XDoG: An eXtended dierence-of-Gaussians compendium
including advanced image stylization

Holger Winneniller?, Jan Eric Kyprianidi&, Sven C. Olsen

2Adobe Systems, Inc.
PHasso-Plattner-Institut

Abstract

Recent extensions to the standarfietence-of-Gaussians (DoG) edge detection operator hadened it less susceptible to noise
and increased its aesthetic appeal. Despite these adyaimeaschnical subtleties and stylistic potential of the@aperator are
often overlooked. This papeffers a detailed review of the DoG operator and its extensiuighlighting useful relationships to
other image processing techniques. It also presents mawnyasalts spanning a variety of styles, including pencédihg, pastel,
hatching, and woodcut. Additionally, we demonstrate a eaofysubtle artistic £ects, such as ghosting, speed-lines, negative
edges, indication, and abstraction, all of which are ole@insing an extended DoG formulation, or slight modificaitirereof. In

all cases, the visual quality achieved by the extended DagBadr is comparable to or better than those of systemsatedito a
single style.
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1. Introduction DoG operator in sfiicient detail to reveal its significant poten-
tial for stylistic and practical applications.

It is well established thaedges(i. e., significant intensity To address this problem, our paper makes the following con-
changes within a spatial neighborhood) play an importalet ro tinutions:

in human and computer visiod,[2, 3], and the computer vi-
sion community has contributed many fundamental results irmechnical. We provide a detailed background of the DoG'’s the-
the theory of edge detectiod,[5]. Given the importance of ory and composition. We use many visual examples to tie these
edges in popular art styles, such as line drawings or sketchefundamentals to intuitions about the creative scope of thé& D
many stylization systems employ an edge detector as part @perator, with specific emphasis on thieets of pushing its
their processing pipeline. The Canny edge detedis[ar-  parameter values beyond their traditional ranges gec.
guably the most popular such operator, due to its widespread
use in the field of computer vision. However, its visual ceara Effects. We demonstrate a number of subtle elements-of-style
teristics (lines whose thickness are independent of edgle)sc (effects) achievable with the extended DoG operator. We
are optimized for computer vision applications, and adapti demonstrate ghosting, speed-lines, negative edgesatiatic
them to the task of artistic stylization requires significaost-  and abstraction in Se8.and explain how these arise from the
processing. definitions given in Se.
Thedifference-of-Gaussiani®oG) operator has been shown
to yield aesthetically pleasing edge lines without pOSt_Sters.We show many new DoG stylization results, most of
processing, particularly when synthesizing line drawiags which have previously been generated using complex, dedi-
cartoons §, 7, 8, 9]. Strictly speaking, the DoG is not an edge cated systems, but which are achieved in this paper withgn th
detector, and it cannot be directly compared to standard confOntinuous parameter space of a single operator. Thesksresu
puter vision techniques, such as the Canny edge detégjtor [ SPan traditional styles such as pencil-shading, pastetipgi
The two filters are related, however, as illustrated by B{g:  hatching, and two tone black-and-white images such as wood-
e). cuts. The quality of most of our results is comparable to or
Some previous works in artistic thresholdiréy 10] employ ~ better than those of the dedicated systems, yet easier sted fa
the DoG operator as part of a complex processing pipelind® compute. A small sample of these styles is shown in Fig.
though an equivalentfiect can be achieved with a simple ex-
tension to the DoG operator itself (Sekl). We believe this
situation arises because no previous work has investighted

This paper represents an extended journal version of Win-
nendller's NPAR 2011 paper][l]. Specifically, we signifi-
cantly expand the background section to better explain ke o
gin of the DoG operator and its relations to the broader the-

U This is the authors’ version of the work. The definitive version wasipbet inCom- o_ry of edges and Edge dete(_:tors. We §1|SO expand our discus-
putersé- Graphics Vol. 36, Issue 6, 2012, pp. 720-753. db.1016j.cag.2012.03.004 sion of DoG operator extensions, allowing the reader to make
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(a) Source (b) XDoG (c) XDoG Thresholding (d) XDoG-Hatching
Figure 1:Style variations‘All of these images are produced based on slight modificatmaslifference-of-Gaussiangperator.sourceo Andrew Calder

a more informed decision when choosing between DoG varinon-maximum suppression scheme was applied to detect local
ants and related edge detectors. We present a simple,ildgers maxima and thereby localize edges. Finally, hysteresesthr
re-parameterization oflfl], which offers a more intuitive map- olding enhanced the coherence of detected edge lines and re-
ping to known image-processing techniques (blurring, @  duced false positives. These attributes of the Canny detect
ing, etc.). We hope this re-parameterization will help erado  along with its widespread availability, have made it onehef t
better understand the parameter space, and to more easily genost popular edge detectors, particularly for computeiomis
erate results similar to those presented in this paper. ¥éigds  applications. However, from an artistic point of view, the r
several tricks-of-the-trade particularly suitable for %@ post-  sults of the Canny detector are rather unattractive, as ean b
processing, which can further improve the quality of theiltss  seen in Fig2. Therefore, techniques employing it for artistic
Finally, we add more details about a stylistic variant of Weoo purpose typically perform additional processing, suchcases
cut, for which few prior works exist, but which can be genedat space analysislB] or curve fitting [L4].
conveniently with the XDoG operator.

2.2. Laplacian-Based Edge Detection

Even before Canny suggested using non-maxima suppres-
sion to localize edges, Marr and Hildret?] proposed to sim-

We believe the DoG operator has been under-utilized in stylllary limit the results of an edge detector by identifyingra-
ization applications because its relationship to classidge  C'0SSings in the second derivative (F#). While the relation-

detectors is not widely understood. We therefore begin by exShiP between zero crossings of the second derivative aadjoc
plaining how shortcomings in early, primitive edge detesto Maximal gradients is straightforward in the one-dimenaion
lead to Marr and Hildreth’s7] use of the DoG in their own CaS€, generalizing t.he_relatlonshlp .to two (.jlme_nS|ons.|requ
edge detection system. We then present noteworthy connethat the second denyanve be taken in the.dlrectlon p_enpand
tions to other disciplines like physics and biology, befspen- lar to the zero-crossing. Unfortunately, this presentsiekeim-

marizing recent applications of the DoG in the domain of imag &"d-€9g problem, as we need to compute the second derivative
stylization. in a direction that is yet to be determined by the result of the

computation. Marr and Hildreth suggested circumventing th
problem by using théaplacian

2. Background

2.1. Gradient-Based Edge Detection
The first approaches to edge detection focused on idergifyin , 0 &

pixels associated with high magnitude image gradientsnh si 2 " a2
ple image gradient approximation would be generated by con- o ) i
volving the image with a small kernel, such as the Prewitt and1OWeVver, as a second-order derivative, the Laplacian isiyiig
Sobel filter masks12]. Gradients having a magnitude above SENsitive to noise. As mentioned above, noise may be conve-
a certain threshold would be identified as “edges”. The smalfi€ntly eliminated by pre-blurring with a low-pass filter. fik
filter mask made these early edge detectors higfiigient, but (€7 With desirable frequency and scale-space properiglsg
also caused them to be very sensitive to noise. Thus, befof@® Gaussian smoothing filter
approximating the gradients, the image would typically be p 1 X2
blurred to remove high-frequencies, thus reducing theeniois G,(X) = 5 exp( - —2) (2)
the results (Fig2(b)). 2no 20

The Canny edge detectds][provided several improvements Here, x refers to a two-dimensional coordinate, andepre-
over simple thresholding of the gradient magnitude. Sningth sents the standard deviation of the Gaussian distributidghd
and diferentiation were combined into a single operator and apatial domain (which is inversely proportional to the ofit-
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(e) Thresholded DoG (f) XDoG (9) Flow-XDoG

Figure 2: Comparison of popular edge detectors angiadence-of-Gaussians based stylizatidb-e) For better comparison, all parameters are hand-turred fo
optimal quality and mutual visual similarity; (f) Base paramstas (e), but demonstrating XDoG tonemapping; (g) flow-basesian of (f). sourceomaryse casol

frequency of a low-pass filter in the frequency domain). 8inc
the Laplacian commutes with convolution, for an iméaggefol-
lows that

VAGy # 1) = (V2G,) * |,
wherex denotes the convolution operator. Thus, instead of ap

plying smoothing and dierentiation in sequence, both opera-
tions can be combined into a Single operaWé’GU, which is (a) Smooth step edge (b) First derivative (c) Second derivative
known as theLaplacian of GaussiarfLoG). To extract edges  Figyre 3:Edge localizationin the one-dimensional case, searching for a maxi-
from a LoG filtered image, the local neighborhood of a pixelmum in the first derivative is equivalent to finding a zero-sing in the second
is typically examined to detect the zero-crossings. Howeage  derivative.
demonstrated in Fig(d), this again results in artistically ques-
tionable 1-2 pixel-wide edges similar to those producediay t change inr, corresponding to the fierential quotient:
Canny edge detector. Nevertheless, the output of the LoG ope
ator serves as a key component in the creation of the results i lim M - & = o V3G.
the bottom row of Fig2. The critical diference is that, rather o1 koo do
than searching for zero crossings, thresholding is appdi¢le ~ Thus, we see that thdifference-of-Gaussiarfgter
LoG response. Before explaining this in detail, we first désc P
a fast approximation of the LoG, which is important for pract Dok(¥) = Go(¥) = Grr(¥) » ~(k = 1) 0" V°G (2)
cal implementations and used throughout the rest of therpape gpproximates the negated scale-normalized Laplaciandas d
fined by Lindeberg15]) up to a constant positive factor. The

2.3. Difference-of-Gaussians (DoG) scale-normalization is a useful property of the DoG, sihedi

A limitation of the LoG is that it is computationally inef- sures that the DoG response doesn’'t change when modifying
ficient, since it is not separable. For this reason, Marr andhe scales. Threshold values, for instance, can therefore be
Hildreth [2, App. B] proposed to approximate the LoG by the defined independent of scale. In this paper, we follow the-com
differences of two Gaussian functions (DoG), which are themmonly cited suggestion by Marr and Hildret®, [App. B], to
selves separable. This approximation may be verified by-lookusek = 1.6 as a good engineering tradé-between accurate
ing at the diference-of-Gaussians with infinitesimally small approximation and adequate sensitivity.
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 Sumound== Copter== DoG== £ Center In Young's study, theeceptive fieldof a cortical cell is mod-

:% Signal R eled as an antagonistic system in which the stimulation ef th
§ R Frequency ~ central cell (blue) is inhibited by the simultaneous excitation
3 gurroung of its surroundingneighbors (green). The combined response
g curve (red) can be modeled by subtracting two Gaussiari-distr

bution functions whose standard deviations are propatitm

DoG
A ; \\ {UQ S the spatial extent of the central cell and its receptive fig]d
Position .

(a) Spatial Plot (b) Frequency Plots 2.4. Extended Dfierence-of-Gaussians (XDoG)

Figure 4:DoG Composition{a) A widersurroundGaussian is subtracted from Comparing the two rows of images in Figit becomes ev-
a narrowercenterGaussian to produce the DoG trace; (b) Two low-pass flltersldent that edgeietectlon useful in computer vision, is quallta-
of different cut-& frequency combine to produce a band-pass filter.

tively quite diferent from edgenhancemenfor stylistic and

Convolved DoG == Threshold == Convolved DoG == Threshold = artistic applications. While the former is primarily conced
I Input I . Input I with the exact localization and extent of an edge, the laster
|-———-| more appropriately focused on the weight (thickness) and-st
A\ ture (shape) of an edge.
/ “ If we wish to generate a two-tone edge image we essentially
\V \/[ \/ \/ have two choices. Either we start with a white image and make
n Output n - — certain image regions darker (i.e., set them to black) ortewt s

with a black image and perform highlighting (i.e., set those
@{r=1e<0 (b){r=1¢>0 gions to white). Because it is a band-pass filter, the sighef t

DoG response describes whether capturing the shape and stru
— T — ture of any nearby edges requires making each pixel darker or
brighter than most of its neighbors. This is exactly theiinfa-
M tion we need to generate an ‘edge enhancement image’. Such
W v— an image may be formally defined as a thresholding of the DoG
responseT,(Dyk * 1), where,
Output
©)r <Le>0) To(u) = {1 use 3)
Figure 5:XDoG ParametersEach subfigure shows (top) an input signal, (mid- 0 otherwise

dle) a graph of a DoG (red) convolved with the input signal atitreshold level . L .
(vellow), and (bottom) the filter response output. (a) Unbikdow threshold: ~ The parametes is used to control the sensitivity to noise and

typical edge detection. (b) Unbiased, high threshold: rieceedge detection. s illustrated in Figure$(a) ands(b). Figure2(e) demonstrates
(c) Center-bias, high threshold: Can be usedfeat luminance scaling. the dfectiveness of the approach. Despite being comparatively
simple, the result captures many important images featurés
is aesthetically pleasing.

In the context of computer vision, the word ‘edges’ is used
to refer to the thin lines formed by locally maximal gradient

Physical Interpretation.Understanding the origins of the DoG
operator and its relations to the second-order properfies o
image is instructive. However, the DoG's ability to extradge
information from images may be explained even more SImpI)P

by looking at the problem from a signal processing point-of- JI:owev;\r in thde cgntexttof 'Taq[e styllzat|0n| Ilt Itshm(t)r:e r:t:;:d
view. As mentioned above, a Gaussian filter iswa-pasdilter. 0 use the word ‘edges’ to refer to an image like the thre

That is, it allows low spatial frequencies to pass, whilerit DoCi sr:pwn n Flgﬁ(e). l:\hs tltqls p:l;\p(;ar fgcuses’ OE styhzatpn
ating or eliminating high spatial frequencies. Accordinghe applications, we will use the term "edge image’ when refigri

subtraction of two Gaussians withfidirento creates @and- :ﬁ rte_sutlkt}s like thotse n F Ig2(e-g), thptugh |ths.h0uld be noltéad i
passfilter that attenuates all frequencies between the @ut-o atin tn€ computer vision community, such images would no

frequencies of the two Gaussians (Hf). A DoG filter will tyr_Jll_(r:]allyge S"_’“d to contain ‘etd%ez’. imple thresholdi £ th
extract those image features falling within this charaster € edge Images generated by simpie thresholding ot the

s DoG are closely related to the biological models proposed
gsggiﬂzﬁ band1[e]; and such features tend to correspond toby Young and others1f]. Inspired by those models, Win-

nendller et al. [7/] generated edge images using a DoG variant
in which the strength of the inhibitoryffect of the larger Gaus-

DoGs in Neurobiology.While Rodieck [L7] was among the  gjan is allowed to vary, resulting in the following equation

first to quantitatively examine the neurophysiology of orsi

including detection of features such as edges, it was Young Dy kr(X) = Go(X) = 7 Gir(X) - (4)

[18] who found that certain retinal cells behaved exactly anal-

ogous to thecenter-surroundactivation mechanism originally That modification made it possible to achieve a much wider
proposed by Marr and Hildretl2] and illustrated in Fig4(a).  range of stylistic &ects, particularly after replacing the binary
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Source | Blurred | Scaled DoG response | DoG sharpened | | Thresholded

PDyp® Lk, Tep (Soip*d)

Figure 6: Visualizing the XDoGThe DoG response is combined with the blur result in order ¢atera sharpened image, as per EY. Thresholding yields a
two-tone result. The images in this figure are generated dlEwgguided filters, as discussed in Sectihf. Exact parameter settings are suppliedppendix A

thresholding functio,. with a continuous ramp: %é
& input
1 u>e ‘
Teo(U) = o 5
() {1 +tanHy - (U-¢)) otherwise. ®)

Taken togetherT, ,(Dy.\ - * 1) is referred to as the XDoG filter
for a given imagel. Figure 2(f) demonstrates how the base
thresholded DoG is extended as a result of the soft threfstgpld
and variable inhibition strength.

However, the XDoG is diicult to control. Increasing the [ \ A : / \
sensitivity of the filter to edges typically requires adingtr, ¢, (a) Sharpened Image (b) Two Tone Result (c) Three Tone Result
ande in concert. We can see the reason for this by deComposmﬂgure 7: Different types of luminance adjustment functiofi$ie two tone

‘H

Do k-(X) as follows: result is created using a soft thresholding function. Theeghone result is
generated by replacing soft thresholding with a smooth caproximating
Dokr(X) = Go(X) = 7 Gkr(X) ©) three value quantization.

=(1-7)-Gx(X) + 7 Dek(X)

This makes it clear that Eg4)is equivalent to a weighted aver- Obviously, the range of images that can be generated using
age of the blurred image and the standard DoG. Notice that thﬁ,¢(sa,k,p « 1) is identical to the range of images that can be
average response of the standard DoG is zero, while thesdlurr generated using the original formulation. However, reipigc
image will have the same average brightness as the input im-ith p makes it possible to control the strength of the edge
age. Thus, the average brightnes®ok - « | will decrease as  sharpening @ect without influencing any other aspects of the
T increases. However, increasings the only way to Increase fiiter, In addition,s is now measured proportionally to image
the weight of the edge emphasis lines. Thus, in order to@reaptensity, leading to anféective decoupling of the parameters.
XDoG outputs haying dierent edgg emphasis strengths butthe e sharpened image generatedSay , can be understood
same average brightness, any adjustmentriwst be coupled 5 5 digital approximation of the classical darkroom teghei
with compensating changes to the soft thresholding paemet ¢ unsharp masking To perform an unsharp mask, a photog-

¢ ands. rapher uses a negative duplication technique to creatergetlu
version of the original negative. Using that blurred negatis a
o - . mask when creating a print has tHéeet of sharpening the orig-

In order to simplify artistic control of the XDoG filter, a rap inal edges19]. The same Bect is present in Eq7J, which can
rameterization having the following properties would beick be understood as an unsharp mask of the qurréd iGagel

able: (1.) Removal of the F'gh_t paramet_er—|n?erdependericy %in which the brightness has been increased in order to compen
the previous parameterization; (2) More intuitive parameby sate for any darkening due to the mask. Figsidemonstrates

mapping to known image processing operations, such as blu{ﬁe relationship between the base DoG response, the slkearpen
ring or sharpening; (3) Invertibility, i.e., it should be gsible image, and the XDoG result '

to convert back-and-forth between the old and new parameter . . .
o A A wide range of diferent stylistic &ects can be achieved by
spaces. Fortunately, a parameterization that fulfills ehmes applying the soft thresholding functiofi., to the sharpened
uirements can be found by simply dividing E) by 7 — 1 . ¥
d - . 4 2 imageS,xp = |. Larger or smallerp control the sharpness of
resulting in an representation of the XDoG filter as an adpist o - . k .
the blackwhite transitions in the image, while controls the

image sharpening operator: level above which the adjusted luminance values will become
~ Dokp(®) white. However,T,,, is only one of many luminance adjust-
Sowp(X) = -1 Go( + P Dowlx) (7)  ments that can be applied to the sharpened image. While most
=(1+p) - Gs(X) - p-Grr(X) of the images in this paper are created using the soft thresh-

2.5. Reparameterization of the XDoG



olding function, Fig.7 demonstrates additionaffects that can
be achieved by replacing., with a more general luminance
adjustment function.

Figure23 demonstrates some parameter variations for a sin
gle source image. Image (b) sets the Gaussian variance ok
o = 0, thus the DoG result is zero and the filter implements pure Input DoG
tone-mapping. Compare this with images (c) and (d). Sharpen
ing with a largep exaggerates both the black and white edgey ... || .o, ]
present in the result (see S&c4). Images (e) and (f) demon- k "
strate howe can be adjusted to creatdigrent line-art appear- ; . ;
ances. Together, the XDoG parameterp, and ¢ enable a et e ’
range of styles andficts, as evidenced in this paper.

Appendix Alists complete settings for many of our results,
demonstrating the range over which we have found it usefufig“r.e 8:Kang et al's B] FDoG results: (Top Row) The response of an FDoG

._Ttilter is less susceptible to noise than an isotropic DoGfi{@ottom Row) The
to vary the XDoG parameters. We have found that ChOOSInfﬂoisy contour of a circle may be fused by the FDoG operatoretheincreasing
¢ close to the midtone greyvalue of the image gndear 20, coherence.
tends to lead to interesting stylizations; though someiapec
ized styles require much largervalues. The soft thresholding

steepness parametewvaries more widely. Because it controls
the slope of the fallfi, whene is close to zero it is very sensi- tion pass that follows the edge tangent flow. The two pass flow

tive to small changes, while the parameter becomes much Ie%chjed approach is referred to as fiwmw-based gference-of-

. L i FDoG.
sensitive to small changes as it increases. aussiansor . L .
9 Extending the basic DoG to an FDoG, implies replacing the

parametetr with three separate parameters:

FDoG

Input DoG ETF FDoG

smoothing can then be performed using a line integral cornvol

2.6. Flow-based Djerence-of-Gaussians (FDoG)

e 0. Controls the width of the Gaussian used to blur the
structure tensor. Small values can increase edge noise,
while larger values can distort fine features.

Equations 2) and (7) are isotropic formulations and evalu-
ated identically for each pixel in an image. Consequentty, i
ages with stochastic noise or textures may result in an skees

number of small, disconnected edges, as in 8igsuch noisy e o Controls the width of the gradient alignedférence

responses can often be avoided by lowering the edge emphasis  of Gaussians filter. Larger values discard more fine details,
strengthp, however, doing so may make itimpossible to create  and result in wider edge lines.

outputs containing strong edge lines. A better solutionpaet!

in recent works, is to adapt the filter according to the approx e om: Controls the width of the edge tangent aligned line

imated edge orientation§,[9, 20]. The idea behind these ap- integral convolution. Larger values increase the coherenc

proaches is to first respond to changes in luminance thatoccu  of edge lines by combining several shorter disconnected
across edges and then to smooth those responses using an edge segments into fewer, longer ones. However, it may also
aligned blur. The main diculty inherent in such an approach introduce noise into the edge lines, particularlyri, is

is the same issue that Marr and Hildreth faced (2€): it re- significantly larger thawrc.

quires a means of approximating the edge orientation at each

point in the image, before the edge image itself has been de-_The variable-threshold form_ulation (XDoG) ar_1d flow-
fined. alignment (FDoG) are mutually independent extensions¢o th

A simple but dfective way to estimate the local orientation DoG operator, and may therefore be combined, as desired. For

is by using thesmoothed structure tens¢@8ST), a well-known :'he 'm.a?.es n thrlfl paper v;/e emtri]loyFEDﬁ)éq pr(IJduce ts ti(hs' f
tool in computer vision, which is given by the smoothed outer Ic vanations, while we rely on the FLo% impiementation o
Kyprianidis et al. P] for noise suppression and increased co-

products of the image gradien®l]. Performing an eigenanal- _ _ . ) . .
: : : . _herence. A detailed discussion of implementation detaits f
of the SST essentially corresponds to performing & prin .
ysis ssentially corresponas 1o periorming & pri he FDoG can also be found i@7].

cipal component analysis (PCA) of the gradient vectors. Thé

major eigenvector can then be interpreted as smoothed-gradi

ent orientation and the minor eigenvector as smoothed tdnge3. Effects

orientation. The SST is computationally highlffieient, since

smoothing can be performed using a linear filter, such as a Artists have developed a large corpusstéments-of-styl®

Gaussian, and eigenanalysis only involves solving a gtiadra enhance the visual appeal and visual communicatffeceve-

equation. ness of their artwork. To distinguish these elementsyiést
Taken together, the edge orientations calculated at each po from thestylesdiscussed in Sectiofy we shall refer to the for-

form theedge tangent floETF). A DoG response can be cal- mer aseffects

culated across edges by evaluating one dimensional Gaussia There exist dedicated systems to produce most of fileets

blurs along lines orthogonal to the edge tangents. Edgeedi  presented in this section. The advantage of those systems is
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of its design (or with just minimal modifications), is capaloif
reproducing &ects with similar visual qualities to those found
| - = in many artworks.

3.2. Indication

ABSTRACT
L Indication is another, more subtle mechanism for abstracti
P Here the aim is not shape-simplification, but ratsemma-
rization of repetitive image content (most commonly textures)
which areindicatedwith a few representative elements, instead
, of being fully expressed. Humans are very adapt at deteeting
SMALL «———— KERNEL SigE —— LARGE sual patternsy], and indication appears to be a short-hand used
Figure 9:Abstraction (Top) A successive reduction in level-of-detail abstsact PY artists to convey the structural rules of these pattéeasing
the portrait of a man from a concrete instance to a generieseptationcies it to the observer to ‘fill in the blanks’ based on these rukgg-
Scottlv.\cCIOI:ld).(B.Ott(.)m) A DoG_fiIter dqes not_achieve the stylistic adaptaijiim- ure lO(a) uses indication to hint at bricks, which, together with
gil“mdgﬁgég?ﬂgzﬂg;)e%shsﬂgfgazmzti(l;’;gl 2‘;: remoemcrete features and the_wafter dispenser, plac_es the protagonist in a_schod]igsett
Indication permits the artist to save some drawitigprt, but
more importantly, it focuses the viewer’s attention on tbeef
generally a larger flexibility in terms of user parameterfieT ground, it avoids visual clutter, and it assists in visuabysing
advantages of the DoG operator are that it is a single, simplghe scene.
operator, which functions fully automatically. Given thisval The DoG operator by itself is not capable of indication, be-
quality and appeal of the DoG results, it should be consttlerecause it lacks a mechanism to prioritize edges, i.e. to éecid
as a contender for applications where speed or automation afhich edges to indicate and which edges to omit. Winoken

paramount to customization of théect parameters. etal. [7] proposed a bilateral pre-processing pass to act as such a
_ _ prioritization mechanism. A bilateral filter is essentyadl blur
3.1. Level-of-Detail oAbstraction operator and therefore capable of removing extraneousl.deta

Since Art is not bound by the laws of physics and opticsThe amount of local blur is guided by the image content, so
(i.e. Art may not bephotorealistig, artists are free to choose that low-contrast regions are blurred more than high-emsttr
which detail in a scene to depict and which to omit. The visuakegions. This has theffect of attenuating weak edges, while
art form of Comicsor Cartoonsleverages this principles exten- supporting strong edgestfectively performing a simple indi-
sively by employing a minimalistic visual language thattfees  cation of mostly homogeneous (photometrically and sgwgjial
on strong shapes, commonly depicted with simplified ousline textures.

(e.g. edges). Artists may thus distill the essence of a soene  Similar to the disclaimer in Sectid®i1we point out that the
situation without having to depict its every nuance. The#we indication mechanism described here has significant ltiita
form of an instance of a class of objects may be simplified (aband does not compare with the skillful indication of a traine
stracted) to focus on the common properties of the class (e.@rtist. For example, the DoG based indication does not deal
faces), rather than the accidental properties of the instéag.  well with complex (structure at multiple scales) or foretho
Harry’s face), as in Figur8, top row. ened textures?], 14]. However, it is worth mentioning thath-

Given that small image details are represented by high spatractionandindicationremain some of the fundamentally un-
tial frequencies, it follows that filtering out such detdédads to  solved problems in non-photorealistic rendering (NPRjtlpa
a type of (shape-) abstractiod]] Intuitively, the more blurred  because semantics play such an important role. Given tttis fa
two pictures of diferent faces are, the more similar they arethe quality of these féects dforded by a simple edge detector
likely to look. But while blurry (out-of-focus) images are  is arguably good, and might be used as the starting point for
erally undesirable, edge images may use the sdfeetavhile  deeper research into these elemental problems. As an aside,
retaining their visual appeal. In FiguBebottom row, the im-  there is strong evidence to suggest that anisotrogicision
age of a man with a specific pose is depicted using a DoG edgguch as bilateral filtering) forms part of human texturecppr
detector with varying spatial suppott, Given a small spa- tion. The above generative approach to automatically gredu
tial support, specific details, such as the eyes, shirt, mubér  primitive indication is functionally equivalent to the firsvo
pocket, are reproduced. With larger spatial support, sethild  stages of Malik and Perona’s analytical perceptual model fo
are increasingly omitted and simplified until all that rensais  preattentive texture discriminatio@3].
the shape of a humanoid figure.

It should be noted that we dwt claim that the automatic ab- 3.3. Motion
straction &orded by the DoG operator is afective or sophis-
ticated as the manual abstraction of a skilled artist, wihialy Speed and motion in cartoons are commonly suggested by
be a complex mixture of skill, experience, and semantice Th(1) applying lines in the direction of motiosgeed-lines and
observation we would like to make (with this and the follogyin (2) drawing faded, fiset duplicates of an object in its direction
effects) is rather than that the DoG operator, by the very naturef motion (@hostingor streaking, as in Figurell1.
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Figure 10: Indication: (a) Cartoonists commonly only indicate unimportant backgdoelementsirom caninaHobbessill watterson). (b) A brick wall with window. (c)
Bilateral filter result of (b) with simplified texture. (d) Aamnatic DoG indication of (b) by detecting edges on (c).
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Figure 11:Stylized Motion Speed and motion are represented in cartoons using
speed-lines and ghostingr99s scott McCloud).

Speed-lines.Motion blur is a temporal accumulatioiffect that
occurs when a photographed object moves relative to the cam- _ ) _
era during exposure. This relative movement may be a con-9ue 12:Speed-lines(a) Images of a stationary car, and corresponding DoG
A . . image; (b) Moving car with motion-blur, and DoG image with spéeds; (c)
plex motion, but we shall focus on a simple translation foryoying car with strobing, and DoG image with ghosting.
brevity. A linear motion blur is similar to a standard Gaassi
blur (Eqg. @)), except that the blur kernel is not a radially sym-
metric Gaussian shape, but rather an elongated line intae-di User-input, camera arrays, or other means for robust objett
tion of motion. Convolving an image with such a kernel blursmotion segmentation. As a tradéathe DoG operator féers
detail along that line, but not perpendicular to it. Compgri l€ss control, as it operates on the motion-information ioihy
Figs.12(a) and (b) illustrates this principle. The car is traveling €ncoded in the input image (blur, strobing), but this freees t
horizontally, resulting in a horizontal motion blur. A hpointal ~ Operator from requiring explicit motion information (suels
feature, like the hood of the car, is blended with itselfréhe dense optical flow) and allows it to work fully automatically
fore remaining relatively unperturbed. A vertical featuike
the back of the car, is blended with the background, thereby-4- Negative Edges
becoming blurred. The DoG operator thus detects horizontal Some artists, such as Frank Miller or Shigeru Mizuki
edges instead of vertical ones, because the latter are ketbot (Fig. 13a), have mastered the depiction of images with just
away by the motion blur. The neffect is that of edges appear- two tones (black and white), lending their artwork a dramati
ing as speed-lines in the direction of motion. stark look. Given such a limited palette these artists ugerin
sion techniques to depict scene detail in dark image regions
Ghosting. Successively faded andfset contours of an object Fig. 13(a) shows example of both traditional edges (blue ar-
(ghosts) are another stylistic device that artists usepctlno-  rows), as well as inverted edges (red arrows), which we call
tion, as in Fig.11. Such an ffect emerges from a simple DoG negative edges
operator for certain video inputs. Fig2(c, left) shows a sin- In 3D computer graphics, DeCarlo and Rusinkiewi2Z][
gle frame of a video sequence where the shutter speed of tllemonstrated how such inversion techniques can be applied t
camera is higher than the frame-rate of the video, resuiting better illustrate 3D models. Similarly, Lee et a28] added
multiple exposures of the moving object within a single feam bright highlight lines as additional shape cues to 3D madels
(strobing). The edge image created by the DoG operator thuSor images, Rosin and Lail{] obtained negative edges by

Original (X)DoG

contains ghosts. computing standard edges on an inverted source image and ap-
Dedicated systems exist for the generation of cartoorestylplying a set of hand-crafted compositing rules.
motion-dfects p4, 25, 26], which allow for more control over In contrast, the XDoG operator is capable of producing both

the dfect parameters. However, these systems require eithétack and white edges ‘out-of-the-box’ (Figs3 b,c). The rea-
8



(a) Sources (b)

Figure 14: Thresholding (a) High-quality preservation of detail even in rela-
tively low-contrast regions, such as the hair and snouti¢ reproduction of
reflection and transparency in glasses

Related Work.Various recent works have re-examined the
problem of thresholding. Gooch et ab)] used DoG edges com-
posited on top of simple luminance thresholding to generate
facial abstractions. As such, their solution is a multigpap-
proach which is based on simple thresholding and does not pre
serve detail in dark image regions (negative edges). Mauid a
Grant R9] proposed a “complex algorithm” (cit.) consisting

_ _ of four stages: computing image statistics, image segrtienta
Figure 13: Negative EdgesExamples of standard black edges (blue arrows)

and negative white edges (red arrows). (a) Negative edges i artists; using graph cuts or Ioopy-bellef-propagafuon (LBI_D)' reaiov
(b,c) XDoG: Source images are inset. Compare correspondatgrés in it~ Of Small regions, and contour smoothing via vectorizatibine

and shadowed regions, such as features around the eyetng(loytline ofthe  LBP stage was run iteratively to merge small regions intgdar
headlights in (c). ones. Final images were composited from a base-layer and one
or more detail layers. Compared to Mould and Grant’s results
our images are simpler to compute and exhibit additionéd-art

son for this beco_mes eV|d_ent whgn re-examining Big.The tic effects, such asegative edgesXu and Kaplan 30] also
DoG response displayed in that figure shows response values

close to zero as greys, strong positive responses as whie, aemployed region segmentation. They formulated the problem

. . of thresholding as an optimization to label the segmentatio
strong negative responses as black. Notice that most edges i . . L

. . . ) . with blackandwhitelabels to minimize the total of several cost
the image induce a matched pair of edge lines in the DoG re:

. . ... functions. The resulting images lent themselves to shape si
sponse, one positive and one negative. When a strong positive. .~ . . .

L : Y plification, but they were computationally expensive anékm
DoG response occurs inside a darker image region, it rasults

. . . arameter changes were bound to lead to significant chamges i
a white edge line. And when a negative DoG response occu . L .
S ) o o the output image, due to the nature of the optimization. fiRosi
inside a bright region, it leads to a more traditional bladge

and Lai [LO] produced images that were multi-tone instead of
strictly black-and-white. They used a posterized (muti€t)
4. Duo-tone Styles base layer in addition to a detail edge-image. The edge image
was based on Kang et al'8][FDoG edges and is therefore
Given the DoG’s relationship to edge detectors with binary'elated to the results presented here. Rosin and Lai approxi
output, we first focus our attention on duo-tone (black-andmated the #ect of negative edges by computing two edge im-
white) styles, such atresholding andwoodcut Compared —ages (one on the normal input for black edges, and one on the
to nave approaches that either rely solely on edge detection dhverted input for white edges) and combining these ontag gr
brightness thresholding in isolation, the styles discdsésehis ~ background. Note that, though related, this is not fullyieatu
section significantly benefit from an XDoG formulation, winic lent to negative edges of the XDoG operator. Finally, theebas

(b) XDoG (c) XDoG

combines contrast enhancement and tone-mapping. and detail layers were combined using a hand-crafted tdble o
compositing rules. Compared to Rosin and Lai's approaeh, th
4.1. Thresholding XDoG operator is less versatile, but may produce similaultes

and can be obtained with a single XDoG operator, without re-
Traditional thresholding may be considered a tone-mappinguiring separate base and several detail layers, or a caonopos
operator ([01] ~ {0, 1}), which maps values in a continuous table.
range below a certain threshold value to 0, and those values
above the threshold to 1. The ostensible simplicity of argiena Implementation.The results in Figl4 are obtained by sim-
containing only black and white belies the stark visual abppe ply applying the XDoG operator (Egb)) with appropriate pa-
that skilled artists can achieve in this medium (Higa). rameter values. Using ~ 20 ensures strong emphasis lines,



(a) (b) Sources (c) . =
Figure 15:Woodcut (a) Woodcut by Carl Eugen Keel; (b,c) Large flow distor- Source Threshold Image (@)

tion and negative edges result iW@odcuiappearance. Figure 16: Anti-Aliasing (AA) (a) top: no AA, middle: soft AA, bottom: ex-
treme AA (stylistic)

while settingy > 0.01 dfectively changes thganh soft-ramp

in Eq. 5 to a step-function. Note the use of negative edges irfor the case of the XDoG operator. Since many of the exam-
Fig. 14(a,b). More threshold results are shown in Fit&b,c),  ples in this paper use the ETF field to compute coherent edges,
and24(a). Note also the direct comparison with Xu and Ka-we can easily re-use the ETF to apply a very small line integra

plan [30], Figs. 20, 21, and Mould and Gran29], Fig. 22. convolution along the field, thereby producing image-ceher
and visually pleasing anti-aliasing. In doing so, the in&ign
4.2. Woodcut radius is commonly only 0.5-2 pixels (Fig6a, middle). How-

Woodcut (akaxylography is an ancient printing technique, ever, larger integration values may be used for stylisfiiect

in which a volumetric material with a planar side (tradition (Fi9-162, bottom).

ally wood) is carved to produce indentations and excavatiion

the material. Paint is then rolled onto the material and papes, expanded Styles

pressed against the wood to absorb the paint. This results in

paint being applied in all places except those carved ouhey t ~ While Winnendller et al’s [7/] main motivation for an ex-

artist (akin to a stamp). As such, the technique is often-assdeénded DoG formulation was to increase temporal coherence

ciated with strong black-and-white contrast, as well agriis ~ for video abstraction, Winnedtier [35] later noted the potential

carving lines, as in Figl5a. of this extension for stylistic purposes. First, we spetifyv
several threshold results may be combined with natural anedi

Related Work.While this technique is related to other engrav- textures to produce a convinciiatchinglook. Furthermore,

ing techniques, such as digital facial engraviBd][ not much  when the parameters values are dialed away from the duo-tone

prior work exists on the woodcut technique itself. Mizuno etsettings of Sectiod, we may emphasize the tone-mapping and

al. mainly focused on systems for virtual carving and print-image sharpening characteristics of the XDoG to obtain i& var

ing of woodcuts 82]. Mello et al. proposed a procedural sys- ety of natural media styles

tem, based on image segmentation, edge detection, andlvirtu

carving-cuts along flow-lines, to produce simple, but dmbte  5.1. Hatching

woodcuts B3]. Like Mello et als system, the XDoG operator  Qur hatching approach (Fig.7) is based on the concept of

is limited in the stylistic range of woodcut images it can-pro tonal art maps, where layers of strokes add up to achieve a de-

duce. However, the XDoG images are easier to compute andjred tone $6, 37]. First, we compute a standard DoG edge im-

arguably, of higher visual quality. age (Fig.17(a), top). We then create two high contrast XDoG

] ] ] images by setting > 0.01. To obtain multiple threshold re-
Implementation.Figs. 15(b,c) were generated with the above- sults, we merely adjust. For eficiency, we may choose to

mentionedhresholdsettings (Sect.1), but use very aggressive  ¢ompute all threshold results in a single pass and write them

flow-blurring and extreme edge emphasis settings to producgy; 1o diferent channels of the same image, thereby incurring
shape abstraction, and long, coherent carving-etts«(5 and only a negligible overhead.

p ~ 100). Hatching texturesare generated by tiling small patches of
o scanned hatches, as in Fig/(b). For hatching with global di-
4.3. Anti-aliasing rections, the textures may be pre-computed using texture sy

To produce high-quality output images, we prefer the finalthesis B8, 39]. For hatching with local directions, local regions
images to be slightly anti-aliased. This is particularlypontant  are defined by segmenting the (colored) source image (e-g. us
for thresholded images, whose response function is cloge toing graph-cuts) and then masking regions that overlap \uigh t
step-function. Recently, Yang et aB4] suggested a method threshold results. Each region is then tiled independeatly
for restoring antialiased edges thatfsved degradation from above, with a local hatching direction.
applying certain types of non-linear filters, such as thasalun The results in Figl7(a) may be used as masks for the hatch-
many NPR algorithms. While their approach may Hemntly  ing textures in Figl7(b), and multiplied together to compute
implemented on a GPU, we propose an even simpler solutiothe final image. For addedfect, the hatching output can be
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(b) () (d)

Figure 17:Hatching (a) Threshold variations; (b) Tiled and rotated hatching
textures; (c) Textures in (b) masked by (a); (d) Final resultrultiplying all
(c)'s onto a paper texture.

composited onto a paper texture, as in Rigd). While sim-

ple to implement andf@cient to compute, the hatching style
retains many of the XDoG features (clean edges, tone control
negative edges) and produces high-quality results. Simee t
threshold results are merely used as masks, the visualresol
tion of the final image mostly depends on the hatching testure
which may be generated at any desired quality. Additionally
different hatching markers may be simulated (pencil, ink, felt-
tip) by simply scanning and using these markers in the haggchi
texture generation, as in Fig4(b).

5.2. Natural Media

The various XDoG parameters may be adjusted to allow for
a large range of natural-media-style appearances. p€heil-
shadinglook of Fig. 1(b) relies on high-frequency detail re-
sembling graphite on paper. The high details are obtainéd wi
o ~ 0.4, and we ensure a proper tone-response yvith 0.01.
The charcoalappearance of Fid.8(c) is due to a much larger

spatial supportde ~ 7), creating broad strokes. Tipastel _ o o
Figure 18: Variations Parameter variations of the XDoG operator pro-

Style, in Figs.18(b) and24(c,d) can be achieved with an inter- duce a range of natural media looks. (a) Source; (b) PastelCitarcoal.
mediatece ~ 2. The latter two styles employ the flow-based (sourceg Flickr user tibchris)

smoothing of Kyprianidis et al.9], with an identical flow-

field computation. Here, the structure tensor is only mirdiyna

smoothed ¢. ~ 0.1) and the FDoG integration uses a rela- we have demonstrated that many of these styles fiadte can

tively large kernel along the flow-directiomr§, ~ 20), result- be achieved more directly and computationaliiyagently with

ing in noticeable turbulence and noise along the image edgeslight variations of an extended DoG formulation.

which appears as dry brush or charcoal on canvas, depending

on the gdge width, edge emphasis_, and anti-aliasing ;elting6_l_ Limitations

We achieve the colored pastel look in Fig{(d) by modulating

the natural media appearance of F2g(c) with source image  Like any image processing filter, the XDoG operator has

colors, which are weighted by inverting F@#(c). its limitations. For some parameter values in the threshgld

range (Sed.1) noise may be severely amplified. This becomes

particularly noticeable in otherwise homogeneous regions

the source image (Figl9a). While the source image looks
The DoG operator has been employed in a variety of appli“clean” at first glance, any image may contain shot noise or

cations, ranging from computer visiod][to stylistic render-  other noise artifacts that are highlighted by the DoG respon

ing [6, 7, 8]. However, its use has always been limited to edgeFig. 19(b) was additionally tweaked to demonstrate another is-

detection, or the creation of straight-forward edge images sue: The ETF computation on the source image picks up JPEG

achieve more complex styles anfleets, researchers have re- blocking artifacts. As a result, the spurious noise is irdegp

sorted to building complex, multi-stage systems, ofteuiskc ~ around JPEG block boundaries to produce the flowy, tileatstru

ing expensive optimization scheme9] 30, 10]. In this paper, ture apparent in FiglY(b). However, a slight shift in parameter

11
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to early vision processed§. Such connections between hu-
man vision and the fectiveness of artistic styles have been
proposed by other authors. Zeki, a distinguished neursipgi
states “[Artists] are exploiting the characteristics of fharal-

lel processing-perceptual systems of the brain to creae th
works, sometimes even restricting themselves largely aiiywh
to one system, as in kinetic art"4J], pg. 80). Specifically,
Zeki and Lamb found that various types of kinetic art arelidea
stimuli for the motion sensitive cells in area V5 of the vi-
sual cortex 42]. In another experiment, Zeki and Marim 3
showed that fauvist paintings, which often divorce shapa® f
their naturally assumed colors, excite quite distinct okagi-

cal pathways from representational art where objects appea
normal color. Ramachandran and Hirstein explore similar co
cepts 44].

Given the significant stylistic arsenal at the disposal ef th
NPR community, we believe that it will be enlightening to re-
examine various artistic styles from a perceptual pointiebv.
Figure 19:Limitations (a) Source imageorii i (b) Noise artifacts; Instead of focusing purely on art-direction and expreswss,
(c)gSIightI)./ modified settings compare%?glc(l(tgl)'q;etzsrel_ega/ contrssurce imagé we can att.em.pt to quISe. minimal fIIFerS and operators capa-
(cadam Baken; (€) Edge detection result; (f) Pastel result. ble of qualitatively simulating the desired style, and tiven-

duct experiments to investigate how their parameter space i

fluences the feectiveness of visual communication tasks. In
values, increasing and lowering the white-value, eradicates  |imjted form, such approaches have been undertaken for Car-
the noise emphasis to produce a clean E8fc). toons and Caricatured$, 6, 7], but we believe that to address

Another challenge for any edge detector are low-contrast imggme of NPR’s open problems, such investigations should be
ages, such as Fig9(d). Computing the flow-DoG of FidY(d)  expanded to include styles focusing on color, motion (terapo
results in the visually disappointing Fif§f9(e). However, using coherence), indication, and abstraction.

a flow-XDoG with pasteldry-brushsettings (Sec5.2 we ob- We hope that our theoretical review of the DoG operator,
tain an arguably much more pleasing result (E&). Thereare ts recent extensions, and our reparameterization foizatjon
two important points to note here. First, FIgXf) looks good  pyrposes help to broaden the community’s understanding and

due to the emphasized fog, which accentuates the interplg)terest in the operator's potential beyond mere edgectiete
of light with the fog. The experienced photographer, painte

or NPR practitioner will immediately recognize that costra
enhancement is an age-old trick-of-the-trade to incrdasedy-

namic appeal of an image. As it turns out, the XDoG operator The majority of the results shown in the paper are generated
contains two fundamental mechanisms (unsharp masking anging the flow-based XDoG filter. That filter is created by com-
tone mapping) that are particularly well suited to achie¥ehs  pinjng the DoG extensions of Sectio@s5 and 2.6, resulting
desirable contrast emphasis. Second, itis fair to say #talh  jn 5 single filter with six parameters. While a basic DoG fil-
the styles discussed in this paper will produce adequatdtses ter has only a single parameter, extending the basic DoG
for allinputimages (e.g. Figd.9d,e). However, given the large 15 an FDoG, as discussed in Sectii6 implies replacings
range of styles that may be produced with the few parameters gith three separate parameters, e, andom. Extending the

the XDoG, and the noise-suppression and coherence-imtgeas poG to create the XDoG introduces an additional three param-
characteristics of the flow formulation, we have found that a eters,p, ¢ ande, which are discussed in Secti@®b. Finally,

interesting or visually pleasing result can be obtainediost 55 discussed in Secti@in3, many of our results have been post-

Appendix A. Parameter Settings

inputimages. processed using an additional line integral convolutiosspan
) such cases, the width of the post-processing blur becomes a

Looking forward, we are interested in investigating theerol ~ Examples of the exact parameters used to generate many of
that operators like the XDoG may play in the inception andthe results in the figures are given in TaBld.
comprehension oéffects (elements-of-style). Line drawings  In addition to the seven formal parameters of the filter,éher
are dfective because humans use edge-detection to decompose also several implementation details that can significaft
their visual world P]. Evidence suggests that speed-lines andect the output. The firstis the choice of colorspace. Outénp
ghosting are not merely artistic fancy, but may be traced bacmentation is based on CIE Lab. Input RGB images are assumed
to the physiology of human visio{]. Similarly, it is pos- to be linearized, so no gamma correction is done prior to col-
sible thatnegative edgeare not just stylistic necessity to de- orspace conversion. All three Lab channels are used when cal
pict detail in dark image regions, but may be tightly linked culating the structure tensor terms, while the luminaneaake!
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Table A.1: Parameters used in the examples

Result ~ Fig. oc 0 om P @ e o more expensive than a small number of computations, the cost
p of texture lookups for the first pass can be ameliorated by ac-
2q) 228 14 44 217 001 795 1.0 cessing image valuegx) only once for each coordinate and
' ' ' ' ' ' ' computinglgi, andlgy, simultaneously. If the number of chan-
nels in the input image is small enough (typica#y 3), the
result of the first pass can be written into multiple chanioéls
6 245 60 IR 0.60pER NA an output image, and the same approach described above may
be applied for the second pasfieetively enabling the compu-
13b) 297 1.4 132 182 10.3 731 1.95 tation of the entire DoG operator in just two 1-D convolution
passes.
14a) 3.76 1.4 220 15.7 0.49 783 24
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Figure 20: Comparison witArtistic ThresholdingdXu and Kaplan 30])
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Vectorized XDoG Xu and Kaplan Source Mould and Grant XDoG Thresholding
Figure 21: Comparison withKu and Kaplar{30] Figure 22: Comparison witMould and Gran{29]

(a) Source (b)o =0 (c)o =06 (e)e =0.07
Figure 23:Parametersi(b) o = 0 — pure tone-mapping; (c,d} > 0 increases local contrast; (e,f) variationgin

(a) High-detail thresholding (b) Felt-tip hatching (c) Pastel (d) Colored pastel
Figure 24: Various Additional Results. Please zoom in tofseedetails.
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