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1 Equations

To restate the contents of the notes in a way that more closely reflects my own
implementation:

Consider the case of modeling a single dimensional first order PDE:

x(t + ∆t) = x(t) + ẋ∆t

ẋ(t + ∆t) = ẋ(t)

We assume that there will be some noise in the actual process, as well as some
noise in our ability to measure the state process. More exactly, we introduce wi

and vi for each time step, which represent the process noise and measurement
noise respectively, and which are both assumed to be drawn from a normal
distribution. Let Q be the covariance matrix for w, and R the covariance
matrix for v. Let zi be the measured value of xi. Now we have an updated set
of equations:

xi+1 = xi + ẋi∆t + [wi]1

ẋi+1 = ẋ(t) + [wi]2

zi = xi + vi

We express these relations in matrix form like so:

S =

[

x

ẋ

]

, H =

[

1 ∆t

0 1

]

, F =
[

1 0
]

Si+1 = HiSi + wi

zi = FiSi + vi

More complex systems can be represented by the same matrix equations
given different matrix definitions. For example, for 2 dimensional linear motion:

Si =









xi

yi

ẋi

ẏi









, H =









1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1









, F =

[

1 0 0 0
0 1 0 0

]

1



The algorithm proceeds as follows:
We start with an initial guess of the position and velocity, as well as the

expected error of our current guess, represented as a covariance matrix P.
First we calculate a predicted state for the next iteration using the predicted

state at the last iteration:
Ŝi|i−1 = HŜi−1

Then we predict the state covariance of the current iteration

P̂i|i−1 = HPi−1H
T + Q

Now we take steps to correct our predictions by comparing them to the
known measurements.

We start by taking note of the measurement residual and the covariance
residual:

ỹi = zi − FŜi|i−1

Ũi = FiPi|i−1F
T

i
+ R

We then define this curious creature called the “Kalman Gain”

Ki = Pi|i−1F
T

i
Ũ−1

i

Using the Kalman Gain, we correct our predictions for the state and state
covariance:

Ŝi = Ŝi|i−1 + Kiỹi

P̂i = (I−KiFi)Pi|i−1

2 Data

I’ve tried a couple different filter configurations. All of our tests start with the
correct ground truth state. Test case 1 uses a very low initial expected error,
a high measurement error, and no process error (Fig. 1). Test case 2 uses
moderate initial expected error and measurement error, and no process error
(Fig. 2). Test case 3 uses moderate initial expected error, measurement error,
and process error (Fig. 3).

Test case 1 is the most “correct” configuration (as we are starting with
ground truth, updating while ignoring the observation data completely would
produce perfect results). However, it also produces poor results. I imagine that
this is because P decreases throughout the life of the filter, and thus after the
large initial errors have pushed the state vector a little off course, P has become
so small that K can exert very little correcting influence on the state vector.

Test case 2, with the flexibility implied by its larger P, performs much better.
Test case 3 introduces the expectation of processes error into the model (Q

is nonzero). This has the result of making the filtered results much more likely
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to follow the measured behavior, rather than converging to a line. And this
makes sense, because with this configuration, the algorithm believes that the
true state behavior is likely to deviate from the linear motion model. Thus,
insomuch as the observed data is not linear, the algorithm imagines that part of
that nonlinearity is due to the fact that the actual object motion is nonlinear.

2.1 Disclaimer

As the ground truth data given was for 2D linear motion, I have only used a
first order motion model in these experiments (for a study of the second order
results to be interesting – I would need to generate my own noisy second order
motion data, which I haven’t gotten around to doing).
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Figure 1: Test case 1: P0 = diag(0.1), R = diag(30), Q = 0. Observations are
in blue, ground truth in black, Kalman filter results in red.
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Figure 2: Test case 2: P0 = diag(10), R = diag(10), Q = 0. Observations are
in blue, ground truth in black, Kalman filter results in red.

4



0 10 20 30

0

100

200

300

x-positions

0 10 20 30

0

100

200

300

y-positions

Figure 3: Test case 3: P0 = diag(10), R = diag(10), Q = diag(10). Observa-
tions are in blue, ground truth in black, Kalman filter results in red.
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