi =

�

e2hk − 1

ehk cosh(hK)− 1
− 1

�i−n

. (4.24)

Like the sharp edge weight derived in (4.8), this implies that w1(x) will have the form

ax , and thus increase towards infinity for large x . Here the free parameter n has been

chosen such that gn = 1. As in the continuous case, I clamp the values of gi to be at

most 1. The point at which clamping will be applied is determined by ε, using the

equation,

n= d

 

− ln(ε)

hk+ 1
2

!

e.

Once again, this n definition is a discrete form of the constraints given in equation (4.6).

However, the use of the ceiling operation implies that the clamping point will always

be both integer valued and greater than or equal to 1. In the case of soft edges, the

point at which gi is clamped to 1 will likely occur far from the edge, and thus allowing

the clamping point to occur between discretization samples is not a practical problem.

However, in the case of a hard edge, the clamping may occur very close to the edge

itself. In fact, for very large k, the system will typically clamp at n= 1.

By combining equations (4.23), (4.24), and (4.19), it can be shown that for all

i ≥ 1,

di = gi

4sinh(hk) sinh(hK
2
)2

ehk − cosh(hK)
. (4.25)

By requiring that equation (4.25) also hold for i = 0, I can now derive the special case

of the boundary crossing edge weight,

g0 =
1

2

�

1+ e
hk
2

�

�

e2hk − 1

ehk cosh(hK)− 1

�−n

. (4.26)

Note that if n = 1, g0 will converge to 0 as k goes to infinity. This forms the discrete

analogue to the convergent definition of w1 given in equation (4.9). In the discrete

context it is easier to see how the limiting case can be applied in practice. As illustrated

in Figure 4.2, eliminating the weight variable g0 causes the implied image to exactly

match the piecewise constant target image.

4.3.4 Extension to 2D

The generalization of the weight functions to a two dimensional regularization prob-

lem, as defined by equation (4.10), assumes that image data can be modeled as a
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continuous function. In order to define a similar discrete generalization to 2D, I start

by applying the graph cutting algorithm given in Section 3.3.

Consider the following graph cutting result.

Figure 4.3: Edge Cutting Result

The edge sharpness values are stored in a linear spline k(t), and thus a k value is

defined at every point on the region boundary line. The edge cutting algorithm defined

in Section 3.3 will sample from k(t) in order to set a k value at each of the edge center

points, which are marked in orange.

Generalizing the regularization problem defined in Section 4.3.1 to the two dimen-

sional case requires defining a k value and distance x for both every graph edge and

every pixel center. More specifically, if the set of pixel indices is V , and the set of edges

in the 4-connected pixel adjacency graph is E, then defining the regularization requires

defining the values ki and x i, for all i ∈ V , and ki j and x i j, for all (i, j) ∈ E.

Given such values, the one dimensional regularization given in equation (4.17) has



77

the following natural 2D generalization,

min
u

∑

i∈V

d(ki, x i)(vi − ui)
2+

∑

(i, j)∈E

g(ki j, x i j)(ui − u j)
2. (4.27)

As in the 1D case, equation (4.27) is a linear least squares problem, and can thus

be converted into a matrix equation of the form Au = b. Notice that it is necessary to

reinterpret the definitions of the weighting functions g and d as functions from R+×R+

to R+, which take as input both a sharpness value k and a distance value x . Also notice

that the special case definitions for g0, given in equations (4.21) and (4.24), will be

used at every x i j for which (i, j) is a cut edge, as those are exactly the cases in which

x i j = 0.

In image space, the positions associated with the pixels i and edges (i, j) lie on

three overlapping grids. The first grid corresponds to pixel positions, the second to

horizontal edges, and the third to vertical edges. In Figures 4.3 and 4.4, pixel centers

are marked with circles, while vertical and horizontal edge positions are marked with

diamonds.

Distance values in each of of the three grids are initialized as follows. At each cut

edge the distance is set to x = 0. Any pixel center adjacent to a cut edge is set to

x = 1
2
. Finally, for any vertical edge which is not cut, but which shares a vertex with a

horizontal cut edge, x =
p

2
2

. Similarly for horizontal edges. Thus, after initialization,

the x values from Figure 4.3 are defined as follows.
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Figure 4.4: Distance Value Initialization

Each grid now has sufficient initial data to apply the nearest point algorithm given in

Section 3.4.2. Along with defining an x value at all grid points, that algorithm asso-

ciates each grid point with the set of cut edges that are closest to it. As demonstrated

in Figure 4.5, the Voronoi diagrams associated with the set of cut edges will frequently

have corners on grid points, and thus it is often the case that multiple cut edges are

equally close to a given grid point. The k value at any grid point is defined to be the

average of the k values defined at the closest cut edges.

It is possible to calculate k and x values at all grid locations by searching for the

closest points included in the set of boundary line segments. However, this is a difficult

operation to perform efficiently, in contrast to the nearest point algorithm, which can

typically be performed in linear time. Furthermore, setting the value of x using the

closest boundary line point would cause most cut edges to have x values slightly larger

than 0, thus destroying the connection between the g0 special case and the set of

cut edges. That connection is critical in modeling sharp edges correctly. Therefore,

using the nearest point algorithm to propagate x and k values is not only faster than

performing a similar calculation directly from the boundary line data, it also makes
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Figure 4.5: The cut edge Voronoi diagram associated with Figures 4.4 and 4.3. The cut

edge locations are shown as colored diamonds, while the implied Vornoi regions have

been drawn using a lighter shade of the same color.
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it possible to take better advantage of the discretization error corrections derived in

Sections 4.3.2 and 4.3.3.

After the completion of the nearest point algorithm, the linear system implied by

equation (4.27) is solved, using the method of successive over-relaxation [63]. The

result is the reconstructed image.

4.4 Results

4.4.1 One Dimensional Reconstruction Results

The arguments used to justify the anisotropic weight functions make several claims that

require empirical validation. The first is that the reconstruction results will be accurate

for the case of single edge images, despite the fact that the weight function derivation

relies on the assumption that all edges will have infinite width. Similarly, the derived

weighting equations are truncated, using the parameter ε, and the claim is made that

this truncation does not lead to noticeable reconstruction errors, if ε≤ 0.005.

Figures 4.9 and 4.11 demonstrate that, in the one dimensional case, very high

quality reconstructions are achieved, even on relatively narrow, finite width images.

Figures 4.8 and 4.10 show the relatively poor reconstruction created using a naive finite

difference implementation of the continuous weight function definitions, thus justifying

the additional complexity of the corrected discrete definitions derived in Section 4.3.

Figure 4.7 plots reconstruction error over a range of discretization densities, and shows

that, as expected, the corrected versions lead to better results at coarse discretization

scales. However, as demonstrated in Figure 4.6, the corrected and uncorrected weight

function definitions converge as h approaches 0, and thus the error plots shown in

Figure 4.7 also converge for small h.

The quality of the edge reconstructions will be influenced the sharpness value that

defines the edge model curve k, the parameters K and ε used in the the continuous

weight function definitions, as well as the width m of the image and the distance h
between discretization samples. The high dimensionality of this parameter space makes

plotting the tradeoffs between all five terms impractical; however, creating a linear

plot of any of these parameters, while the others are held fixed, is straightforward.

For example, Figure 4.12 shows error as a function of edge sharpness. This error

function shows a saw-tooth pattern, which likely results from the floor function used

in the discrete weight function formulas. The same figure also includes a second plot

made using a lows m value, which suggests that decreasing the width of the image will

typically cause the reconstruction accuracy to become uniformly worse—an intuitive
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Figure 4.6: Comparison between the weight terms generated for a sharp edge case,

with and without corrected definitions derived in Section 4.3. The edge weights gi are

plotted as blue circles, while data weights di are plotted as purple squares. In both

cases, the parameters used are k = 1, K = .3, h = 2, and ε = .005. The top two plots

use w1 and w0 defined as per equation (4.8) then converted to gi and di by applying

equation (4.16) and multiplying both weights by h2. The bottom plots show g and

d defined using the formulas given in Section 4.3.3. In order to clarify the relation

between the weight functions, all the weight function terms have been divided by their

maximum values. As shown in Figures 4.8 and 4.9, in the case of large h, differences

in the weight function definitions lead to significant improvements in the accuracy of

the regularization results.
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Figure 4.7: Maximum error as a Function of h. The blue line shows error when using

the corrected edge weight definitions, while the purple line shows error using the un-

corrected equations. The number of discretization points is set to 20
h

, thus modeling a

single edge image of fixed width, sampled at a higher or lower resolution. Otherwise,

the parameters are fixed at k = .6, K = .3, and ε = .005. The corrected weights show

significant improvement over the uncorrected weights for coarse discretizations, but, as

h becomes small, the corrected weights converge towards the continuous definitions,

and, thus, the error functions also converge. Note that the error does not approach

0. For any real image, some base reconstruction error is always expected, given the

infinite width is condition assumed during the weight function derivations.
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Figure 4.8: Discrete Reconstruction (Uncorrected). Sharp edge case, k = 1, K = .3,

h= 2, ε = .005, and m = 20. The ground truth, defined by esig(kx), is shown in blue,

while the regularization result u is shown in green.
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Weight Functions w1(x) and w0(x)

-20 -10 0 10
x

0.2

0.4

0.6

0.8

1.0
Reconstruction Error

-10 0 10
x

0.0001

0.0002

0.0003

0.0004

0.0005

Reconstruction vs. Ground Truth

-20 -10 0 10
x

-1.0

-0.5

0.0

0.5

1.0

Figure 4.9: Discrete Reconstruction (Corrected). Sharp edge case, k = 1, K = .3, h= 2,

ε = .005, m = 20. The ground truth, defined by esig(kx), is shown in blue, while the

regularization result u is shown in green.
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Weight Functions w1(x) and w0(x)
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Figure 4.10: Discrete Reconstruction (Uncorrected). Soft edge case, k = 0.1, K = .3,

h = 2.5, ε = .01, m = 20. The ground truth, defined by esig(kx), is shown in blue,

while the regularization result u is shown in green. In the weight function plot, the

values di have been scaled by dividing through by the minimum value of di (unlike in

the prior plots, in which di is scaled according to its maximum value).
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Figure 4.11: Discrete Reconstruction (Corrected). Soft edge case, k = 0.1, K = .3,

h = 2.5, ε = .01, m = 20. The ground truth, defined by esig(kx), is shown in blue,

while the regularization result u is shown in green. Observe that most noticeable differ-

ence between the weight functions in the corrected and uncorrected cases is the small

increase in the edge-crossing smoothness weight g0. This minor change, however, leads

to more than an order of magnitude improvement in the accuracy of the regularization

result.
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Figure 4.12: Maximum error as a Function of k. The blue line shows error with m= 50,

the purple line shows error with m= 20. The yellow line marks k = K . Otherwise, the

parameters used are fixed at h= 1
2.5

, ε= .005.

result.

One less intuitive result discovered while investigating the relationships between

the reconstruction parameters is shown in Figure 4.13. If the sharp edge definitions

are applied in the case of soft edges, and vice versa, the reconstruction error in the

single edge case reliably decreases. When k is outside of its intended domain, the

weight function definitions tend to result in extremely large terms (or in the case of

the soft edge functions, negative weighting terms with large absolute value). However,

while these large values do make the weights unsuitable for generalization to the two

dimensional case, they appear to lead to improved reconstruction accuracy in the one

dimensional case.

4.4.2 Two-Dimensional Reconstruction Results

Quantifying the success or failure of edge reconstructions in the one dimensional case

is straightforward, as the model curve provides a clear standard for correct behavior.

However, when the regularization is generalized to the two dimensional, multiple edge

case, there is no longer a clear ground truth.

Figure 4.17 shows a visualization of the intermediate data used when performing

a regularization based on traced vector data. Notice that the weight function images
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Figure 4.13: Maximum error as a Function of k. The blue line shows error when using

the hard edge weight definitions, while the purple line shows error with using the soft

edge definitions. The yellow line marks k = K . Otherwise, the parameters used are

fixed at m = 50, h = 1
2.5

, ε = .005. Notice that the errors are exactly the opposite of

what would be expected. The soft edge formulas have lower errors when applied to

the hard edge cases, and vice versa.
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there are many strange shapes and sharp creases inside the regions bounded by the

curve data. However, despite this, the only creases or edges apparent in the regulariza-

tion result are those that occur at region boundaries.

Significance of the K Value

To better understand the tradeoffs implied by the K parameter, I have generated a series

of results using a simple three edge test case, described in Figure 4.14. As demonstrated

in Figure 4.15, smaller K imply a higher degree of smoothness across the “seams”

between different Voronoi regions. Thus a low K is desirable. However, there are

several negative impacts of choosing a very small K . One is that small K lead to wide,

exponentially increasing weighting values near edges. Thus the linear solver requires

more iterations to reach convergence. The other drawback of using very small K is

that all pixels on the boundary of a soft edge’s Voronoi region will often snap to the

luminance value in the neighboring region. At high resolutions this is rarely leads to

noticeable artifacts, but at lower resolutions it leads to a clear nonlinearity over what

should be a smooth edge transition, as shown in Figure 4.16.

4.4.3 Comparison to Variable Width Blurs

The edge-only image representations used by Orzan et al. [52] and Elder are, in several

important ways, very different from the representation used in my own system [20].
The largest of these differences is that I record only a single luminance value per region,

while the other two systems store two luminance samples at each edge point. Thus,

those systems require an initial reconstruction of a piecewise smooth image, which is

achieved by treating the color samples at each edge as fixed points, and then solving

Laplace’s equation to find a smooth interpolating function for those values. This is

quite different than the luminance reconstruction used by my own system, which gen-

erates an initial piecewise constant image using the connected components algorithms

described in Section 3.4.1.

However, as a second pass, both Elder and Orzan et al.’s systems generate a set of

blur widths defined at every point of the image. These widths are then used to guide

a varying width blur. And in the case of a single edge image, the result of blurring will

be that the transition between regions is perfectly modeled by the error function.

As explained in Section 4.6, the exponential sigmoid and the error function are sim-

ilar curves, and it is possible to convert my sharpness samples k to σ values associated

with an error function. Thus, Elder’s blurring method can be applied in place of the

regularization methods given in this chapter.
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k=0.2

k=∞

k=0.6

Boundary Lines and Target Image Boundary Line Voronoi Diagram

Figure 4.14: Specification for a 3 edge test case. This case is designed to study the im-

pacts of the two dimensional generalization of the regularization problem. The image

contains one smooth edge represented by the yellow k = .2 boundary, and one sharper

edge, the orange k = .6 boundary. The three quantization bins represented in this im-

age are b = (.2, .61, .95). Boundaries between regions with non-adjacent target values

always correspond to the “infinitely sharp” special case, and such a boundary occurs

along the red line. Artifacts are most likely to occur when the weight function defini-

tion switches from one k value to another; such transitions occur at the boundaries of

the Voronoi diagram, shown left.
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Figure 4.15: Artifacts caused by the choice of K .
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Figure 4.16: One dimensional samples from the three edge test case. The blue and pur-

ple lines are sampled from the low resolution K = .3 reconstruction result, as shown.

The yellow line is taken from the K = .03 case, and uses the same sample locations

as the purple line. Note the sharp discontinuity introduced when crossing the region

boundary, in the K = .03 case.

In order to define blur widths at each point in the image, Elder solves a Laplace

equation using the sampled blur widths as boundary conditions. Solving the Laplace

equation requires a solving a sparse linear system much like the one used by my own

anisotropic regularization method. Thus, using blurring for edge reconstruction is sig-

nificantly slower than using anisotropic regularization, as it requires an expensive vary-

ing width blur operation, in addition to the already expensive linear solution required

by either method.

However, as shown in Figures 4.18 and 4.19, using blurring to model soft transitions

leads to a less accurate reconstruction of the shape and lighting information encoded

in the sharpness data. Solving a Laplace equation in order to define a blur width at

every point in the image does ensure that the blur result is free of crease or seam

artifacts. However, it also implies that the smoothness of the result at any point will be

influenced by the values stored at many neighboring edge points, not just the closest

edge. I hypothesize that it this “blurring of the blur data” that causes Elder’s approach

to edge reconstruction to lead to relatively poor results, when applied in the context of

my own system.
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Figure 4.17: Data generated during the reconstruction process.
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Reconstruction using Blurring Reconstruction using Regularization

Blur Widths Source Stylization

Figure 4.18: Comparison of varying width blurring and anisotropic regularization. The

blur widths generated by solving Laplace’s equation for each connected component are

shown in the green image. Brighter pixels correspond to larger blur widths. The source

stylization is the soft quantized image generated as per chapter 2.
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Figure 4.19: Reconstruction Comparison (detail). Notice that while the blur width data

is smooth inside each connected component, the anisotropic weight functions show

relatively complex features, which correspond to the Voronoi tessellations of the edge

set, as well as the nonlinear weight function definitions. This increased complexity

appears to lead to a more accurate reconstruction of the shading present in the source

stylization.
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4.5 Post Smoothing

The image reconstructions generated by the regularization process tend to accurately

reproduce any smooth shading in the source stylized image. However, hard edges often

suffer from “jaggies”, aliasing artifacts that result from the conversion of the boundary

data to a discrete image grid. One simple way to eliminate such artifacts is to recon-

struct images at a much higher resolution than they will be displayed, and then down-

sample the results, taking advantage of the resolution independent nature of the data.

However, I have found it both more computationally efficient and more effective to

apply a slight smoothing effect to the result. Specifically, I apply coherence enhancing

anisotropic diffusion, as defined by Weickert [75], using the coherence biasing param-

eter α = .001, and scalespace parameter t = 3.6. As shown in Figure 4.20, in addition

to removing aliasing artifacts, coherence enhancing diffusion biases the results towards

images containing smooth, connected lines.

4.6 Sigmoid Function Conversion

The anisotropic regularization definitions developed in Section 4.2 assume that the soft

quantization used to generate the source image is based on the exponential sigmoid

curve. However, with a slight adjustment, it can be used to reconstruct soft quantized

images generated using arbitrary sigmoid curves. Most soft quantization-based cartoon

filters developed in the past have defined sig(x) = tanh(x), thus this sigmoid curve

conversion step allows output from those systems to be used as source images.

Observe that the sigmoid curve tanh(x) is qualitatively very similar to esig(1.4x).
In fact, the maximum difference between those curves is less than 0.053. This suggests

that a soft quantization p(I , S) that uses sig(x) = tanh(x) would produce very similar

results to the soft quantization p(I , 1.4S) with sig(x) = esig(x).
Rather than experiment with candidate c values by hand, I have used numerical

optimization to find,

ĉ :=min
c

∫ ∞

−∞
(sig(x)− esig(cx))2d x . (4.28)

In the case of sig(x) = tanh(x), this optimization yields ĉ ≈ 1.40236. In the case of

sig(x) = erf(x), it yields ĉ ≈ 1.69361.

This suggests a general recipe for creating anisotropic regularization terms corre-

sponding to arbitrary sig(x) definitions. First, solve equation (4.28) to find a mul-

tiplicative constant that makes the exponential sigmoid as similar as possible to the
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Before Smoothing After Smoothing

Figure 4.20: Comparison of the raw regularization result, and the result after post

smoothing with coherence enhancing anisotropic diffusion. In several places in this ex-

ample, reconstructing the stored gradient information faithfully has led to undesirable

smudging near the mouth and collar. Notice that, in addition to eliminating aliasing

artifacts, coherence enhancing diffusion replaces those smudges with connected lines.

The unsmoothed image shown here is a detail of the regularization result shown in

Figure 4.17.
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Figure 4.21: Comparison of sigmoid curves with their optimal approximation by an

exponential sigmoid curve. The scaling factor ĉ is defined separately for each graph,

according to equation (4.28). Notice that while a good approximation is possible in

the case of the hyperbolic tangent, the error function does not allow as close a fit.
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sigmoid used in soft quantization. Scale the sharpness image by the resulting ĉ, and

then proceed as in the case for reconstructing an esig-based soft quantization. While

the scaling step does introduce some additional error into the reconstruction, this error

will often be much smaller than errors introduced as a result of deviations of the source

data from the piecewise linear ideal. As shown in Figure 4.21, tanh is similar enough

to the approximating esig that converting from a tanh-based soft quantization to an

esig-based representation should introduce negligible error. Conversion errors may be

slightly more noticeable in the case of a soft quantization based on the error function,

however.



5 Results and Examples

This example file is dedicated to Io, the Greek goddess of input and
output.

– Donald Ervin Knuth

5.1 Computational Costs

The algorithms used for image space stylization, vector tracing, and image reconstruc-

tion are implemented in a mixture of Matlab and C. The dominant cost of image styl-

ization and tracing is the calculation of the flow-guided blurs. These blurs are imple-

mented in C, and run on a CPU. They can require more than a second of processing time

per image. However, studies performed by Kyprianidis and Döllner demonstrate that

flow-guided blurs can be performed at much greater speeds using GPU processing [39].
Given target resolutions in the megapixel range, image reconstruction can take

several seconds, the overwhelming majority of which is spent performing the linear

solve. As is the case with the stylization step, the costs of image reconstruction could

likely be dramatically reduced by using an iterative linear solver implemented in CUDA

or OpenCL.

5.2 Memory Efficiency

The goal of this work is to create simple, stylized images in which the key visual content

of a source image has been clarified, rather than discarded. Given an input photograph,

and the resulting vector image, the degree to which the results are successful in this

goal is difficult to quantify.

For example, consider a system in which, for any input photograph, the “vector styl-

ization” returned is always an arrangement of two black boxes on a white background.

From a memory efficiency standpoint, it is clear that a dramatic simplification has been

achieved. However, such a system could not reasonably claim to “preserve and clar-

ify” the key visual content of the photograph. But, while quantifying the degree to

which the stylizations are “good abstractions” is difficult, and, perhaps necessarily sub-
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jective, identifying cases in which the vectorizations fail to improve memory efficiency

is straightforward.

5.2.1 Simplification Relative to the Input Photograph

If the vector data, when stored to disk, has a higher encoding cost than a high fidelity

compression of the input photograph, then the claim that the vector stylization is an

effective simplification is suspect. For example, even if the vector image appears visually

simpler than the source photograph, if the initial photograph can be encoded with a

high degree of visual fidelity using 7kB, then any vector result that requires more than

7kB of storage space has actually made the source data more complex than it was in its

original form.

The resolution independent nature of the data makes direct comparisons of en-

coding efficiency impossible. Vector data can be used to reconstruct smooth images

at arbitrarily large sizes, thus storage efficiency per-pixel of output data is undefined.

However, per-pixel efficiency relative to the input data is defined. Additionally, it is ex-

pected that vector encoding costs will increase as the complexity of the scene increases,

thus it is reasonable to assume that even for a maximally efficient vector format, the

resolution of the input photograph will be correlated with encoding costs.

For a collection of example vector stylizations, I have created compressed versions

of the input photographs having similar file sizes. Cases in which the compressed

images suffer from minimal visual distortions must be considered failure cases for the

algorithm, in the sense that the generated vector data does not appear to represent a

true simplification of the input photograph.

When the standard for simplification is set by JPEG image compression, all the

vector images easily pass the data simplification test. In this case, is clear that encoding

the initial photograph in a similar number of bits is not possible without introducing

extreme visual artifacts.

Using JPEG2000 compression results in less extreme visual errors, but very notice-

able artifacts still often result when images are compressed into file sizes that match

those achieved by the vector stylization. See for example Figure 5.1. I also include

some memory efficiency tests relative to the DLI research codec. As of 2009, DLI

holds several records for minimum MSE compression of image data at very small file

sizes [43].
Comparing the results of standard JPEG compression to either the DLI or JPEG2000

results should make it clear how dramatically image compression technology has im-

proved over the last twenty years. In comparison to the highly sophisticated techniques
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Source Image JPEG2000 at 5.9kB

DLI at 5.3kB Vector at 5.8kB

Figure 5.1: Memory Efficiency Comparisons. This is an example of a vector result that

represents a successful simplification of the source photograph. For this test case, the

DLI research codec significantly outperforms JPEG2000, preserving many more fine

details, even when forced to encode the source photograph at less than 6kB. Compared

to the compression results, the vector stylization is remarkable for having discarded

nearly all background information, while better preserving important visual details,

such as the locations of the eyes and noses. Also note the shading of the jacket worn

by the student on the right; here the vector result does an excellent job of indicating

the shape of the folded cloth, while discarding the high frequency texturing present in

the original.
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Source Image JPEG at 20kB

JPEG2000 at 6kB Vector at 6kB

Figure 5.2: Memory Efficiency Comparisons. This is an example of a vector result

that fails to provide a useful simplification, as measured relative to a state of the art

lossy compression codec. While JPEG compression is incapable of representing the

source image accurately at 20kB or less, the more efficient wavelet encodings used by

JPEG2000 are capable of representing the source quite faithfully, even when limited to

the number of bits used by the vector stylization.
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used by a system like DLI, the vector encoding method presented here is quite imma-

ture, and there is likely significant room for improvement. Even so, the encoding costs

for simplified vector images are typically less than 7kB per image. And at such ex-

tremely small file sizes, even the DLI codec frequently results in noticeable artifacts;

thus demonstrating that it is often reasonable to consider the vector results effective

simplifications of the input photographs. For examples, see Figures 5.1, 5.3, and 5.4.

5.2.2 Simplification Relative to the Image Space Stylization

While the image space stylization step is designed to anticipate subsequent vectoriza-

tion, the translation to a vector format will typically cause noticeable changes in the

image content. Given my goals, such changes are not necessarily problematic. The aim

of this research is to create effective abstractions of input photographs, and depending

on the sorts of changes that exist between the image space stylization and the vector

data, either one might be considered more successful in that aim. For example, the

output of the Ardeco system is one example of a case in which the “artifacts” of vector-

ization can actually create attractive artistic effects [42]. The loss of texturing shown

in Figure 4.19 acts to emphasize object shading, and is thus arguably a case in which

the vector result is a more effective abstraction than the source stylization.

However, in many of the cases shown in this dissertation, the vector abstractions

lose some important visual content relative to the source stylization. For example, the

outline of an iris may disappear, or a small but important highlight may be eliminated.

Figure 5.4 contains a good example of the iris simplification problem. In such cases,

if conventional image compression can be used to store the stylized image at the same

filesize as the vector data, we must conclude that the vectorization step of the pipeline

is sacrificing visually important information unnecessarily.

Thus, I compare the vector renderings not only to lossy compressions of the source

data, but, also, to lossy compressions of the image space stylizations from which the

vector data is derived. Similar to the comparisons against compressions of the input

photographs, the results often demonstrate that the vector encodings do occupy a level

of memory efficiency at which the source stylization cannot be stored with good visual

fidelity. For an example comparison, see Figure 5.3

5.3 Stylization Failure Cases

There are several cases in which the algorithms fail to create simple, curve-based repre-

sentations of an initial image. If the stylization filter does not create a useful abstraction
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Source DLI at 4.3kB Stylization DLI at 4.3kB Vector at 4.3kB

Figure 5.3: Memory Efficiency Comparisons. This figure compares the vector data to

both a compressed version of the input photograph, and also to the compression of

the image-space stylization from which the vector data is derived. Notice that there

are fewer visual artifacts in the compressed stylization than in the compressed input

photograph, which suggests that the DLI compression is able to take advantage of

many of the visual simplifications achieved by the stylization step. However, the lines

in the vector result are significantly sharper and smoother than those in the compressed

stylization. (Image source: http://www.flickr.com/photos/bodoggirl.)

http://www.flickr.com/photos/bodoggirl
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Source DLI at 2.6kB Uncompressed Stylization Vector at 2.1kB

Figure 5.4: In the case of this historical photograph, we begin to pass the limit at which

state of the art compression is capable of storing the source image. DLI v1.3, set for

maximum compression, creates a 2.6kB file. Meanwhile, the vector stylization of the

same data requires 2.1kB of storage space, a 20% more efficient encoding. This test is

also a case in which the vector stylization noticeably loses several visually important

features that are present in the image-based stylization of the source. However, such

losses of information are likely inevitable, given the extremely small file sizes being

generated.

of the initial image, then the vectorization will also fail to be useful. Such failure cases

often appear to be over-blurred or over simplified. Additionally, applying aggressive

line simplification and region elimination settings can lead to significant shape distor-

tions in the vectorized results. While errors of this last form can be fixed by using more

conservative line simplification settings, doing so will increase curve complexity, lead-

ing to results which fail in the goal of creating data that is a simplification of the input,

in the sense of memory efficiency.



6 Conclusions

Wow, look at how much we got done in the last three weeks!
We should have Siggraph every month!

– Jack Tumblin, January, 2005

The results of this research make it possible to revisit the fundamental question of

how visual information can best be extracted from photographs. Edward’s advice that

artists must learn to draw spaces and shapes, rather than semantically loaded objects,

may well reflect a deeper truth about the nature of images [19]. In the tradition of

Leclerc [41], I would hypothesize that the most efficient possible representation of

the core visual content of most natural images is as a vector tracing of patterns of

shadows and highlights; augmented with a small amount of edge sharpness data. This

vector efficiency hypothesis is sufficiently vague that it would be difficult to conclusively

confirm or deny. Even so, given the results shown in Chapter 5, I suspect that there is

a sense in which the hypothesis is true.

In a similar vein, it is interesting to note that the very low file size results created by

cutting edge compression algorithms often contain artifacts not unlike the results of an

artistic stylization. For example, compare the artifacts in the DLI compression shown in

Figure 5.1 to the brush stroke stylizations created by Hertzmann [31]. The similarities

suggest that, at extremely low bitrates, the most effective compression methods may

be those that approach increasingly stylized images.

Developing a general purpose compression format in which images become increas-

ingly stylized would certainly be a major project. However, it appears likely that cre-

ating such a format is possible, requiring relatively modest improvements over state of

the art technologies in computer graphics, vision, and signal processing. For example,

given further refinements of my tracing and encoding methods, the vector stylizations

for single subject photographs could likely approach filesizes of 1kB or less, putting

them comfortably outside the range at which visually accurate image compression is

currently possible. And if such a compression format could be created, it would be a

useful tool for web designers, as it would improve the visual quality and responsiveness

of pages viewed under low bandwidth conditions.
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The simplicity of the curve data also suggests that the vectorization system could

prove useful as a tool for artists. For example, one of the drawbacks of diffusion curves,

as discussed in Orzan et al., is that the number and complexity of the edges returned

by the the tracing method makes the data difficult for artists to manipulate [52]. For

this reason, most of the diffusion curve results shown in that paper are generated from

scratch by an artist, even in cases where the vector image is based on a reference

photograph. The curves traced by my own joint stylization/vectorization framework

are simpler and thus likely easier to manipulate. As both my vector format and diffusion

curves are variations on Elder’s edge only format [20], converting the data to the

diffusion curves format should be relatively straightforward.

Finally, observe that the image space stylizations described in Chapter 2 are an

evolution of the stylization methods used by Kyprianidis [39], which have proven to

yield good results on video. Thus, it is likely that the vectorization system could be

extended to produce visually abstracted, memory efficient spacio-temporal tracings of

video data. However, developing such an extension is nontrivial, given the need to

maintain temporal coherence in any vector results.
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