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ABSTRACT 

 
Computational Conceptual Change: An Explanation-Based Approach 

 
Scott Friedman 

 
 

The process of conceptual change – whereby new knowledge is adopted in the presence of prior, 

conflicting knowledge – is pervasive in human cognitive development, and contributes to our 

cognitive flexibility.  At present, Artificial Intelligence systems lack the flexibility of human 

conceptual change.  This is due in part to challenges in knowledge representation, belief revision, 

abduction, and induction.  In addition, there are disagreements in the cognitive science 

community regarding how people represent, use, and revise their mental models of the world. 

This work describes a cognitive model of conceptual change.  The claims are that (1) 

qualitative models provide a consistent computational account of human mental models, (2) our 

psychologically plausible model of analogical generalization can learn these models from 

examples, and (3) conceptual change can be modeled by iteratively constructing explanations 

and using meta-level reasoning to select among competing explanations and revise domain 

knowledge.  The claims are supported by a computational model of conceptual change, an 

implementation of our model on a cognitive architecture, and four simulations. 

We simulate conceptual change in the domains of astronomy, biology, and force dynamics, 

where examples of psychological conceptual change have been empirically documented.  Aside 

from demonstrating domain generality, the simulations provide evidence for the claims of the 

thesis.  Our simulation that learns mental models from observation induces qualitative models of 

movement, pushing, and blocking from observations and performs similar to students in 

problem-solving.   Our simulation that creates and revises explanations about the changing of the 



4 
 

 
 

seasons shows that our system can assemble and transform mental models like students.  Our 

simulation of textbook knowledge acquisition shows that our system can incrementally repair 

incorrect knowledge like students using self-explanation.  Finally, our simulation of learning and 

revising a force-like concept from observations shows that our system can use heuristics and 

abduction to revise quantities in a similar manner as people.  The performance of the simulations 

provides evidence of (1) the accuracy of the cognitive model and (2) the adaptability of the 

underlying cognitive systems that are capable of conceptual change. 
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Chapter 1: Introduction 

 
 

“We are like sailors who on the open sea must reconstruct their ship but are never able to start 

afresh from the bottom. Where a beam is taken away a new one must at once be put there, and 

for this the rest of the ship is used as support. In this way, by using the old beams and driftwood 

the ship can be shaped entirely anew, but only by gradual reconstruction.” 

- Otto Neurath (in Quine, 1960) 

 

 

Neurath’s analogy between rebuilding a ship at sea and lifelong learning communicates several 

important insights.  Like sailors reconstructing their ship, we can repair our intuitive knowledge 

to become more scientifically correct.  We are constrained by the need for support: as beams on 

the ship require the support of adjacent beams, so does our understanding of observations rely on 

the support of explanations.  Consequently, the transformations of the ship and our knowledge 

involve the revision of components and the transition of support.  In cognitive science, this 

transformation process is known as conceptual change.  Following diSessa’s (2006) 

characterization, conceptual change is the process of building new ideas in the context of 

existing, conflicting ideas.  This is differentiated from skill learning (since skills involve 

procedural knowledge) and from the tabula rasa acquisition of knowledge (hence the emphasis 

on “change”).  This also does not include filling gaps in incomplete knowledge (Chi, 2008) or 

enriching (i.e., adding detail to) existing knowledge (Carey, 1991).  We provide examples of 

conceptual change to help illustrate.   
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One well-documented example of conceptual change is the changing concept of force in 

children (Ioannides and Vosniadou, 2002; diSessa et al., 2004).  When students enter the 

classroom, they have intuitive concepts of force learned from experience and interaction.  One 

intuitive theory is that forces act on objects to keep them translating or rotating, and then 

gradually die off – similar to the medieval concept of impetus (McCloskey, 1983).  While 

scientifically incorrect, this concept of force is still productive for understanding and 

manipulating the world, which is probably why it is so resilient to change.  Through education, 

students revise these intuitive concepts incrementally, although often unsuccessfully.  Even after 

learning scientifically correct quantitative aspects of force such as F = m*a, students often 

operate with the same incorrect qualitative theories when labeling forces and drawing projectile 

trajectories (Clement, 1985; Hestenes et al., 1992). 

Revising the concept of force involves revising the specification (diSessa et al., 2004) of the 

category.  The specification includes the conditions under which a force exists, the consequences 

of a force’s existence, how forces are combined, and the relationship of a force to other 

quantities (e.g., mass, velocity, acceleration).1  For example, there is evidence that novices 

frequently conceive of force as a substance-like quantity (Reiner et al., 2000) that can be 

acquired, possessed, transferred, and subsequently lost by physical objects.  Changing force from 

this intuitive, substance-like specification to a Newtonian specification requires changing the 

conditions and consequences of a force’s existence, the model of how forces combine, and the 

relationship of force to acceleration and mass.  We refer to this type of conceptual change as 

category revision, and we discuss this further in Chapter 8.  An example of category revision is 

differentiating heat and temperature.  This has been characterized in the history of science (Wiser 

and Carey, 1983) as well as within individual students (Wiser and Amin, 2001): the words “heat” 
                                                 

1 Reif (1985) refers to this as the ancillary knowledge of a quantity. 
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and “temperature” are at first used interchangeably, and then this over-general concept is revised 

into two specific concepts, resulting in an intensive concept of temperature and an extensive 

concept of heat. 

There is considerable disagreement among cognitive scientists on how this type of 

conceptual change occurs: do categories actually get directly shifted (e.g., Chi, 2008)?  Are they 

added as additional categories that coexist alongside the prior category (e.g., diSessa and Sherin, 

1998)?  Do the new and the old categories coexist, but in different conceptual systems (e.g., 

Carey, 2009)?2  If new and old categories coexist somehow, people seem to understand that they 

are mutually incoherent, perhaps due to belief-level refutation (Chi, 2008) or incompatibility 

between the vocabularies (Carey, 2009).  Regardless of whether and how information coexists, 

any cognitive model of conceptual change must explain how people come to use a new 

conceptual vocabulary (e.g., Newtonian force) in place of an old vocabulary (e.g., impetus-like 

force).   

The second type of conceptual change we simulate is mental model transformation (Chi, 

2008).  This involves revising the causal knowledge about physical systems in our long-term 

memory, which are often referred to as mental models (Gentner & Stevens, 1983).  Suppose a 

student has the common misconception that blood flows in a single loop in the human circulatory 

system: from the heart to the rest of the body, and then back again, to be oxygenated by the heart 

(Chi et al., 1994a).  Revising this mental model of the circulatory system to include a second 

loop – from the heart to the lungs for oxygenation, and then back – involves a transformation of 

this knowledge.  This is not merely filling a gap in incomplete knowledge, since the old and new 

models of the circulatory system make conflicting predictions.  This type of conceptual change 

has also been characterized in the domains of biology (Carey, 1985; Keil, 1994; Inagaki & 
                                                 

2 Chapter 2 discusses this and other points of disagreement and divergence in theories of conceptual change.   
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Hatano, 2002), the shape of the earth (Vosniadou and Brewer, 1992), the changing of the seasons 

(Atwood & Atwood, 1996; Sherin et al., 2012), and others.  Both types of conceptual change – 

category revision and mental model transformation – are the ubiquitous results of our attempts to 

reconcile new observations and instructions into our existing belief system. 

Conceptual change is pervasive in our cognitive development and education, and contributes 

to the flexibility of human thought over time.  The same is not true for Artificial Intelligence (AI) 

systems; at present, AI systems are brittle (McCarthy, 2007) in that they often malfunction when 

faced with new types of tasks and unexpected observations.  Many researchers in the field 

believe this can be fixed by making the central cognitive architecture of AI systems more 

flexible and adaptable (e.g. Nilsson, 2005; Cassimatis, 2006).  We believe that conceptual 

change is an important consideration for building more adaptable AI. 

Modeling conceptual change will have a number of practical applications.  For example, 

scientific discovery systems would benefit from having more flexible representations, whether 

using machines as collaborators (e.g., Langley, 2000), as automated scientists (e.g., Ross, 2009; 

Langley, 1983), or as mathematicians (e.g., Lenat & Brown, 1984).  Intelligent tutoring systems 

will benefit similarly – if a tutoring system can model a student’s intuitive knowledge3 and 

model the process of conceptual change, it can help guide the student through difficult learning.  

Finally, conceptual change will affect how we interact with intelligent agents.  As eloquently put 

by Lombrozo (2006), explanations are the currency with which we exchange beliefs.  Conceptual 

change – and explanation construction, which is part of our conceptual change model – will help 

AI systems exchange the same explanatory “currency” as people.  Specifically, this will help an 

AI system (1) construct explanations that are understandable by humans, (2) represent 

                                                 
3 See Anderson & Gluck (2001) for how one type of tutoring system models students’ procedural mathematics 
knowledge.  Procedural knowledge is not included in our model of conceptual change. 
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explanations provided by humans and other resources (e.g., textbooks), and (3) revise beliefs and 

explanations as humans do, for more intuitive interaction. 

Given these benefits to human-level AI research and applied AI systems, why not provide 

these systems with a computational model of human conceptual change?  Unfortunately, such a 

computational model does not yet exist.  I believe this is due to two general obstacles: (1) the 

complexity of human conceptual change and (2) disagreements in the cognitive science 

community how conceptual change occurs.  Human conceptual change is complex in that it 

involves constructing explanations (Chi et al., 1994a), revising beliefs and explanations (Sherin 

et al., 2012; Vosniadou & Brewer, 1992), analogy (Gentner et al., 1997; Brown & Clement, 

1989), and decision-making about new information (Chinn & Brewer, 1998).  The major points 

of contention in the cognitive science literature involve the representation of conceptual 

knowledge (Forbus & Gentner, 1997; Nersessian, 2007), the organization of conceptual 

knowledge (diSessa et al., 2004; Ioannides & Vosniadou, 2002), and the mechanisms of change 

(Ohlsson, 2009; Chi and Brem, 2009; diSessa and Sherin, 1998).  Fortunately, advances in 

cognitive science, both theoretical and empirical, have reached the point where modeling this 

complex phenomenon is now more feasible. 

This dissertation presents and evaluates an integrated model of human conceptual change.  

The evaluation of our computational model and criteria for success rely upon its accuracy in 

explaining and predicting human learning and problem-solving.  In each simulation, the system 

starts with similar knowledge as people, it is given similar stimuli for learning as people, and its 

knowledge is evaluated using similar problem-solving tasks as people.  By comparing the 

system’s problem-solving performance with those of students described in the literature, we can 

determine whether the system can learn along a humanlike trajectory of misconceptions and 
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scientific theories.  We simulate different students by varying the system’s starting knowledge 

and altering simulation parameters.  Success is determined by the range of student trajectories 

our system can match using this strategy across simulation trials. 

Our cognitive model makes a number of psychological assumptions concerning human 

perception, knowledge representation, reasoning, and learning.  We hold these core assumptions 

constant across all four simulations, and describe them later in this chapter.  In addition, each 

simulation makes task-specific assumptions. Some of these core and task-specific assumptions 

are needed to deal with current limitations of the conceptual model: for example, in some cases 

the model retains more information about a learning experience than is likely for humans.  These 

interim assumptions provide explicit opportunities for extending this research.  Half of the 

simulations use automatically generated training and testing data, and half use hand-coded data 

based on evidence from the literature.  Both of types of data make assumptions about 

psychological knowledge encoding that are discussed below. 

This dissertation is structured as follows.  The rest of Chapter 1 is focused on the problem of 

conceptual change, the central theoretical claims of this dissertation, and the high-level 

psychological assumptions of this cognitive model.  Chapter 2 discusses other theories of human 

conceptual change in the cognitive psychology literature.  Chapter 3 reviews the AI theories and 

techniques used in our computational model.  Chapter 4 presents the model of conceptual change 

and defines the terminology and algorithms used in the simulations.  The model of conceptual 

change is a novel contribution of this dissertation, but it builds upon the existing AI technologies 

described in Chapter 3.  Chapters 5-8 discuss four simulations: Learning intuitive mental models 

(Chapter 5); mental model transformation as explanation revision (Chapter 6); mental model 

transformation from a textbook passage (Chapter 7); and category revision for changing a 
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concept of force (Chapter 8).  Chapter 9 revisits the claims, outlines some related work, and 

explores some objections, limitations, and opportunities for future work.  The appendices contain 

additional algorithms and material for replication of the work described here. 

1.1 Claims 

In this section we state the three principal claims of this dissertation and outline how these claims 

are supported.  In discussing our claims and presenting our cognitive model, it is important to 

clarify when we are referring to people and when we are referring to AI systems.  We include 

Figure 1 to prevent ambiguity.  For the remainder of this dissertation, “human” and 

“psychological” will refer to humans, “AI” and “artificial” will refer to the computational model, 

and “agent” will refer to both.  The first claim concerns how to represent human mental models 

in an AI system: 

 

 Human Our Model 

Noun “human” “system,” “simulation,” “AI” 

Adjective “psychological” “artificial,” “computational” 

Models “mental model” “compositional qualitative model” 

Model parts “mental model part” “model fragment” 

Quantities ⟵ “quantity,” “quantity specification” ⟶ 

Beliefs ⟵ “propositional belief” ⟶ 

Explanations ⟵ “explanation” ⟶ 

Figure 1. Correspondences between psychological and artificial entities in this dissertation. 
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Claim 1: Compositional qualitative models provide a consistent computational account of 

human mental models. 

  

By “consistent computational account” we mean that compositional qualitative models can 

consistently explain how people solve problems and construct explanations in multiple domains.  

Since Claim 1 is a knowledge representation claim, it can be tested by (1) observing how people 

construct explanations and solve problems with their mental models and (2) using compositional 

qualitative models to construct the same explanations and solve the same problems.  Claim 1 is 

not a new idea – in fact, human mental models were one of the initial motivations for qualitative 

modeling in AI (Forbus & Gentner, 1997); however, we include this claim in the dissertation 

because we offer considerable novel evidence to support it (i.e., the simulations in Chapters 5-8) 

and the other claims rely upon it.  We provide an overview of compositional qualitative models 

in AI in Chapter 3. 

This dissertation includes a simulation of how people learn mental models from a sequence 

of observations, described in Chapter 5.  With respect to Claim 1, this simulation uses qualitative 

models to simulate human mental models, but it also relies on an analogical learning algorithm 

called SAGE.  SAGE is a psychologically plausible model of analogical generalization – that is, 

it abstracts the common relational structure across multiple cases.  We discuss SAGE further in 

Chapter 3, but it is a component of the next claim. 

 

Claim 2: Analogical generalization, as modeled by SAGE, is capable of inducing qualitative 

models that satisfy Claim 1. 
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Claim 2 is a novel claim, since AI systems have not previously induced qualitative models by 

these means.  Claim 2 is supported by the simulation described in Chapter 5. 

The third claim involves modeling the two types of conceptual change described above: 

 

Claim 3: Human mental model transformation and category revision can both be modeled 

by iteratively (1) constructing explanations and (2) using meta-level reasoning to select 

among competing explanations and revise domain knowledge. 

 

Claim 3 relies on the terms explanation, meta-level, and domain knowledge.  We define these 

terms here with a simple example to clarify this claim.  We define these same terms more 

precisely in Chapters 3 and 4.  We intentionally avoid the word “theory” when referring to 

human knowledge, since this word has been used to describe (1) systematic science knowledge, 

(2) “intuitive theories” of novices, and (3) “domain theories” of model-based reasoning systems.  

We can thereby avoid conflating these distinct concepts. 

We test Claim 3 by building a computational model and evaluating it according to the 

criteria put forth by Cassimatis, Bello, and Langley (2008): (1) the model’s ability to reason and 

learn as people do; (2) the breadth of situations in which it can do so, and (3) the parsimony of 

mechanisms it posits (i.e., using the same mechanisms across domains and tasks).   

In this dissertation, domain knowledge is comprised of one or more of the following: 

propositional beliefs (i.e., a statement that evaluates to true or false), quantities (e.g., a 

specification of “force”), and mental model parts (see Figure 1 for modeling vocabulary and 



27 
 

 
 

Figure 2 for examples).4  Consider the two sets of domain knowledge Da and Db about the human 

circulatory system in Figure 2 which are simplified accounts of student knowledge (Chi et al., 

1994a). 

Account Da contains beliefs that blood flows from the heart to the rest of the body and back 

– and nowhere else.  Account Db contains beliefs that blood also flows from the heart to the 

                                                 
4 We assume – as discussed later in this chapter – that mental models are divisible into reusable components.  We 
simulate these using compositional model fragments, each of which represents a process or conceptual entity (see 
Chapter 3 for model fragment overview). 

 Da: single loop Db: double loop 

Propositional 
beliefs 

Blood is a type of liquid 

The heart contains blood 

Arteries channel blood from the heart 

Veins channel blood to the heart 

… 

The heart oxygenates blood 

All blood leaving the heart flows 
directly to the rest of the body 

All blood leaving the rest of the body 
flows directly to the heart 

Blood is a type of liquid 

The heart contains blood 

Arteries channel blood from the heart 

Veins channel blood to the heart 

… 

The lungs oxygenate blood 

Some blood leaving the heart flows 
directly to the rest of the body 

All blood leaving the rest of the body 
flows directly to the heart 

Some blood leaving the heart flows 
directly to the lungs 

All blood leaving the lungs flows 
directly to the heart 

Mental model 
parts 

Fluid-flow 

Infusing-compound-into-liquid 

Consuming-compound-from-liquid 

Fluid-flow 

Infusing-compound-into-liquid 

Consuming-compound-from-liquid 

Quantity specs. none none 

Figure 2. Two intuitive accounts of the human circulatory system.  They share propositional beliefs and 
mental model parts, but some propositional beliefs in Da are inconsistent with those in Db. 
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lungs and back.5  Both accounts share some propositional beliefs and mental model pieces, but 

some propositional beliefs of Da are inconsistent with those of Db. 

An explanation is a set of domain knowledge that is joined by logical justifications6 to 

explain some phenomenon or event m, where m is represented by one or more propositional 

beliefs in domain knowledge.  Domain knowledge, e.g., Da, Db, or any subset thereof, may be in 

zero or more explanations of phenomena.   

Suppose an agent has explained the phenomenon m = “the body receives oxygen from the 

blood” with an explanation xa that uses the knowledge in Da.  Suppose also that the agent has 

decided that xa is presently the best account it has of how m happens.  Using terminology from 

abductive reasoning, we call xa the best explanation (Peirce, 1958) or preferred explanation for 

m, since other inferior explanations may exist. 

Now suppose the agent reads several sentences of a textbook passage and has acquired the 

knowledge Db, while still entertaining its previous account Da.  When the agent uses the new 

knowledge in Db to explain m, a new explanation xb is created for m, and we say that xa and xb 

now compete to explain m.  Explanations such as xa and xb are persistent structures, and are used 

to compartmentalize and contextualize information.  This means that the new information Db 

does not replace the existing information Da; rather, the inconsistent beliefs in Da and Db coexist 

simultaneously.  If the agent compares competing explanations xa and xb and determines that the 

new explanation xb is better than the presently preferred explanation xa (e.g., because it contains 

new information from a trusted source), xb will replace xa as the agent’s preferred explanation for 

m.  This exemplifies part of Claim 3: that the agent constructs explanations and evaluates 

preferences as a mechanism of change. 

                                                 
5 Neither Da nor Db is a complete, correct account of the human circulatory system, but both represent mental 
models of the circulatory system used by middle-school students (Chi et al., 1994a).   
6 We define justifications in Chapter 3. 
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The decision to replace xa to xb as the preferred explanation for m has broad implications for 

the agent.  For instance, if the agent must describe the mechanism of m on an exam, it can access 

its preferred explanation xb for m to construct a solution.  Alternatively, suppose the agent must 

explain a novel phenomenon m’ (e.g., the effect of a collapsed lung on the brain’s oxygen).  To 

do this, the agent uses similarity-based retrieval (Forbus et al., 1995) to retrieve the relevant 

phenomenon m, accesses the best explanation xb, and then uses the domain knowledge Db within 

xb to explain m’.  If domain knowledge Db is used within the preferred explanation xc for the new 

phenomenon m’, then the set Db of domain knowledge now supports the preferred explanations 

of both m and m’ and the set Da supports neither (though it shares some of the knowledge of Db).  

Via this system of preferential retrieval and reuse of explanations, beliefs are used and 

propagated according to whether they participate in preferred explanations.  When a belief is no 

longer a member of a preferred explanation (e.g., the belief “all blood leaving the heart flows 

directly to the body” in Da), it is effectively inert.  This constitutes a mental model 

transformation.  Chapters 6 and7 describe simulations of mental model transformation via 

explanation revision. 

Claim 3 also states that category revision occurs by the same mechanism of change.  

Consider a different example: an agent believes that (1) all objects have a quantity q which has a 

spatial directional component (e.g., an object can have leftward q, downward q, etc.), (2) an 

object moves if and only if its q is in the direction of motion, and (3) an object stops moving in a 

direction if its q loses that directional component.  Consequently, q is a conflation of weight and 

momentum, similar to some concepts of force found in the literature (Ioannides & Vosniadou, 

2002).  Suppose the agent watches a foot strike a large ball and then immediately observes the 

foot strike a smaller ball, which moves a greater distance.  The agent compares the two events, 
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and determines that the present specification of q cannot explain the discrepancy in the distances 

the balls travel.  To resolve this explanation failure, the agent considers that q might be an 

acquired quantity such that one object can transfer some amount of q to another by touch or 

collision (rather than shifting the direction of existing q, previously), and that the transfer rate of 

q is inversely proportional to the size of the recipient.  This results in a new quantity 

specification qa which is a revision of the previous quantity specification q.7 

The agent can use its new quantity specification qa to explain why the large and small balls 

travel different distances.  As in the mental model transformation example, the agent formulates 

new explanations with qa rather than q, and embeds qa into preferred explanations of new 

phenomena.  Further, the agent can find previous phenomena explained with q and explain them 

using qa.  This process of retrospective explanation embeds qa in additional preferred 

explanations and promotes conceptual change.  As in the circulatory system example, the 

previously-existing knowledge loses its likelihood of becoming retrieved and reused, and might 

eventually become inert. 

In our model, category revision and mental model transformation are different types of 

conceptual change because they involve different types of changes to conceptual knowledge: 

category revision revises an element (e.g., q) within domain knowledge, and mental model 

transformation recombines existing elements of domain knowledge (e.g., mental model parts and 

propositional beliefs) into different aggregates.  Importantly, both of these changes are 

propagated throughout the knowledge base using the same explanation-based process.  So while 

both of these types of conceptual change result in different changes to memory, they share a 

common propagation mechanisms and underlying memory structure.  This completes our 

discussion of the third claim. 
                                                 

7 Chapter 8 shows how heuristics can be used to revise quantities upon encountering anomalies. 
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To summarize, constructing and evaluating explanations is the primary mechanism of 

conceptual change in our cognitive model.  We have very abstractly sketched how this occurs, 

but this does not qualify as a theory or model of conceptual change in itself.  In later chapters, we 

describe the representations and algorithms – including models of explanation construction and 

explanation evaluation – that underlie this specification.  As abstract as it is, our above sketch of 

the two types of conceptual change does make a number of high-level psychological assumptions 

that are worth addressing before we discuss the details. 

1.2 Psychological assumptions of our model of conceptual change 

We summarize our assumptions in Figure 3.  Some of these assumptions are supported (s) by the 

literature; these serve as psychological constraints for cognitive modeling.  Assumptions that are 

unsupported (u) by the literature serve as psychological predictions of this cognitive model that 

might be confirmed by later psychological experimentation.  Finally, assumptions that are 

inconsistent (i) with the literature are limitations and opportunities for future improvement.  We 

discuss each of these assumptions next. 
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Type Assumptions 
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1. Human experts and novices can mentally simulate physical phenomena 
qualitatively. (s) 

2. When a person uses a mental model to reason about the world, the object(s) 
described by the mental model generally correspond to real-world objects. (s) 

3. People represent causal influences between quantities in their intuitive 
knowledge about the world. (s) 

4. Regardless of how they are organized within theories and explanations, human 
mental models can be represented as reusable parts. (s) 

5. People store mental models in long-term memory. (s) 

6. People can learn and reason with propositional beliefs. (s) 

M
em

or
y 

&
 A

cc
es

s 

7. People can evaluate competing explanations for a single phenomenon. (s) 

8. People can believe two inconsistent beliefs simultaneously when those beliefs 
are used to explain different phenomena. (s) 

9. After explaining a phenomenon, people generally retain the best explanation 
for the phenomenon in long-term memory, but may not discard other 
explanations. (u) 

10. When explaining a novel phenomenon, people often retrieve a similar, 
previously-understood phenomenon to aid in explanation. (s) 

L
ea

rn
in

g 

11. People use analogy to generalize the common structure of observations. (s) 

12. People can revise the ontological properties of a quantity concept. (s) 

13. People do not immediately replace concepts through conceptual change; 
throughout the process, people have access to both the old and new knowledge 
(e.g., quantities and mental models). (s) 

14. People can change how they explain a phenomenon. (s) 

15. The cognitive processing required to transition away from a misconception is 
qualitatively proportional to how pervasively the misconception was previously 
used in explanations. (u) 

16. By (15), some misconceptions are more resilient to change than others. (s) 

Figure 3. High-level psychological assumptions of our cognitive model, organized by 
type.  Each is labeled where supported by (s) or unsupported by (u) the literature. 



33 
 

 
 

1.2.1 Assumptions about knowledge representation 

Toulmin (1972) argued that that the term “concept” is pervasively used and ill-defined in the 

literature, and this complaint is still warranted today.  As Figure 1, illustrates, we have a very 

specific representation of conceptual knowledge, using existing knowledge representation 

formalisms in AI.  Further, our claim that human mental models can be simulated with 

compositional model fragments has been argued previously (e.g., Forbus & Gentner, 1997).  

Still, we review each of the related assumptions, since the mental model literature has not 

reached consensus on knowledge representation. 

In support of assumption #1: use of qualitative reasoning, there is evidence that novices and 

experts alike often reason with incomplete and imprecise qualitative knowledge, especially in 

situations of informational uncertainty (Trickett & Trafton, 2007).  This supports our choice of 

using compositional qualitative models to simulate human mental models.  We describe 

qualitative reasoning in more detail in Chapter 3. 

The term “mental models” (Gentner & Stevens, 1983; Gentner, 2002) has been widely used 

to describe representations of domains or situations that support everyday explanation and 

prediction.  Nersessian (2007) provides generally-accepted criteria for psychological mental 

model-based reasoning: 

 

• It involves the construction or retrieval of a mental model. 

• Inferences are derived through manipulation of the mental model. 

 

Vosniadou & Brewer (1994) note additional characteristics of mental models: 
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• The observable and unobservable objects and states of the world that a mental model 

represents are often analogs of real-world objects. (Supports assumption #2: entities and 

states in mental models have real-world correspondences.) 

• Mental models provide explanations of physical phenomena. 

• Many mental models may be manipulated mentally or “run in the mind’s eye” to make 

predictions about the outcomes of causal states in the world. 

 

One representation distinction noted by Markman and Gentner (2001) is between logical 

mental models and causal mental models.  In the logical mental model account (e.g., Johnson-

Laird, 1983), mental models are logical constructs in working memory.  In this view, mental 

models are constructed on-the-spot, involving only knowledge in working memory about the 

local problem-at-hand.  This approach has been criticized for failing to simulate human 

reasoning that is captured by propositional reasoning (Rips, 1986).  This definition of mental 

models is inconsistent with assumption #5: mental models in LTM. 

In the causal mental model account (e.g., Gentner & Stevens, 1983), the entities and 

quantities of a mental model correspond to observable and unobservable entities and quantities in 

a causal system (supporting assumption #2: entities and states in mental models have real-world 

correspondences).  Further, causal mental models draw on long-term domain knowledge 

(supporting assumption #5: mental models in LTM).  In this dissertation, we use the term “mental 

model” to refer to this causal account of mental model. 

In support of assumption #3: representing quantity influences, there is evidence that even 

infants have knowledge about the relationship between quantities.  For example, 6.5-month-old 

infants look reliably longer – indicating a violation of expectation – when a small object A strikes 
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a second object B and causes B to roll farther then when a large object C hits the same object B.  

This suggests that infants understand an indirect influence between quantities: the distance 

something travels is qualitatively proportional to the size of the object that strikes it (Baillargeon, 

1998).  It is safe to assume that humans have a tendency to represent influences between 

quantities, even prior to formal instruction, but not prior to experience.  We describe direct and 

indirect influences in depth in Chapter 3. 

Our assumption #4: piecewise mental model representation is a key argument of 

compositional accounts of mental models (Collins & Gentner, 1987) and of the knowledge in 

pieces (hereafter KiP) view of conceptual change (diSessa, 1993; diSessa et al., 2004).  KiP 

claims that conceptual reasoning involves the coordination of various phenomenological 

primitives which include rules, constraints, and qualitative proportionalities such as larger 

objects have greater momentum.  Under KiP, conceptual change involves revising a piece of 

knowledge or recombining them to generate new explanations. 

The plausibility of assumption #4 is not limited to the KiP perspective.  For example, 

researchers who oppose KiP and advocate a more coherent account of human mental models 

(e.g., Vosniadou & Brewer, 1992; Vosniadou, 1994; Ioannides & Vosniadou, 2002) describe the 

existence of synthetic mental models.  In this coherence-based account, synthetic mental models 

are the result of partially revising an intuitive (i.e., pre-instructional) mental model to accord 

with scientific knowledge.  One example of a synthetic model found by Vosniadou & Brewer 

(1992) is a flat, disc-shaped earth, formed by students who assimilate the knowledge “the earth is 

round” into an intuitive model of a flat, rectangular earth.  If we can identify components of this 

synthetic model as intuitive (e.g., the flatness of the disc-earth) and other aspects as instructional 
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(e.g., the roundness of the disc-earth), then we can say that even though human mental models 

might be stored coherently, they are at least plausibly represented as smaller components. 

Representation assumption #6: people reason with propositional beliefs is widely (though 

not universally) accepted in cognitive science (Forbus & Gentner, 1997; Chi, 2008; Vosniadou, 

1994; but see Glenberg et al., 1999; Thelen and Smith, 1994).  This is supported by studies of 

deductive reasoning (e.g., Rips, 2001) and accounts of conceptual change (e.g., Chi, 2008; 

Vosniadou, 1994; diSessa, 1993).  This does not mean that propositional beliefs are always easy 

to change; to the contrary, Vosniadou (1994) argues that presuppositions – prevalent 

propositional beliefs such as “things that are unsupported from beneath fall down” – are the most 

difficult to change. 

1.2.2 Assumptions about memory and knowledge organization 

We now discuss psychological assumptions about how knowledge is evaluated and organized in 

long-term memory. 

Assumption #7: evaluating competing explanations is supported by the literature.  Chinn et 

al. (1998) propose that everyday people evaluate explanations based on the criteria of empirical 

accuracy, scope, consistency, simplicity, and plausibility, and scientists evaluate scientific 

explanations by the additional criteria of precision, formalisms, and fruitfulness.  Lombrozo 

(2011) mentions additional explanatory virtues by which people judge explanations, including 

coverage of observations, goal appeal, and narrative structure. 

There is evidence in the literature for assumption #8: simultaneous inconsistent beliefs.  For 

example, Collins and Gentner (1987) found that novices often use mutually inconsistent mental 

models of evaporation and condensation to explain different phenomena.  While novice 
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explanations are locally consistent for explaining individual phenomena (e.g., hot water 

evaporating in a refrigerator, seeing your breath in the winter) they may be globally inconsistent.  

Since these inconsistent mental models are narrowly compartmentalized by phenomena, the 

learner may never realize these inconsistencies (Gentner, 2002). 

Our model assumes that people store explanations for phenomena – including justification 

structure – in long-term memory (assumption 9). This is probably a case where the model’s 

assumptions are too strong.  Other theories of conceptual change suggest that explanations are 

organizational structures (e.g., Carey, 1985), but it seems unlikely that people retain all of the 

justification structure of their explanations. Evidence suggests that if people do retain 

justifications for their beliefs (and by extension, the entire explanation(s), according to 

assumption #9) they tend to retain a belief even after the supporting evidence is discredited.  

Ross and Anderson (1982) discuss several experiments that (1) convinced people of a belief 

(e.g., the professional performance of firefighters positively or negatively correlates with their 

score on a paper and pencil test) and then (2) debriefed the subject to communicate that the 

initial evidence was fictitious – and that in fact, the opposite was true.  In these studies, the 

subject retained significant confidence in the belief after the evidence was discredited, 

suggesting that evidence is not required for retaining a belief.  In a similar study (Davies, 1997) 

people either read high-quality explanations for the outcomes of an event or constructed 

explanations for themselves for the same outcomes, based on the same evidence.  After all of the 

evidence was discredited, subjects who constructed explanations for themselves were 

significantly more likely to retain the unsupported belief than those that read a high-quality 

explanation. 
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Since people do not always rely on the evidence for their beliefs during everyday belief 

revision, they might not encode all of the justifications between beliefs and supporting evidence.  

Harman (1986, pp. 41) argues that “[i]t stretches credulity to suppose people always keep track 

of the sources of their beliefs but often fail to notice when the sources are undermined.”  This is a 

philosophical appeal to the simplest explanation, which is part of a larger debate in the 

philosophy and belief revision literature between the foundations theory and the coherence 

theory.  Though philosophical appeals to this question do not provide us with empirical evidence 

for our assumption, they help illustrate the dilemma. 

According to the foundations theory (e.g., Doyle, 1992), justifications for beliefs are 

retained, and a rational agent holds a belief if and only if it is justified.8  If all justifications for a 

belief are invalidated, that belief is invalidated, and the justifications it supports are also 

invalidated, resulting in a possible chain-reaction.  Conversely, under the coherence theory (e.g., 

Gärdenfors, 1990), justifications for beliefs are not retained in memory – if the agent is no longer 

justified in believing something (i.e., there is no more evidence), the belief is still retained 

insofar as it is consistent with other beliefs.  Put simply, the foundations theory states that beliefs 

are held only if there is rationale, and the coherence theory states that once a belief is held, it is 

only removed if there is rationale. 

Our cognitive model does not strictly adhere to the foundations theory, since beliefs are not 

necessarily retracted when they lose support (i.e., they may become assumptions if they are used 

to support other beliefs), but it does rely on justification structure of explanations to organize 

beliefs.  Other systems that record justification structure (e.g., Doyle and Wellman, 1990) also 

retain unjustified beliefs when convenient. 

                                                 
8 Belief revision according to the foundations theory is exemplified by Truth Maintenance Systems (Forbus & de 
Kleer, 1993), discussed in Chapter 3.  AI approaches that track justifications of knowledge generally encode 
justifications for all premise beliefs.  Consequently, observations are intrinsically justified. 
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Since we have no hard evidence to support assumption #9, our model might rely too heavily 

on the presence of explanations in long-term memory.  We describe some ideas for altering the 

model to remove this assumption in section 9.4 

There is indirect evidence in the literature for assumption #10: retrieval of a similar, 

understood phenomenon.  During problem solving, people are often reminded of prior problems; 

however, these remindings are often based on surface-level similarities between problems rather 

than deeper relational similarities (Gentner, Ratterman, & Forbus, 1993; Ross, 1987).  On the 

rare occasions that they retrieve a useful analog in a distant domain, people can use these cases 

via analogy to the present problem to find a solution (Gick & Holyoak, 1980).  There is evidence 

that people have some success in retrieving and utilizing similar problems in the domains of 

mathematics (Novick, 1988) and computer programming (Faries & Reiser, 1988).  It is therefore 

a safe assumption that people are reminded of similar phenomena when faced with a new 

phenomenon to explain, especially when they have surface-level similarity.  This still allows for 

the possibility that nothing may be retrieved, e.g., when episodic memory is empty or when no 

previously-encountered phenomena are similar.  The simulation described in Chapter 8 uses 

heuristics to generate new domain knowledge in these instances. 

1.2.3 Assumptions about learning  

Our claim that people can induce mental models from observations assumes that people use 

analogy to generalize (assumption 11).  It also makes assumptions regarding how people 

represent their observations, which we address later.  There is substantial evidence that both 

adults and children use analogical generalization to learn categories and relationships over very 

few examples.  For instance, 4-year-olds can learn the abstract relational categories monotonicity 
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and symmetry with only a few examples, if done correctly, which is elegantly explained by 

analogical generalization (Kotovsky & Gentner, 1996).  Further, Gentner and Namy (1999) 

found that when 4-year-olds are provided a single example of a nonsense category such a “dax,” 

and asked to find another dax, they choose a perceptual (i.e., surface-level) match; however, 

when given two training examples and encouraged to compare, they pick a conceptual (i.e., 

relational) match.  This suggests that the act of comparing as few as two examples can induce a 

new category hypothesis, which is consistent with analogical generalization. 

Our model assumes that people can make ontological revisions to their concepts 

(assumption 12).  Ontological revision is a central component of Chi’s (2005; 2008) theory of 

conceptual change.  Chi calls ontological revision a categorical shift, whereby a category such as 

“Whale” changes lateral position in a hierarchical ontology of categories, e.g., from a 

subordinate position of “Fish” to a subordinate position of “Mammal.”  The more distant the 

initial and final position of a concept, the more difficult the conceptual change.  Two notable 

examples are as follows: (1) shifting “Force” from its intuitive position under “Substance” 

(Reiner et al., 2000) to a lateral “Constraint-based interaction” position (Chi et al., 1994b); and 

(2) shifting “Diffusion” from beneath “Direct process” to beneath “Emergent process” (Chi, 

2005).  Our model does not rely on these specific ontologies, but it does assume that people are 

capable of making ontological changes, and this assumption seems safe. 

Since our model of conceptual change involves incrementally transitioning between 

theories, we rely on assumption #13: theories are not immediately replaced.  For example, it 

cannot be the case that learning a new and credible theory of dynamics causes a person to 

immediately forget the inconsistent beliefs and models of a previous theory of dynamics.  AI 

algorithms for coherence-based belief revision (e.g., Alchurron et al., 1985) immediately remove 
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inconsistent beliefs in this fashion.  Similarly, dependency-directed backtracking algorithms for 

truth maintenance (e.g., Doyle, 1979; Forbus & de Kleer, 1993) immediately retract assumptions 

to retain consistency.  Since we assume that people can hold contradictory beliefs (assumption 

8), these algorithms are not used in our conceptual change model. 

The literature supports the assumptions that competing theories can coexist, psychologically.  

In their constructivist view of conceptual change, Smith, diSessa, and Roschelle (1994) note that 

as people accrue theories, they evaluate them with respect to their effectiveness in understanding 

and manipulating the world.  Under this view, nonscientific theories can be used productively 

even when scientifically-correct theories are available.  Similarly, students often learn to use 

quantitative Newtonian theories of force while still operating with their qualitative 

misconceptions of force (Clement, 1985; Hestenes et al., 1992).  The Newtonian laws, e.g., F = 

ma can also be used for qualitative reasoning.  For instance, all else being equal, increasing mass 

must increase force (i.e., force is qualitatively proportional9 to mass) and increasing force must 

increase acceleration (i.e., acceleration is qualitatively proportional to force).  The predictions of 

this qualitative Newtonian theory of force are inconsistent with most students’ intuitive 

qualitative models of force.  Despite their joint applicability, students might contextualize 

Newtonian and intuitive models of force separately, so that Newtonian models are used in 

quantitative classroom problem-solving and intuitive models are used in everyday qualitative 

reasoning contexts.  This micro-contextualization of mental models is not a new idea; Collins 

and Gentner (1987) suggest that this is the reason novices are able to reason with inconsistent 

knowledge, often without detecting an inconsistency. 

As described above, our model of conceptual change involves incrementally shifting 

phenomena from explanations that use a superseded theory to explanations that use a preferred 
                                                 

9 Qualitative proportionalities are described in greater detail in section 3.2. 
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theory.  Consequently, we make the assumption #14: phenomena can be re-explained.  This is 

not a contentious claim – studies that contain a pretest and posttest to measure learning (e.g., 

about the human circulatory system in Chi et al., 1994a) or an interview during which 

explanations change (e.g., about the changing of the seasons in Sherin et al., in press) 

demonstrate clearly that people can change their explanations for phenomena.  This may not be 

sufficient to show that people retain all of the justifications for their explanation (assumption #9), 

but they do associate the phenomenon with new – or at least, different – supporting knowledge. 

Since our computational model relies on the gradual shift of explanatory support, it follows 

that the more explanations include a theory, the more computations are necessary for the agent to 

transition away from said theory.  In other words, we predict that the more pervasive a 

misconception is, the more processing is required to overcome it (assumption #15).  There is no 

direct support of this in the literature, but this is consistent with the idea that productive theories 

are more pervasive and robust to change (Smith, diSessa, and Roschelle, 1994). 

If we assume that some misconceptions require more processing to overcome than others 

(assumption #15) then we arrive at assumption #16: some theories are more resilient to change.  

As mentioned above, Vosniadou (1994; Vosniadou & Brewer, 1992, 1994) makes a distinction 

between mental models and presupposition beliefs that constrain these mental models.  For 

example, a mental model of a flat earth is constrained by the presupposition “things that are 

unsupported from beneath fall down.”  In Vosniadou’s theory, these presuppositions are more 

resilient to change than the mental models they constrain.  Further, de Leeuw (1993) and Chi 

(2000) argue that the perseverance with which a belief is held increases with the number of 
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consequences the belief has in a network therein.10  In our model, these networked consequences 

of a belief correspond roughly to the explanations that include said belief.  Our definition of 

theory includes a set of beliefs, so this supports the assumption that theories vary in their 

resilience to change. 

Researchers have also characterized how people resist changing their beliefs.  People use 

evasive strategies called knowledge shields (Feltovich et al., 2001) to ignore anomalous data, and 

they use other strategies such as rejecting, reinterpreting, excluding, and holding knowledge in 

abeyance (Chinn & Brewer, 1993; 1998) to resist change.  In the event that people do revise their 

beliefs, they frequently make minimal changes to their present theory rather than adopting a new 

theory in its entirety (Posner et al., 1982; Chinn & Brewer, 1998).  All of the simulations 

described below are biased toward minimizing changes.  For example, Chapter 7 describes 

simulation trials that learn humanlike misconceptions by choosing to use concepts (e.g., “heart”) 

known prior to instruction over other concepts (e.g., “left-heart”) that were acquired by formal 

instruction.  Since the focus of this dissertation is conceptual change, we are more interested in 

simulating the successful – albeit minimal – revision of beliefs rather the avoidance of belief 

change; however, modeling avoidance strategies is an interesting opportunity for future work. 

To support the claims of this dissertation, we have developed a model of conceptual change, 

implemented the model on a cognitive architecture, and conducted four simulation experiments 

to compare the trajectory of models that the system undergoes to the trajectory of mental models 

of human learners.  Our computational model is described in Chapter 4, and is a novel 

contribution of this dissertation.  The only aspects of our model that are not novel contributions 

are described in Chapter 3, our discussion of background AI technologies. 

                                                 
10 It is unclear whether “consequences” refer to logical entailments (in the philosophical coherence-based view of 
belief revision) or justifications (in the philosophical foundations view of belief revision) supported by a belief.  
Regardless, this supports the assumption that some beliefs are more resilient to change than others. 
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In the next chapter we describe other theories of conceptual change from the cognitive 

science literature and discuss areas of contention between them.  A comparison of our model 

with these previous models is best done after our simulation results are presented, and hence is 

postponed until Chapter 9.  
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Chapter 2: Other theories of conceptual change 

 
 
One aim of the cognitive model presented in this dissertation is to provide insight into the 

cognitive processes underlying human conceptual change.  This warrants a discussion of existing 

theories of conceptual change and the areas of dispute that our model might help explicate.  

None of the conceptual change theories we discuss have computational models that capture the 

full spectrum of belief changes they describe.11  Consequently, some speculation is necessary for 

determining each theory’s constraints on knowledge representation, memory organization, and 

revision mechanisms. 

Despite the consensus that concepts are the granularity of change in conceptual change, 

different theories of conceptual change make different assumptions regarding what a concept is 

and how they change (diSessa and Sherin, 1998).  No theory uses the word “concept” exactly as 

any other theory does or exactly as we do in our cognitive model – in fact, we try to avoid this 

vague term.  Unfortunately, we must use “concept” when discussing other theories to avoid 

making over-specific assumptions about knowledge representation, since the theorists’ 

definitions of “concept” may be intentionally abstract or noncommittal. 

Ideally, we could compare our model of conceptual change with other computational models 

that implement these four theories: they could learn from the same training data and we could 

monitor their progress over time using the same testing data.  Unfortunately, since none of these 

theories have computational models that capture the full spectrum of belief changes they 

describe, this is not feasible.  The other possibility is to modify our model to reflect the different 
                                                 

11 INTHELEX (Esposito et al., 2000a; Vosniadou et al., 1998) has been used to model aspects of conceptual change 
in learning the meaning of “force” using logical theory refinement; however, the system is given multiple 
representations of “force” concept (e.g., “internal” force and “acquired” force) from the start, and does not invent 
and transition between representations spontaneously as children do, according to Ioannides and Vosniadou (2002).  
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aspects of these theories.  This is not feasible, since the underlying algorithms and knowledge 

representations have not been specified for these theories.  Ultimately, we must compare our 

model to these four theories by abstracting the assumptions and behaviors of our model into a 

psychological theory of conceptual change, and then comparing the theories at that level.  We 

save this discussion for Chapter 9, after we have presented the data from our simulations. 

This chapter begins by describing four theories of human conceptual change that aim to 

explain how people adopt new beliefs in the presence of conflicting beliefs.  For each theory, we 

discuss its underlying assumptions about knowledge representation, memory organization, and 

mechanisms of change.  After discussing these theories of conceptual change, we discuss some 

notable areas of divergence and disagreement. 

2.1 Four theories of conceptual change 

The conceptual change theories we discuss include the theory-theory of conceptual development, 

framework theory, categorical shift, and knowledge in pieces.  Each theory makes different 

commitments to the representation of categories and mental models, the organization of this 

knowledge in the mind, and the mechanisms that carry out change.   

2.1.1 Carey’s theory-theory of conceptual development 

We begin by discussing Susan Carey’s (1985; 1988; 2009) theory of conceptual change.  Carey’s 

theory is characterized by a strong appeal to the history of science to draw similarities between 

conceptual change in children and in the scientific community.  It also relies on Kuhn’s (1962) 

notion of incommensurability between conceptual systems.  Incommensurability is a relation that 

holds between the languages of two theories.  Two conceptual systems (i.e., theories with 
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propositional beliefs, categories, and models) CS1 and CS2 are incommensurable if CS1 contains 

concepts that are incoherent from the point of view of CS2.  That is, the beliefs, laws, and 

explanations that can be stated in CS1’s language cannot be expressed in the language of CS2.  

The presence of concepts in CS1 that are merely absent in CS2 is not sufficient for 

incommensurability.   

For an example of incommensurability, consider Jean Buridean’s theory of projectile 

dynamics (based heavily on Aristotelian dynamics) with respect to Newtonian projectile 

dynamics.  Buridean and Newtonian dynamics use different vocabularies – Buridean uses the 

concept of impetus, and Newton uses the concept of force.  The Buridean concept of impetus is 

proportional to velocity, so an impetus in the direction of motion sustains an object’s velocity.  

Newtonian net force is proportional to acceleration, so a non-zero net force in the direction of 

motion increases an object’s velocity.  Also, an object moving at constant velocity has a constant 

impetus (i.e., the impetus is not weakened by gravity or air resistance) in Buridean theory, but it 

has a zero net force in Newtonian theory.  A final point of contrast is the motion of bodies on 

circular paths.  Buridean’s theory states that circular impetuses sustain the circular motion of 

celestial bodies.  In some ways, this is a simpler explanation than accounting for the tangential 

velocity of orbiting bodies with inward acceleration due to the curvature of space-time.  Carey’s 

examples of incommensurability include other historical examples (e.g., the source-recipient 

theory of heat versus the caloric theory of heat) and developmental examples (e.g., theories of 

physics with and without weight differentiated from density). 

Under Carey’s theory, conceptual change involves a shift from a conceptual system CS1 to 

an incommensurable conceptual system CS2.  Both conceptual systems are internally coherent, 

stable, and symbolically represented.  The difficulty of achieving conceptual change in some 
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domains, e.g., learning to differentiate weight from density, stems from this incommensurability.  

When novices and experts hear “weight,” they understand something different, and the 

corresponding novice and expert ideas are mutually incoherent.  This is an obstacle for effective 

communication and formal instruction.  Since children must acquire the scientific account CS2 

via social processes, incommensurability makes conceptual change difficult. 

The process of conceptual change must therefore create representations for CS2 that are 

qualitatively different from those in CS1.  Carey (2009) argues that children perform Quinian 

bootstrapping to achieve this.  Quine (1960) describes bootstrapping using a metaphor: you use a 

ladder to build a platform in a conceptual system until the platform is self-sustaining, and then 

you kick the ladder out from under.  In the case of historical and psychological conceptual 

change, the symbols that represent concepts (e.g., weight and density) are used as placeholders 

for developing a new conceptual system CS2.  Processes such as analogy (e.g., Gentner et al., 

1997), model-based thought experimentation (e.g., Nersessian, 2007), and abduction are used to 

integrate new knowledge and support observations using these placeholder symbols.  In this 

manner, placeholder concepts are learned together and gain meaning relative to each other.  This 

bootstrapping process is iterative, and through successive rounds of analogy, abduction, and 

model-based reasoning, the concepts in CS2 acquire meaning and are used to explain real-world 

phenomena. 

2.1.2 Vosniadou’s framework theory 

Like Carey’s theory-theory of conceptual development, Vosniadou’s (2002; 1994; Vosniadou 

and Brewer, 1992; 1994; Ioannides and Vosniadou, 2002) theory posits that novices have an 

internally coherent intuitive understanding of the world that is subject to modification and radical 
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revision.  In place of Carey’s conceptual systems, Vosniadou uses the term framework theories.  

Children’s framework theories are coherent explanatory systems, but they lack characteristics of 

scientific theories such as systematicity, abstractness, social nature, and metaconceptual access 

(Vosniadou, 2007; Ioannides and Vosniadou, 2002).  Embedded within framework theory are 

specific theories about phenomena (e.g., the day/night cycle) and entities (e.g., the earth).  

Specific theories are also referred to as specific explanations (Ioannides and Vosniadou, 2002).  

Finally, embedded within the framework theory and specific theories are mental models.  The 

embedded nature of knowledge refers to the direction of constraint: the framework theory 

constrains the specific theories/explanations, which in turn constrain the mental models 

(Vosniadou, 2002). 

Framework theories contain presuppositions, which are propositional beliefs that are learned 

from observations and cultural influences.  Each presupposition places consistency constraints on 

the specific theories embedded within the framework theory.  In this fashion, presuppositions 

limit the space of allowable specific theories, and indirectly, the space of allowable mental 

models.  For example, the presupposition “unsupported objects fall down” affects the specific 

theory and mental model of the earth, since a spherical earth with people standing on the 

“bottom” would contradict the presupposition.  It is assumed that changing a specific theory 

(e.g., of the shape of the earth) is easier than retracting presuppositions, provided the new 

specific theory is consistent with existing presuppositions. 

In Vosniadou’s theory, the main difficulty of conceptual change is that students frequently 

assimilate aspects of a scientific explanation into their flawed framework theory without 

sufficiently revising their presuppositions.  In these cases, learners either (1) do not notice the 

contradictions between the new information and their presuppositions and explanations, or (2) 
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they notice contradictions and only make partial (i.e., insufficient) changes to their 

presuppositions and explanations.  Partial revision of a framework theory can produce new 

misconceptions and synthetic models (Vosniadou and Brewer, 1992; 1994; Ioannides and 

Vosniadou, 2002), which are incorrect mental models that incorporate both intuitive and 

scientific components.  Consider integrating the belief “the earth is round” into a framework 

theory that contains the “unsupported objects fall down” presupposition with a mental model of 

the earth as a flat rectangle.  Since presupposition theories are more resilient, the mental model 

of the earth is the easiest component to revise, and the earth may be conceived of as a flat 

cylinder, a flattened sphere, or even a hollow sphere with a flat surface inside (Vosniadou and 

Brewer, 1992).  The mental model of the earth is thereby constrained by the presupposition, and 

the learner must revise this presupposition to acquire the correct mental model of the earth. 

Changing a framework theory is a gradual process, driven by observation, explanation, and 

formal education.  Throughout the process of learning science, aspects of scientific theories are 

assimilated into the theories/explanations embedded within the student’s framework theory, as 

well as into the framework theory itself.  This yields a series of synthetic models which approach 

the correct scientific theory. 

2.1.3 Chi’s categorical shift 

Chi and colleagues (Chi, 2008; 2005; 2000; Reiner et al., 2000; Chi et al., 1994b) distinguish 

between three different types of conceptual change: (1) categorical shift; (2) mental model 

transformation; and (3) belief revision.  All three types of conceptual change require that some 

existing knowledge is retracted or revised; otherwise, this would constitute gap-filling, 

enrichment, or tabula rasa knowledge acquisition.  We discuss each of these types of change 
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according to Chi’s theory, including the type of knowledge affected and the mechanism of 

change. 

Categorical shift was briefly discussed in the previous chapter.  It involves changing a 

category’s lateral position in a hierarchy of categories.  Chi’s theory assumes the existence of 

multiple, disconnected ontological trees with multiple levels of inheritance.  For instance, Chi 

(2008) identifies three ontological trees: (1) “Entities” which has subordinate branches “Concrete 

Objects” and “Substances;” (2) “Processes” which has branches “Direct,” and “Emergent,” and 

(3) “Mental States” with branches “Emotion” and “Intention.”  Each tree and level in the 

hierarchy ascribes ontological attributes to subordinate categories, e.g., a lamp (under the 

“Artifacts” branch of the “Entities” tree) can be broken and a hug (under the “Events” branch of 

the “Processes” tree) can be a minute long.  All else being equal, the greater the lateral distance 

between two categories, the more their ontological attributes differ.  This distance is an important 

consideration for Chi’s theory, because shifting a category from one place in the hierarchy to 

another involves changing ontological attributes – and the greater the distance, the greater the 

change.  For example, “Fish” and “Mammals” categories both share the close ancestor category 

of “Animals” under the “Entities” tree.  These categories are much closer than “Substances” 

(under the “Entities” tree) is to “Constraint-Based Interactions” (under the “Processes” tree).  

Shifting “Whale” from “Fish” to “Mammals” is easier (i.e., less ontological attributes must 

change) than shifting a category such as “Force” from “Substances” (Reiner et al., 2000) to 

“Constraint-Based Interactions.”  Categorical shifts are incommensurate, according to Carey’s 

(1985) definition of incommensurability (Chi, 2008). 

In Chi’s theory, belief revision occurs at the granularity of propositional beliefs, when new 

information is logically inconsistent with prior beliefs.  For example, the belief “the heart 
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oxygenates blood” is inconsistent with the new information “only the lungs oxygenate blood.”  

When this occurs, students can retract the existing belief, adopt the new information, and 

continue looking for inconsistencies.  In reality, students generally encounter information that 

conflicts less directly with their existing beliefs, such as “the lungs oxygenate blood” (i.e., still 

logically permitting the heart to oxygenate blood also), but they still achieve successful belief 

revision even through indirect, implicit conflict (Chi, 2008). 

The third type of conceptual change in Chi’s theory is mental model transformation, which 

is a special case of belief revision.  In Chi’s framework, mental models are organized groups of 

propositional beliefs which can predict changes and outcomes in a situation or system such as the 

human circulatory system.  When a mental model is flawed, it is internally coherent but 

generates incorrect explanations and predictions.  Two mental models (e.g., a flawed and a 

correct model) are in conflict when they make mutually inconsistent predictions and 

explanations, even though the beliefs that comprise the mental models might not be explicitly 

contradictory.  Mental models are ultimately transformed by the revision of the beliefs that 

comprise the mental model.  For this to occur, new information must be in explicit or implicit 

conflict with the beliefs of the mental model, according to the above description of belief 

revision.  Some false beliefs are more “critical” than others (Chi, 2008) in that they discriminate 

between a flawed and correct model.  For example, the false belief “the heart oxygenates the 

blood” is more critical to explaining and predicting the behavior of the circulatory system than 

the false belief “all blood vessels have valves.” 

These accounts of belief revision and mental model transformation do not involve 

incommensurability, as defined by Carey (2009).  This is because a mental model shares the 

same symbolic vocabulary before and after its transformation, even though entities may be added 
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or removed.  This assumes that no categorical shift occurs during mental model transformation.  

Only categorical shifts involve incommensurability, since the vocabulary changes (i.e., 

categories gain and lose ontological attributes). 

2.1.4 diSessa’s knowledge in pieces 

The Knowledge in Pieces (KiP; diSessa, 1988; 1993) view argues that intuitive knowledge 

consists of a multitude of inarticulate explanatory phenomenological primitives (p-prims) which 

are activated in specific contexts.  P-prims are phenomenological in that (1) they provide a sense 

of understanding when they are evoked to explain or interpret a phenomenon and (2) they 

provide a sense of surprise when they cannot be evoked to explain a situation or when their 

predictions are inconsistent with reality.  They are primitive in that they are generally invoked as 

a whole and they need no justification.   

P-prims are not systematic enough to be described individually or collectively as a coherent 

theory (diSessa et al., 2004).  Furthermore, a student may operate with an incoherent set of p-

prims – that is, his or her p-prims may make conflicting predictions about a situation, similar to 

Chi’s (2008) account of conflicting mental models.  This is in direct disagreement with the 

coherent nature of Carey’s conceptual systems and Vosniadou’s framework theories. 

A person or an AI system with incoherent conceptual knowledge may seem unlikely or 

unproductive to some, but according to KiP, each piece of knowledge is highly contextualized 

with respect to its applicability in the real world (diSessa et al., 2004).  This allows people to 

provide coherent explanations for individual phenomena despite global inconsistency.12  If a 

                                                 
12 Collins and Gentner (1987) provide empirical evidence that novices can narrowly contextualize inconsistent 
mental models to achieve internally consistent explanations, but their account of mental models (see Gentner and 
Stevens, 1983) is not committed to fragmentation or p-prims, according to the knowledge in pieces perspective. 
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novice generates a coherent explanation, it is an effect of knowledge contextualization and of the 

process of explanation construction; it is not a hard constraint on how knowledge is organized in 

memory. 

Since KiP does not involve coherent theories or conceptual systems, what constitutes 

misconceptions and conceptual change?  Smith, diSessa, and Roschelle (1993) argue that the 

standard model of misconceptions – that students hold flawed ideas which are replaced during 

instruction – conflicts with the premise of constructivism that students build more advanced 

knowledge from existing understandings.  KiP emphasizes the continuity from novice to expert 

knowledge the presence of intuitive knowledge within expert understanding (Sherin, 2006).  

Consequently, KiP focuses on knowledge refinement and reorganization rather than replacement. 

Minstrell’s (1982, 1989) KiP account of conceptual change involves the recombination of 

explanatory primitives and reuse in different contexts.  Similarly, diSessa (1993) describes how 

the contexts and priorities of p-prims can be altered to change how learners construct 

explanations and predictions in future situations. 

Under KiP, the difficulty of conceptual change is a factor of how productive a piece of 

knowledge is within a given context.  Suppose a learner has previously predicted and understood 

the world using the kinematic “blocking” p-prim (diSessa, 1993) whereby an object such as a 

brick blocks a moving object without any sense of effort or strain (e.g., the brick does not visibly 

move, bend, or compress).  The more productively “blocking” has been at explaining and 

predicting within a class of phenomenon (e.g., putting objects atop rigid surfaces, thus 

preventing the object from moving further downward), the more difficult it will be to assign 

other knowledge besides “blocking” (e.g., of normal forces) to be evoked in this context. 
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2.2 Divergence and disagreement 

All of the above theories aim to explain documented examples of conceptual change, so there is 

considerable consensus about the principles and constraints of conceptual change.  There are also 

many points of contention among the four theories outlined above.  We discuss four topics that 

lack consensus which are especially relevant to our cognitive model: (1) what counts as 

conceptual change; (2) revision versus addition (3) the effect of explaining; and (4) the source of 

coherence.  We discuss these topics with regard to our model in Chapter 9, after we have 

described the simulations that exemplify our model’s behavior. 

2.2.1 What counts as conceptual change 

Carey (2009) argues that incommensurability is a necessary condition for conceptual change.  

This necessarily involves creating new primitives, symbols, and relationships that were not 

coherently describable in the language of the existing conceptual system.  Requiring 

incommensurability sets Carey’s theory apart from the other theories. 

Chi’s (2008) account of conceptual change includes categorical shift (i.e., change of the 

incommensurable sort) and also commensurable changes such as mental model transformation 

and belief revision.  Similarly, Vosniadou (1994; Vosniadou and Brewer, 1992; 1994; Ioannides 

and Vosniadou, 2002) considers the revision of mental models a type of conceptual change.  

Changing the presuppositions of a framework theory – a type of belief revision – is a key 

operation in Vosniadou’s theory of conceptual change. 

Also in disagreement with Carey, diSessa (2006) argues against the necessity of 

incommensurability within conceptual change.  Collecting and coordinating elements of 
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knowledge is the mechanism of conceptual change for KiP, so incommensurability is not a 

worthwhile distinction. 

This particular point of contention concerns terminology rather than human cognitive 

processes.  Carey (2009) states clearly that, “’[c]onceptual change’ means change in individual 

concepts” (pp. 354), but the other theories – most notably, Chi’s – include other manners of non-

monotonic belief revision (i.e., removing beliefs to accommodate new information).  We include 

mental model transformation in our definition of conceptual change, as described in Chapter 1.  

We also include category revision, which abides by Carey’s definition of conceptual change. 

2.2.2 Revision versus addition 

There is a deep but subtle distinction between these theories of conceptual change that has not, I 

believe, been given sufficient attention.  It concerns the revision of information in memory.   

Consider the following example of conceptual change: a student is learning Newtonian 

dynamics.  She generally operates with a flawed account of force, in that it is substance-like 

(Reiner et al., 2000), impetus-like (Ioannides and Vosniadou, 2002), or it includes the “force-as-

mover” p-prim (diSessa, 1993).  Consequently, she generally believes that motion implies the 

existence of a force.  We call this initial account of force Force[1].  Consider also that the student 

is guided through a Newtonian explanation of a puck sliding on ice at constant velocity, ignoring 

friction (i.e., the ice’s upward force against the puck counters the downward force of gravity on 

the puck, resulting in a zero net force).  After consideration, she now confidently understands 

this phenomenon P1 with a Newtonian concept of force Force[2]. 

This raises several questions which have far-reaching implications. How is this new concept 

of force Force[2] stored relative to the old concept Force[1]?  Does the Force[1] shift/change 
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directly, thus becoming Force[2]?  Is an entirely new Force[2] concept added, e.g., as a 

placeholder or by copying and revising the old concept?  We call this the problem of information 

revision.  Figure 4 illustrates an extremely simplified topology of how information might be 

revised in the student’s memory.  The white nodes are phenomena in the student’s memory, and 

the black nodes are categories (of force) that have been used to explain these phenomena.  Figure 

4(a) plots the comprehension of three phenomena P1-P3 before learning Force[2], and Figure 

4(b-f) shows five possible accounts of the student’s state after learning Force[2] and its relevance 

to P1.  Figure 4 does not represent knowledge at the proper granularity for each of the four 

theories (e.g., for KiP, force is represented, in part, by a causal network), and it does not include 

all imaginable schemes of information revision.  However, it is suitable for discussing 

differences in conceptual change theories.  We discuss each of the information revision schemes 

shown in Figure 4, some assumptions behind them, and some implications for theories of 

conceptual change.  We refer to the previously existing category (e.g., Force[1]) as the prior 

category, and the new/revised category (e.g, Force[2]) as the subsequent category. 

If categories are directly revised as in Figure 4(b-c), then the prior category literally 

becomes the subsequent category, and afterward there is no trace of the prior.  In the case of 

Figure 4(b), the learner immediately loses understanding of phenomena (e.g., P2 and P3) that 

were understandable in terms of the old concept but not in terms of the new concept.  This seems 

unlikely, since students have access to their misconceptions after becoming acquainted with 

scientific concepts (Clement, 1982). 
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A second variety of direct revision is depicted in Figure 4(c): the prior category is directly 

revised into the subsequent category, and the learner immediately comprehends previous 

phenomena (e.g., P2 and P3) in terms of the subsequent category.  This shares the same problem 

we mentioned for direct revision, and also creates more problems.  First, it is unlikely that the 

Force[1] and Force[2] categories overlap perfectly in the range of phenomena they can explain, 

so a perfect substitution is not plausible.  Additionally, there is empirical evidence that novices 

can utilize different conceptual knowledge based on the phenomena that needs to be explained.  

For instance, 70% of the novice subjects in diSessa et al. (2004) claimed that different forces 

were at work in phenomena similar to P2 and P3 described in Figure 4(a).  Similarly, Collins and 

 
Figure 4: Five possible accounts of how category information is revised.  Black and white nodes represent 

categories and phenomena, respectively.  Arrows indicate “is understood in terms of.”  Dotted zones indicate 
contexts.  (a) Initial state with category Force[1].  (b-f) Possible resultant states after incorporating Force[2]. 
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Gentner (1987) interviewed a subject who explained two slightly different instances of 

evaporation with different, mutually incoherent, evaporation mechanisms.  

Some of these problems with direct revision can be solved by assuming that prior and 

subsequent categories actually coexist for some time.  In this case, conceptual change involves 

copying and revising (hereafter copy-revising) the prior knowledge to create a minimally or 

radically different subsequent knowledge.  Copy-revision is shown in Figure 4(d), where the 

previous category is still used to understand P2 and P3, but understanding of P1 has been shifted 

to the subsequent concept.  The prior knowledge (e.g., a substance-like category of force) and the 

subsequent knowledge (e.g., Newtonian force) have different existence conditions and 

consequences, so they are mutually incoherent.  If we assume copy-revision happens, then we 

have many other questions to answer: How do people form coherent explanations with 

incoherent knowledge?  How does a student eventually use the subsequent knowledge in place of 

the prior knowledge, where applicable?  What mechanisms monitor the performance of the prior 

and subsequent concepts and shift their contexts? 

A fourth possibility is shown in Figure 4(e): categories are copy-revised and the prior 

category is quarantined.  In quarantine, the prior category cannot be used to explain new 

phenomena – it only exists until the phenomena it supports (e.g., P2 and P3) are understood in 

terms of other concepts.  This makes the unlikely assumption that once a student has a small 

foothold in Newtonian dynamics she immediately discredits her prior intuitive concepts across 

all possible contexts. 

A final information revision scheme is shown in Figure 4(f): categories are copy-revised and 

the subsequent Force[1] and consequent Force[2] categories are explicitly contextualized in 

Context[1] and Context[2], respectively.  These contexts then behave as walls to maintain 
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internal coherence of the knowledge within.  This solves the potential problem of incoherence 

and it allows the prior category Force[1] to continue to be utilized selectively.  However, this 

also raises additional questions: Are new contexts established whenever any category revision 

occurs?  What prevents a combinatorial explosion of contexts?  How do phenomena (e.g. P1-P3) 

come to be understood in terms of the subsequent category in the new context? 

None of the information revision schemes in Figure 4 are themselves complete theories of 

conceptual change.  But they suggest that information revision – even at a very abstract level – 

has wide implications for theories of conceptual change, especially those that make claims about 

coherence and categorical shift.  

For each of the four conceptual change theories, we discuss their commitment to how 

information is organized and revised with respect to a student learning Newtonian concept 

Force[2] in the presence of Force[1].  Some of the theories do not take a clear stand with respect 

to whether prior and subsequent concepts (i.e., beliefs, categories, and mental models) can exist 

simultaneously, so our analysis includes some speculation. 

In Carey’s (2009) account of Quinian bootstrapping, a student learning Newtonian dynamics 

would establish another conceptual system with a placeholder symbol for “force.”  This entails at 

least the following operations: (1) recognize that the present and new concepts of force are 

incoherent (i.e., incommensurable); (2) establish a new conceptual system CS2 for everyday 

dynamics; (3) create a placeholder symbol for the new force concept in CS2; (4) create 

placeholder symbols in CS2 for related concepts (e.g., acceleration and mass) and relations 

between them; and (5) enrich CS2 using modeling processes.  These operations illustrate that 

Carey’s theory does not involve direct revision of categories.  Rather, it involves a very shallow 

copy-revision (more of an addition) since the subsequent concept is only a placeholder symbol.  
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This is most similar to Figure 4(f), where Context[1] represents CS1 and Context[2] represents 

CS2, although both contexts are clearly lacking other quantities and placeholder symbols.  

Coherence is enforced at the granularity of conceptual systems, since the prior and subsequent 

concepts are stored in different conceptual systems.  Step 5 describes how the new conceptual 

system obtains content, but it is not clear how real-world phenomena come to be explained in 

terms of the new conceptual system CS2 with Force[2] rather than the previous system CS1 with 

Force[1]. 

Chi’s (2008; Reiner et al., 2000) account of categorical shift is less straightforward with 

respect to the retention of previous beliefs and categories.  The conjecture of Chi and colleagues 

is that the concept of force starts as a subordinate category of “Substances” for most novices, and 

then is shifted to become a subordinate of the lateral category “Constraint-based interactions” 

under the “Processes” ontological tree.  Unlike Carey’s theory, Chi’s theory does not mention the 

establishment of a new conceptual system that permits Force[1] and Force[2] to coexist.  

Ioannides and Vosniadou (2002) note that “Chi and colleagues seem to believe that conceptual 

change is a radical process that happens in a short period of time as an individual learns the 

correct ontology for a given concept” (pp. 7).  In defense of Chi and colleagues, Chi (2008) notes 

that conceptual change only happens quickly if the learner is already familiar with the target 

category (e.g., “Constraint-based interactions”) of the categorical shift.  Otherwise, the learner 

must learn the properties of the target category, e.g., via formal instruction, before they can 

complete the categorical shift (Chi, 2008; 2005).  So, Chi’s theory of conceptual change is 

prolonged over the enrichment of the target category.  After this is achieved, the concept 

Force[1] appears to be directly revised/shifted (e.g., as in Figure 4b-c), so the prior and 

subsequent concepts do not exist simultaneously.  Further, this suggests that conceptual change 
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of the force concept would be trivial (or even instantaneous) if the learner was already familiar 

with “Constraint-based interactions.” 

According to Vosniadou’s theory, changing the meaning of force is a gradual transition from 

an “initial” meaning of force through a series of “synthetic” meanings of force that incorporate 

aspects of the initial theory with scientific knowledge (Ioannides and Vosniadou, 2002).  The 

overall change from intuitive to scientific concepts of force is gradual due to smaller changes in 

the beliefs and presuppositions (described above) that comprise the learner’s framework theory.  

Some of these changes in the meaning of force occur spontaneously.  For example, a student 

with an internal meaning of force (i.e., force is an internal property of physical objects affected 

by weight and/or size) might notice that objects appear to acquire forces which sustain their 

movement.  This is inconsistent with the idea that forces are only internal.  Since the learner is 

committed to coherence, “acquired and internal force cannot coexist” (Ioannides & Vosniadou, 

pp. 41, their emphasis).  Thus, the learner spontaneously shifts to an acquired meaning of force 

(i.e., objects acquire forces which cause movement). 

The assertion that internal and acquired meanings of force cannot coexist suggests that 

Vosniadou’s theory involves directly revising the prior concept – or at least immediately 

eliminating it.  Thus, in Vosniadou’s theory, the prior and subsequent concepts do not exist 

simultaneously.  Had the authors stated that these meanings of force cannot coexist in the same 

framework, then we would conclude that Vosniadou’s mechanism of change involves 

quarantined copy-revision.  Unlike Chi’s theory, Vosniadou’s theory segments the larger change 

from initial to Newtonain force into a series of incremental conceptual changes; however, like 

Chi’s theory, the individual changes are conducted by directly revising the framework theory and 

concepts embedded therein. 
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In the knowledge in pieces literature, diSessa and Sherin (1998) use the term coordination 

class to describe a connected set of strategies for gathering information and understanding the 

world.  In this account, physical quantities (e.g., force and velocity) are considered coordination 

classes rather than categories (e.g., bird or hammer).  This is because quantities often connect 

preconditions to particular outcomes in a causal net which is part of a coordination class.  

diSessa and Sherin use the equation F = ma to exemplify a causal net13 since the existence of a 

force “causes” acceleration: we can determine force by observing acceleration and we can 

predict acceleration by knowing force.  The authors perform an in-depth analysis on the 

interview transcript of a student describing the forces that exist when a hand pushes a book along 

the surface of a table.  The authors explain the student’s problem-solving difficulties in terms of 

competing causal nets: a Newtonian F = ma causal net applies to the situation but makes 

predictions that she believes are inconsistent, so she excludes the situation from F = ma and 

instead uses an intuitive causal net.  This suggests that intuitive and instructional conceptual 

structures – which are mutually incoherent – simultaneously coexist and compete to explain 

phenomena.  This is a clear example of addition/copy-revision in Figure 4(d), where Force[1] 

and Force[2] indicate different coordination classes. 

Our analysis suggests that there are disagreements among these theories on the foundational 

issue of how information is revised.  Carey’s theory and KiP both involve the establishment of 

new conceptual structures that coexist with prior structures; however, the theories disagree on 

how the new and old structures are contextualized.  Chi’s and Vosniadou’s theories apparently 

rely on the direct revision of concepts once the appropriate category of a concept is learned 

(according to Chi) or once the presuppositions and theories of the framework permit it 

(according to Vosniadou). 
                                                 

13 Not all causal nets are equations, since students have many qualitative assumptions about quantities and causality. 
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One objection to this analysis is that theories of conceptual change theories can be 

noncommittal about how information is revised – after all, it is often advantageous to discuss 

cognition at different levels of abstraction (e.g., Marr, 1982).  In counter-argument, each of these 

theories of conceptual change makes a claim about the presence or absence of coherence.  

Coherence has implications for the information revision scheme, and visa-versa.  Consequently, 

conceptual change theories should describe the relationship between prior and subsequent 

knowledge, including whether they coexist and how they are contextualized. 

The issue of whether new information coexists with previous, conflicting knowledge – and 

how it does so – has implications for coherence, the role of context, the mechanisms and 

complexity of change, and the process of understanding.  I believe that most of the 

disagreements among conceptual change theories stem from vagueness and disagreement on this 

fundamental issue. 

2.2.3 The effect of explaining on the process of change 

The research of Chi and colleagues (Chi et al., 1994a; Chi, 2000; de Leeuw & Chi, 2002) has 

characterized the self-explanation effect, where explaining new information to oneself helps 

repair flawed mental models.  Chi et al. (1994a) determined that students who explain to 

themselves while reading a textbook passage - even when prompted by an experimenter to do so 

– perform better on a posttest than students who simply read the passage twice.  Frequent self-

explainers experience the greatest benefit.  Chi (2000) describes the mechanism by which self-

explaining promotes mental model transformation: (1) explaining the new knowledge causes 

recognition of qualitative conflicts (i.e., different predictions and structure) between a mental 

model and the text model; (2) the conflict is propagated in the mental model to find 
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inconsistencies in the consequences; and (3) the mental model is repaired using elementary 

addition, deletion, concatenation, or feature generalization operators.  In short, self-explanation 

finds contradictions within implicit conflicts, thus causing belief revision.  This can result in 

mental model transformation in Chi’s framework, as described above. 

Constructing an explanation for peer interaction can have the same beneficial effects on 

learning as self-explanation (Webb, 1989).  Both explanation scenarios require that we make 

sense of relevant information; however, explaining to somebody else requires that we monitor 

the listener’s comprehension, which might distract from our learning. 

In Vosniadou’s theory of conceptual change, “specific explanations” (synonymous with 

“specific theory;” Ioannides and Vosniadou, 2002) are embedded within a larger framework 

theory.  It is not clear whether “specific explanation” refers to Chi’s notion of explanation, but it 

appears that explanations – or the specific theoretical components thereof – are persistent 

structures (unlike Chi’s theory).  As in Chi’s theory, constructing a new explanation can revise or 

replace these structures within the larger framework.  Since we have too little information on 

how explanation affects conceptual change in Vosniadou’s theory, we do not speculate any 

further. 

At the heart of Carey’s (2009) account of Quinian bootstrapping are modeling processes that 

provide meaning for placeholder structures in a new conceptual system.  These modeling 

processes include analogy, induction, thought experiments, limiting case analyses, and abduction 

(i.e., reasoning to the best explanation).  Both analogy and abduction are relevant mechanisms of 

explanation for our discussion.14  These explanation processes generate the actual content of a 

                                                 
14 Chi et al. (1994a) use the spontaneous analogy “the septum [of the heart] is like a wall” as an example of a self-
explanation (pp. 454-455), so we include analogy in our discussion of the effect of explanation. 
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new conceptual system by (1) importing knowledge from other domains via analogy, and (2) 

making coherent assumptions via abduction. 

Chi and Carey are assuming the same explanatory mechanisms (i.e., model-based abduction 

and analogy) but in reference to different types of change.  Chi discusses how explanation 

promotes mental model transformation by repairing conflicts, and Carey discusses how it 

enriches a new conceptual system for incommensurable conceptual change.  We believe that 

constructing explanations can play both of these roles, and our computational model constructs 

explanations to achieve both of these types of conceptual change (i.e., mental model 

transformation and category revision).  Our computational model does not simulate all of the 

modeling processes mentioned by Carey (2009), nor does it model Quinian bootstrapping in its 

entirety. 

From the KiP perspective, constructing an explanation involves combining and jointly using 

multiple pieces of knowledge.  diSessa (1993) notes that using multiple p-prims in dynamic 

sequence or standard clusters accounts for these p-prims to raise or lower their structured 

priority simultaneously, where structured priority refers to (1) the strength of the connections 

between a p-prim and previously activated elements and (2) its likelihood of remaining activated 

during subsequent processing.   This indicates that explaining shifts the context of conceptual 

structures.  This, too, is a role of explanation in our computational model. 

We see no explicit disagreement regarding the role of explanation in conceptual change.  

Each theory describes a separate effect of explaining, but these effects are mutually consistent. 
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2.2.4 The source of coherence 

There is wide consensus that coherence is a desirable property of explanations (Thagard, 2007; 

Lombrozo, 2011), and that people revise their explanations to cohere with credible knowledge 

(Sherin et al., 2012).  There is less agreement, however, on the source of coherence, and even on 

the definition of coherence (diSessa et al., 2004; Ioannides and Vosniadou, 2002; Thagard, 

2000).  Where the definition of coherence is more subjective, we discuss the dispute over the 

more general – and less ambiguous – epistemic property of logical consistency.  In short, if a set 

of beliefs and mental models do not directly entail a contradiction, they are logically consistent.15  

Logical consistency is necessary but not sufficient for coherence.  We do not assume that all 

possible contradictions are immediately detected by the learner, so for our discussion, 

“consistency” refers to perceived consistency rather than objective logical consistency.  We 

discuss the disagreement among conceptual change theories about the role and source of 

consistency, which helps illustrate the more complicated dispute about coherence. 

To begin, we must define coherence and consistency as a quantified property.  A set of 

beliefs and mental models can be internally consistent if they do not entail a contradiction, 

regardless of beliefs and mental models outside of the set.  Beliefs are globally consistent if the 

superset of all beliefs and models of the learner do not entail a contradiction.  Internal and global 

coherence can be bounded in a similar fashion, but coherence is stricter than logical consistency.   

Carey’s theory assumes coherence – and therefore logical consistency – within conceptual 

systems.  When a learner utilizes a coherent, intuitive conceptual system CS1 and encounters an 

instructional concept that is incommensurable with CS1, he or she establishes a new, coherent 

                                                 
15 We do not assume that the set of beliefs and models is deductively closed, since this is not presumed of any of the 
theories of conceptual change.  Consequently, we are referring to contradictions that are entailed directly from this 
knowledge. 
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conceptual system CS2.  While the learner acquires content and relation structure for CS2, the 

knowledge in CS1 is still available.  Conceptual systems CS1 and CS2 are internally consistent, 

but CS1 and CS2 may be mutually inconsistent, so the learner’s knowledge may be globally 

inconsistent.  For Carey, the granularity of consistency is at the level of conceptual systems, and 

it appears to be a hard constraint.  Interestingly, a learner’s knowledge must be globally 

incoherent in Carey’s theory, since incoherence is a necessary property of incommensurability, 

and incommensurability is a precursor for establishing the new conceptual system CS2.  

Consequently, Carey assumes internal coherence of conceptual systems and global incoherence 

among the union of all conceptual systems. 

In Chi’s theory, beliefs and mental models are revised when logical inconsistencies are 

detected.  This is triggered via belief-level refutation or via self-explanation, which propagates 

implicit conflicts into explicit contradictions (Chi, 2008).  In Chi’s theory, consistency does not 

appear to be a hard constraint on conceptual systems, but the lack of consistency in a conceptual 

system drives the revision of components.  Consistency therefore is a soft constraint (i.e., it is 

desired but not required). 

In Vosniadou’s theory, two inconsistent concepts (e.g., meanings of force) cannot coexist 

within the same framework theory (Ioannides and Vosniadou, 2002).  When an inconsistency is 

detected within a framework theory, it is immediately remedied.  This is because mental models 

are “dynamic, situated, and constantly changing representations that adapt to contextual 

variables” (Vosniadou, 2007, pp. 11).  Unlike Carey’s theory, Vosniadou’s theory does not 

mention the establishment of a new context to store the inconsistent concept, so it is not clear 

whether the old concept exists.  Since framework theories are internally consistent and 

inconsistent concepts are removed from them, Vosniadou’s theory appears to assume global 
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consistency in a student’s knowledge.  However, Vosniadou (2007) further argues that students 

lack metaconceptual awareness of their beliefs, and that promoting this awareness is an integral 

part of teaching for conceptual change.  This suggests that inconsistency and incoherence may 

frequently go undetected by novice students, which weakens this global coherence constraint 

considerably. 

Knowledge in pieces involves the coexistence of new and old conceptual structures that are 

globally incoherent and that make globally inconsistent predictions.  Coherence and consistency 

are therefore not properties of the knowledge system, but they are generally properties of the 

explanations that are constructed from it.  When individual knowledge elements (e.g., p-prims) 

are combined to form a coherent explanation, their structured priorities are modified (diSessa, 

1993).  As a result, knowledge elements that are coordinated coherently (and therefore, 

consistently) are more likely to be activated together in the future.  Coherence and consistency 

spread as new combinations of knowledge are considered and as knowledge elements are used in 

new contexts.  Since the explanation process has a bias toward coherence, coherence emerges 

from this process rather than from the knowledge system directly. 

In summary, there are direct disagreements about the source of consistency and coherence in 

explanations and knowledge systems.  From the KiP perspective, the knowledge system is 

incoherent, and coherence is a product of coordinating knowledge into explanations based on 

dynamic activation priorities.  In contrast, the other three theories rely on one or more generally 

coherent conceptual systems prior to explanation construction.  According to Chi and Vosniadou, 

incoherence is a cue to modify a conceptual system by revising beliefs and mental models and 

the categories used to represent them.  Carey agrees that incoherence can lead to belief revision 

and enrichment within a single conceptual system, but disagrees that it causes incommensurable 
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changes such as categorical shift within a single conceptual system.  For Carey, when 

inconsistency is accompanied by incommensurability during formal education, it is a cue for 

establishing a new conceptual system altogether, which is internally coherent and consistent. 

2.3 The path forward 

Our computational model of conceptual change can shed light on the areas of disagreement and 

divergence discussed in this chapter: how information is revised, the role of explanation, and the 

source of coherence.  Our computational model is not an implementation of any of these four 

theories; the psychological assumptions of our model conflicts in some ways with each of the 

theories described above.  Further, our model of conceptual change is not complete with respect 

to any of these theories – there are many things it does not model, including the following: (1) 

the development of metacognitive awareness of one’s beliefs (Vosniadou, 2007); (2) the full 

spectrum of model-based processes that enrich a new conceptual system (Carey, 2009); and (3) 

spontaneous analogies for self-explanation (Chi, 1994a).   We therefore cannot expect this – or 

any – single cognitive model to reconcile all four theories outlined in this chapter.  More 

reasonable goals for our computational model include the following: (1) develop a system for 

representing and contextualizing conceptual knowledge; (2) integrate the roles of explanation in 

each conceptual change theory into a single framework; and (3) demonstrate that a knowledge 

system can indeed be globally incoherent yet still produce coherent explanations. 
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Chapter 3: Background 

Our computational model of conceptual change draws upon a number of areas of AI.  For 

instance, qualitative modeling - a research area initially motivated by the study of human mental 

models - provides us with a composable knowledge representation and a vocabulary for 

descriptive and mechanism-based models.  Computational cognitive models of analogical 

mapping, reminding, and generalization can be used for comparison, retrieval, and induction, 

respectively.  We can also use existing AI technology for logically contextualizing information 

and for tracking the rationale of beliefs and their underlying assumptions.  Finally, we can use 

existing tools to automatically encode sketches into relational knowledge, to rapidly and reliably 

create data for learning and testing in modalities familiar to people. 

3.1 Ontologies 

An ontology represents a set of categories (also called collections) and the relationships between 

them.  Each category represents some type of object/substance (e.g., Dog, ContainedFluid, 

HeartValve) or event/situation (e.g., FluidFlow, PhysicalTransfer, BuyingADrink).  

These collections are part of the vocabulary with which beliefs are represented.  For instance, we 

can assert the statement (isa entity2034 Dog) to say that the symbol entity2034 is an 

instance of the collection Dog, or more casually, that entity2034 is a Dog.  Ontologies contain 

relationships between collections.  For example, the statement (genls Dog CanineAnimal) 

states that all instances of the subordinate collection Dog are also instances of superordinate 

category CanineAnimal, but not necessarily the other way around.  This makes ontologies 

hierarchical.  Figure 5 illustrates a small portion of the OpenCyc ontology which includes Dog 
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and CanineAnimal collections.  We use the OpenCyc ontology for our cognitive model, but we 

only use very small portions of it.  The OpenCyc ontology was not constructed with the intent of 

modeling novice learners – quite the opposite, in fact – so we make heavy use the isa and 

genls relations but only minimal use of the abstract content. 

On a related note, Chi’s (2008) theory of conceptual change, outlined in Chapter 2, assumes 

the existence of “ontological trees.”  These share the hierarchical property of the ontologies 

described here; however, it is not clear that categories in Chi’s ontological trees can inherit from 

multiple superordinate categories as illustrated in Figure 5. 

3.2 Qualitative reasoning 

In the introduction, we mentioned popular examples of conceptual change, including the 

changing concepts of force, heat, and temperature.  Changes in other concepts such as speed, 

velocity, momentum, acceleration, mass, weight, light, and electricity have also been 

characterized in the literature (Reif, 1985; Dykstra et al., 1992; Reiner et al., 2000).  

 
Figure 5: A small portion of the OpenCyc ontology.  An arrow a→b indicates (genls a b). 
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Interestingly, all of these concepts are represented as quantities at some point in the trajectory of 

misconceptions, and most of them are represented as quantities throughout.  Consequently, 

modeling conceptual change involves representing and reasoning with quantities and also 

revising the existential and behavioral properties of quantities. 

“Quantity” is not synonymous with “number.”  A quantity (e.g., the volume of lemonade in 

a pitcher) may be assigned a numerical, unit-specific value (e.g.12 fluid ounces) at a specific 

time.  But people can reason very effectively without numbers.  For instance, we might know 

that the volume of lemonade in a pitcher is greater than zero ounces and less than the volume of 

the pitcher (e.g., 64 ounces).  If the height of the lemonade is millimeters below the rim of the 

pitcher, we might estimate that the volume is roughly six-glasses-worth, or just use a qualitative 

label such as a lot to represent the volume, based on how the estimate anchors within our space 

of experiences (Paritosh, 2004).  Without numerical knowledge, we can also reason about 

causality.  For example (quantities in italics), we know that if we increase the angle of the 

pitcher, the height of the pitcher lip will decrease.  Once it decreases below the height of the 

lemonade, a fluid flow will start, and as we continue to increase the angle of the pitcher, we will 

also increase the rate of flow.  In this example, we used the words “increase” and “decrease” to 

refer to the direction of change of a quantity’s value, and we used ordinal relationships such as 

“below,” to refer to inequalities between the values of two quantities.  In this manner, people can 

reason qualitatively about continuous quantities, rates and directionalities of change, and ordinal 

relationships (i.e., greater than, less than, equal to) between them.  A large literature describes 

formal approaches for representing and reasoning about processes (e.g., Forbus, 1984) and 

devices (e.g., de Kleer & Brown, 1984), and simulating systems provided this knowledge (e.g., 

Kuipers, 1986). 
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Novices and experts alike often reason with incomplete and imprecise qualitative 

knowledge, especially in situations of informational uncertainty (Trickett & Trafton, 2007).  

Consider the following incorrect near-far novice explanation of how the seasons change (Sherin 

et al., 2012): the earth orbits the sun along an elliptical path and is closer to the sun in the 

summer than in the winter.  This mental model includes no numbers, but mentions quantities 

(e.g., the distance between the earth and the sun, the temperature of the earth) and relations 

between quantities (e.g., the earth’s temperature strictly increases as its distance to the sun 

decreases).  This is textbook qualitative reasoning.  We next review relevant AI methods for 

representing, constructing, and reasoning with qualitative models. 

3.2.1 Qualitative Process Theory 

Qualitative process (QP) theory (Forbus, 1984) provides a vocabulary for representing 

mechanisms of change.  Under QP theory, only processes cause changes in a physical system.  

For our example of pouring lemonade in the previous section, model fragments can represent the 

contained fluids and the flow of fluid. 

QP theory also includes causal relationships between quantities.  Direct influences are 

relationships between quantities where a quantity (e.g., the rate of flow) increases or decreases 

another (e.g., the volume of the fluid in the source).  Direct influences often exist between the 

rate of a process and an affected quantity, and are represented by i+ and i- relations (e.g., 

consequences of FluidFlow in Figure 6), which describe positive and negative direct 

influences, respectively.  Indirect influences describe causal relationships between quantities 

where a quantity (e.g., the volume of a container) causes a positive or negative change in another 

quantity (e.g., the pressure of the fluid therein) under a closed-world assumption.  Indirect 
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influences are represented by qprop and qrop- relations (e.g., consequences of 

ContainedFluid in Figure 6), which describe positive and negative indirect influences, 

respectively.  Qualitative proportionalities represent causal influences between quantities where 

the direction of change is strictly increasing or decreasing. 

3.2.2 Compositional modeling 

In compositional modeling (Falkenhainer & Forbus, 1991), domain knowledge is represented 

using model fragments, which are combinable pieces of domain knowledge.  Modeling the flow 

ModelFragment ContainedFluid 
 Participants: 
  ?con Container (containerOf) 
  ?sub StuffType (substanceOf) 
 Constraints: 
  (physicallyContains ?con ?sub) 
 Conditions: 
  (greaterThan (Amount ?sub ?con) Zero) 
 Consequences: 
  (qprop- (Pressure ?self) (Volume ?con)) 
 

When a container con physically contains 
a type of substance sub, a contained fluid 
exists.  When there is a positive amount of 
sub in con, the volume of con negatively 
influences the pressure of this contained 
fluid. 

ModelFragment FluidFlow 
 Participants: 
  ?source-con Container (outOf-Container) 
  ?sink-con Container (into-Container) 
  ?source ContainedFluid (fromLocation) 
  ?sink ContainedFluid (toLocation) 
  ?path Path-Generic (along-Path) 
  ?sub StuffType (substanceOf) 
 Constraints: 
  (substanceOf ?source ?sub) 
  (substanceOf ?sink ?sub) 
  (containerOf ?source ?source-con) 
  (containerOf ?sink ?sink-con) 
  (permitsFlow ?path ?sub  
               ?source-con ?sink-con) 
Conditions: 
  (unobstructedPath ?path) 
  (greaterThan (Pressure ?source)  
               (Pressure ?sink))) 
 Consequences: 
  (greaterThan (Rate ?self) Zero) 
  (i- (Volume ?source) (Rate ?self)) 
  (i+ (Volume ?sink) (Rate ?self)) 

When two contained fluids – a source and 
a sink – are connected by a path, and both 
are of the same type of substance, a fluid 
flow exists.  When the path is 
unobstructed and the pressure of source is 
greater than the pressure of sink, the rate 
of the flow is positive and it decreases the 
volume of source and increases the 
volume of sink. 

 

Figure 6: ContainedFluid (above) and FluidFlow (below) model fragments used in the simulation 
in Chapter 7.  English interpretations for the model fragments included at right. 
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of blood in the circulatory system (see Chapter 7 for detail) involves a number of model 

fragments, two of which are shown in Figure 6: the conceptual model fragment 

ContainedFluid, and the process model fragment FluidFlow.  Model fragments are 

instantiated during reasoning.  For example, we might infer ContainedFluid model fragment 

instances when reasoning about the human circulatory system since each of the chambers of the 

heart contain blood. Each model fragment m can be uniquely defined by a tuple ⟨P, C, A, N, S⟩, 

which includes participants, constraints, assumptions conditions, and consequences, respectively.  

We describe these using the model fragments in Figure 6 as an example. 

Participant statements (P) are statements describing the entities involved in the 

phenomenon.  For example, the ?con participant in ContainedFluid, is of type  Container, 

so for the entity heart to fill the ?con participant role, it must be a Container, so the statement 

(isa heart Container) must be true for heart to bind to ?con.  Each participant 

statement is a statement such as (isa ?con Container) which states that the participant slot 

(e.g., ?con) must be of a specific type (e.g., Container).  Participant slot ?con also has 

relational role containerOf, so (containerOf cf heart) would be true of any 

ContainedFluid instance cf where heart is bound to ?con.   

Constraints (C) are statements that must hold over the participants in order for an instance of 

the model fragment to exist.  When the constraints hold, an instance instance(m, P) of model 

fragment m is inferred as a distinct entity over the participants P.  For example, if 

(physicallyContains heart Blood) is true of Container instance heart and 

StuffType instance Blood, then a new model fragment will be instantiated with participant 

bindings B = {⟨?con, heart⟩, ⟨?sub, Blood⟩}.  Logically, model fragment instantiation can be 
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expressed as the following first-order logical equivalence, where a conjunction of two sets of 

statements is the conjunction of the union of member statements: 

 

P ˄ C ≡ instance(m, B). 

 

Modeling assumptions (A) are statements concerning the model fragment’s relevance to the 

task at hand.  These make the granularity, perspectives, and approximations of the model 

fragment explicit.  These help select the appropriate method of description for problem solving, 

since the behavior of a single physical phenomenon (e.g., blood flow through arteries) can be 

described at multiple granularities (e.g., describing fluid volumes or describing localized 

collections of matter being transported through the body).  Our computational model does not 

use modeling assumptions to simulate students, but we do believe that students are capable of 

reasoning at different levels of description, and that learning the appropriate level of description 

for problem-solving is important for achieving expert understanding.  This is future work. 

Conditions (N) are propositions that must hold over a model fragment’s participants that 

limit the model fragment’s behavioral scope, such as (greaterThan (Amount ?sub ?con) 

Zero) in ContainedFluid.  Conditions differ semantically from constraints, since an instance 

of a model fragment can exist without a condition satisfied.  When all conditions of a model 

fragment instance hold, the instance is active.  More formally: 

 

instance(m, B) ˄ A ˄ N ≡ active(instance(m, B)). 
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Consequences (S) are propositions that describe a model fragment instance’s constraints on 

a system’s behavior when it is active.  For example, the unground consequence  

 

 (qprop- (Pressure ?self) (Volume ?con))  

 

of ContainedFluid  is inferred as  

 

 (qprop- (Pressure ch) (Volume heart))  

 

when an instance ch is active with participant bindings B = {⟨?con, heart⟩, ⟨?sub, Blood⟩}.  

This imposes the constraint that the pressure of the contained fluid ch increases as the volume of 

heart decreases.  Model fragment activation can be expressed as the following logical 

implication: 

 

active(instance(m, B)) → S. 

 

Inference with model fragments can therefore be summarized with the implication 

 

P ˄ C ˄ A ˄ N → S. 

 

Model fragments are instantiated and activated within a scenario, which is a logical context 

that contains a partial description of the phenomena to be modeled, such as the propositional 

facts and rules about the solar system for using the model fragments in Figure 6.  Model 

fragments are stored within a domain theory, which is a set of model fragments and scenario-
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independent beliefs.  The result of model formulation is a scenario model composed of one or 

more model fragment instances.  Importantly, one model fragment instance may serve as a 

participant of another (e.g., FluidFlow in Figure 6 has two ContainedFluid participants: 

?source and ?sink), so the resulting scenario model may have a nested structure. 

Provided compositional models and qualitative process theory, what constitutes a “concept” 

in our model of conceptual change?  Put simply, a concept is domain knowledge that can be 

learned and revised.  We define the three following types of knowledge as concepts: 

 

• Model fragments: The model fragments in Figure 6 and others (e.g., interaction of 

forces, floating, sinking, fluid flow, and heat flow) represent concepts because they are 

learnable (see Chapter 5) and revisable (see Chapter 8).  As mentioned in Chapter 1, 

model fragments represent parts of human mental models. 

• Categories and quantities: Chapter 8 describes how the quantities within compositional 

model fragments can be ontologically revised using heuristics, so quantities such as 

force, heat, and sunlight are also concepts. 

• Propositional beliefs: Domain-level propositional beliefs about the world are concepts, 

according to the common phrase “the concept that p” where p is a proposition such as 

“the earth orbits the sun.”  The truth value of these propositions can change in our 

model.  We do not consider metaknowledge propositions (e.g., the proposition that I 

learned about the aorta from a textbook) to be concepts. 

 

The term “concept” has obvious problems due to its ambiguity, so we refer to the specific 

components – model fragments, quantities, and propositional beliefs – when possible, and 
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compactly use the term “conceptual knowledge” or “concept” to refer to all three types of 

knowledge at once. 

We must also define the term “misconception” in the context of our model.  In the literature, 

misconceptions are often stated as general propositions such as, “continuing motion implies a 

continued force in the direction of the movement” (Chi, 2005).  In our model, misconceptions are 

mistakes produced by a theory comprised of model fragments, beliefs, and quantities.  For 

example, in Simulation 1, the qualitative models learned by the system produce the 

misconceptions that (1) surfaces do not push up against objects resting on their surface and (2) 

objects pushed in a given direction always go in that direction, irrespective of prior velocity.  

These misconceptions are exhibited on specific scenarios, but we can conclude that the system 

would perform similarly on analogous scenarios due to the principles of model-based inference 

described above. 

3.3 Abductive reasoning 

Abduction can be defined as reasoning to the best explanation for a set of observations (Peirce, 

1958).  In AI, this has been formalized as a search for some set of assumptions16 that can prove 

the observations,17 where an explanation for the observations is a set of assumptions and 

justification structure that together infer the observations.  This amounts to searching for the best 

set of assumptions that explain the observations.  Abduction has been used in AI for plan 

recognition, diagnosis, language interpretation, and other tasks. 

Systems that use abduction must at least computationally implement a better comparator 

between explanations so that they can search for the best explanation.  Depending on the task, 

                                                 
16 Assumptions are also referred to as hypotheses in the AI abduction literature. 
17 Observations are also referred to as evidence in the AI abduction literature. 
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explanatory preference might rely on which explanation is more probable (e.g., Pearl, 1988), 

which makes fewer assumptions (e.g., Ng & Mooney, 1992), or which makes less costly 

assumptions (e.g., Charniak & Shimony, 1990; Santos, 1994).  Cost-based abduction (CBA) is of 

particular relevance to this dissertation, where the goal is to find a least-cost proof (LCP) where 

each assumption has a weighted cost.  Finding LCPs is NP-Hard (Charniak & Shimony, 1994), 

and so is approximating LCPs within a fixed ratio of the optimal solution (Abdelbar, 2004). 

Our model of conceptual change uses abductive reasoning to construct explanations for new 

and previously-encountered observations.  We describe our abductive reasoning algorithm in 

Chapter 4, but it is worth pointing out similarities with existing approaches here.  A more 

accurate term for our explanation construction process is abductive model formulation since our 

model uses qualitative model fragments to represent domain knowledge and composes them into 

a scenario model via model formulation, described above.  The explanation evaluation process – 

whereby the agent determines the best explanation – is similar to CBA, but differs in two 

important ways to model humans: (1) consistency is a soft constraint (i.e., contradictions are 

permitted but costly) within and across explanations; and (2) more than just assumptions have a 

cost, e.g., model fragments, model fragment instances, contradictions, and other elements.  In 

CBA, individual assumptions have weighted costs, but in our model, some sets of beliefs (e.g., 

those comprising a logical contradiction) also have costs. 

3.4 Analogical processing 

Two simulations described in this thesis utilize analogical reasoning.  This involves matching the 

relations and entities among two cases to make similarity judgments, generalizations, and 

inferences.  We briefly review these analogical subsystems next. 
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3.4.1 The Structure-Mapping Engine 

The Structure-Mapping Engine (SME) (Falkenhainer et al., 1989) is a domain-general 

computational model of analogy and similarity, based on Gentner’s (1983) structure-mapping 

theory of analogy.  Its inputs are two cases, the base and target, consisting of structured 

representational statements.  SME computes one or more mappings between the base and the 

target.  Each mapping contains (1) correspondences that match expressions and entities in the 

base with expressions and entities in the target, (2) a numerical structural evaluation score of the 

quality of the mapping, and (3) candidate inferences that assert what might hold18 in the target.  

Candidate inferences may not be deductively valid, but they may produce useful hypotheses 

(e.g., Gentner, 1989; McLure et al., 2010; Christie & Gentner, 2010).  We will refer to the 

following functions of SME in the below: 

 

• best-mapping(b, t): returns the SME mapping with the highest structural evaluation 

score, using base b and target t cases as input. 

 

The SME structural evaluation score can be normalized by dividing it by the maximum self-

score, (i.e., the maximum score attained by matching either the base or target to itself).  This 

ensures that 0 ≤ normalized score ≤ 1.  We use the following functions to refer to structural 

evaluation scores: 

 

• sim-score(m): returns the numerical structural evaluation score of a SME mapping m. 

                                                 
18 Since they are the product of structural similarity alone, candidate inferences are not necessarily deductively valid; 
however, they are useful hypotheses (e.g., Gentner, 1989; McLure et al., 2010; Christie & Gentner, 2010). 
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• self-score(c): returns the numerical structural evaluation score of a SME mapping 

between a case c and itself.  Computed as sim-score(best-mapping(c, c)). 

• norm-score(m): returns a normalized structural evaluation score s, such that 0 ≤ s ≤ 1, 

for SME mapping m with base m.base and target m.target.  Computed as: 

���������(�)
��� (����������(�.����),   ����������(�.������))

. 

3.4.2 MAC/FAC 

MAC/FAC (Forbus et al., 1995) is a domain-general computational model of similarity-based 

retrieval.  Its inputs are (1) a probe case and (2) a case library (set of cases).  Cases consist of 

structured, relational statements, like the inputs to SME.  MAC/FAC retrieves one or more cases 

from the case library that are similar to the probe via a two-stage filtering process.  The first 

stage is coarse, using a vector representation automatically computed from the cases to estimate 

similarity between the probe and the contents of the case library by computing dot products in 

parallel.  It returns the case library case with the highest dot product, plus up to two others, if 

sufficiently close.  The second stage uses SME to compare the probe with the cases returned by 

the first stage.  It returns the case with the highest similarity score, plus up to two others, if 

sufficiently close.  The mappings it computes are available for subsequent processing.  We use 

the following functions to describe MAC/FAC retrieval: 

 

• macfac(p, C): given a probe case p and a case library C, returns an ordered sequence M 

of mappings retrieved via MAC/FAC, where 0 ≤ |M| ≤ 3.  Sequence M is ordered such 

that sim-score(mi) ≥ sim-score(mi+1), so the most similar MAC/FAC retrieval is m0, and 

the most similar case is m0.target. 
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• macfac-best(p, C): returns the first element (highest-similarity mapping) of macfac(p, C). 

 

3.4.3 SAGE 

SAGE (Friedman et al., in preparation) is a computational model of analogical generalization 

that uses both SME and MAC/FAC.  SAGE clusters similar examples into probabilistic 

generalizations, where each generalization typically describes a different higher-order relational 

structure.  SAGE takes a sequence of positive examples E = ⟨e0, …, en⟩ represented as cases, and 

a numerical similarity threshold s (0 ≤ s ≤ 1) as its inputs.  SAGE produces (1) a set of 

generalizations G = {g0, …, gi}, each of which is a probabilistic case created by merging similar 

examples in E, and (2) a set of ungeneralized examples U = {u0, …, uj} ⊆ E, that were not 

sufficiently similar to other examples to generalize. 

SAGE is initialized with G = U = ∅.  When given a new example ei ∈ E, SAGE calls 

macfac-best(ei, G ∪ U) to find the best mapping m between ei and an existing generalization or 

ungeneralized example.  If there is no such mapping or the mapping is below the similarity 

threshold (i.e., norm-score(m) < s) then the new example is added to the list of ungeneralized 

exemplars (i.e., U = U + ei) and the algorithm terminates.  Otherwise, SAGE merges ei and the 

case that was retrieved via MAC/FAC.  The merge happens differently depending on whether 

MAC/FAC retrieved an ungeneralized example or a generalization.  If the retrieved case is an 

ungeneralized example u then (1) a new generalization g is created by merging ei with u, (2) the 

size of g is set to two (i.e., |g| = 2), (3) g is added to G, and (4) the u is removed from U.  If 

MAC/FAC retrieved an existing generalization g, then ei is merged into g, and the size of g is 

incremented by 1 (i.e., |g| = |g| + 1). 
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When SAGE merges a new example e with a previous case c (i.e., a previous example or 

generalization), it records a probability for each statement to represent its frequency within the 

resulting generalization (Halstead & Forbus, 2005).  The probability of a statement s within the 

resulting generalization g is a factor of (1) the probabilities of s in e and c and (2) the size of c, 

written as |c|.  If c is an ungeneralized example, |c| equals 1; otherwise, |c| is the number of cases 

that has been merged into the generalization c.  We compute the probability of any statement s in 

the resulting generalization g as follows: 

 

P(� in �) = �(� �� �)|�|��(� �� �)
|�|��

. 

 

Note that any statement s not present in e or c has probability P(s in e) = 0 and P(s in c) = 0, 

respectively.  For the case where two examples are merged into a new generalization, all 

statements with correspondences in the mapping are inferred with a probability of 1.0, and all 

expressions without correspondences in the mapping are inferred with a probability of 0.5. 

Using this merge technique, common relational structure is preserved with a probability of 

1.0, and non-overlapping structure is still recorded, but with a lower probability.  The probability 

affects similarity judgments in SAGE.  This is because the individual similarity score of each 

SME match hypothesis is weighted by the probability of the corresponding base and target 

statements.  Consequently, low-probability expressions in a generalization contribute less to 

similarity judgments. 

SAGE has been used for concept learning in domains such as sketch recognition, spatial 

prepositions, and clustering short stories (all three in Friedman et al., 2011), as well as for 

learning sentence structure from example sentences describing events (Taylor et al., 2011). 
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3.5 Truth Maintenance Systems 

A Truth Maintenance System (TMS) communicates with an inference engine to track the 

justifications for beliefs (Forbus & de Kleer, 1993).  Tracking the justifications for beliefs 

improves problem-solving efficiency in three ways relevant to our conceptual change model: 

 

1. Explanations can be generated via a justification trace. 

2. The system can identify the faulty foundations – including assumptions – of a bad 

conclusion. 

3. Caching inferences by retaining them in justification structure is generally more efficient 

than re-running the inference process all over again.19 

 

                                                 
19 If inference rules are few and inexpensive to run, caching inferences may actually degrade performance. 

 
Figure 7: A TMS containing assumptions (squares), justified beliefs (ovals), justifications 

(triangles), and a contradiction ⊥ node (courtesy Forbus & de Kleer, 1993) 
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Specialized types of TMSs exist, but our model of conceptual change uses a JTMS 

(justification-based TMS), so we only review the details relevant to JTMSs.  For our purposes, a 

TMS includes a network of belief nodes that represent distinct beliefs and justifications which 

associate zero or more antecedent belief nodes with a consequent belief node.  There are 

different types of belief nodes, three of which are shown in the example TMS in Figure 7: 

 

1. A premise node represents a belief that holds universally. 

2. An assumption node represents a belief that can be explicitly enabled (believed) or 

retracted (disbelieved) by the agent. 

3. A normal belief node represents a belief that is believable iff it is justified by other 

beliefs. 

4. A contradiction represents a logical inconsistency within the justifying beliefs.  For 

example, in Figure 7, belief node g supports a contradiction, which is supported by 

assumptions A and C, so at least one of A and C is faulty.  For the sake of conserving 

existing beliefs, assumption A may be retracted to avoid retracting support for h. 

 

In a TMS, multiple justifications can justify a single belief node.  This indicates that the 

belief has more than one unique line of reasoning for believing it.  Suppose we want to find an 

explanation for a belief in the TMS for abductive reasoning.  Explanations for a belief node n in 

a TMS are based on well-founded support (Forbus & de Kleer, 1993) for that node.  Well-

founded support is any sequence of justifications J1 … Jk such that: 

 

• Node n is justified by Jk. 
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• All antecedents of Jk are justified earlier in the sequence. 

• No belief node has more than one justification in the sequence. 

 

In Figure 7, h has well-founded support from its supporting justification, provided assumptions C 

and E are enabled.  The contradiction has well-founded support from its supporting justification 

and the justification supporting g, provided A and C are enabled.  If A is retracted, both the 

contradiction and g will lose all well-founded support.  In this thesis, we call each set of possible 

well-founded support a well-founded explanation.  Importantly, when a belief n is justified by 

two beliefs, it has at least two well-founded explanations, and it may have an exponential 

number of them.  

TMS justification structure is used within our conceptual change model to track the rationale 

for beliefs.  The definition of well-founded explanations dictates how the justification structure is 

aggregated into different explanations in our model.  We discuss this further in Chapter 4. 

3.6 Microtheory contextualization 

Conceptual learning at the scale we advocate in this thesis requires a large knowledge base (KB) 

– both quantitatively, in the number of different facts, and qualitatively, in the number of 

different predicates and entities.  As the knowledge base grows, storing all propositional beliefs, 

rules, and mental models in a single logical context would quickly make reasoning intractable.  

In many learning systems, the control knowledge that initially speeds up learning and reasoning 

eventually degrades performance.  This has been called the utility problem (Minton, 1990).   
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Aside from tractability issues, conceptual change involves reasoning with competing, 

potentially inconsistent knowledge.  This requires the use multiple logical contexts.20  

Representing inconsistent explanations requires representing inconsistent beliefs, and when this 

occurs within the same logical context, it entails a contradiction.  A contradiction within a logical 

context entails any belief via indirect proof – for AI systems, but not necessarily for people – 

which is problematic for reasoning about the state of the world. 

Intractability can be mitigated and inconsistency can be tolerated by contextualizing the KB 

into hierarchical logical contexts that we call microtheories.  Microtheories are hierarchical 

because a microtheory mchild can inherit from another microtheory mparent, so that all statements in 

mparent are visible in mchild.  This allows us to quickly define logical contexts for reasoning 

without copying propositional beliefs.  Contextualizing large KBs is not a new idea – there exist 

algorithms for automatically creating KB partitions (e.g., Amir & McIlraith, 2005) and for 

performing model formulation in a microtheory-contextualized KB (Forbus, 2010). 

In the system described below, each microtheory in the KB contains zero or more relational 

statements, and each relational statement in the KB belongs to one or more microtheories.  

Microtheories are ubiquitous in the system described here: explanations are represented, in part, 

by microtheories; SME cases and SAGE generalizations are microtheories; model formulation 

uses microtheories for scenario descriptions, scenario models, and domain theories; and the 

entire explanation-based network described below is encoded as relational statements across 

several microtheories. 

 

                                                 
20 Temporal and logical qualification predicates, (e.g., OpenCyc’s binary holdsIn relation) can be used to 
contextualize propositional beliefs within the same logical context so as to avoid entailing a contradiction; however, 
this is not necessarily the case for contextualizing rules, plans, and model fragments. 
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3.7 Metareasoning 

As discussed above, reasoning with conceptual knowledge produces explanations about the 

world.  But the process of conceptual change requires reasoning about the conceptual knowledge 

and about the explanations produced, to determine which beliefs are more productive and which 

explanations better suit the observations.  We can therefore draw a distinction between (1) 

object-level reasoning with domain knowledge and (2) meta-level reasoning about object-level 

reasoning.  Figure 8 illustrates both control and monitoring from the meta-level.  In AI, 

metareasoning is the deliberation over plans and strategies available to an agent, and then 

selecting a course of action (Horvitz, 1988; Russell & Wefald, 1991; Cox, 2005).  Since 

metareasoning can observe object-level operations, it can also be used for explaining these 

operations (e.g., Kennedy, 2008) and doing introspective learning (e.g., Leake & Wilson, 2008).  

In our model of conceptual change, meta-level monitoring tasks include evaluating explanations 

(the product of object-level reasoning) and detecting anomalies within observations.  Meta-level 

control tasks include (1) heuristic-based revision of knowledge and (2) preference encoding over 

concepts and explanations, both of which influence future object-level reasoning. 

Knowledge can also be encoded at the meta-level.  In our computational model, this 

includes knowledge about domain knowledge, such as (1) an explicit preference for one meaning 

 
Figure 8: Meta-level control and monitoring (Cox & Raja, 2007) 
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of force over another, (2) knowledge that the anatomical concept LeftVentricle was learned 

from a textbook, (3) knowledge that two explanations for the changing of the seasons are in 

competition, and so-forth.  This metaknowledge aids in making decisions for future learning and 

reasoning. 

3.8 CogSketch 

CogSketch (Forbus et al., 2008) is an open-domain sketching system.  CogSketch interprets 

the ink drawn by the user, and computes spatial and positional relations (e.g., above, rightOf, 

touches) between objects.  Further, CogSketch supports multiple subsketches within a single 

sketch.  We use this feature to create comic graphs (e.g., Figure 9) that serve as stimuli, where 

each subsketch in a stimulus represents a different qualitative state, and transitions between them 

represent state changes.  Similar stimuli have been used in analogical learning experiments with 

people (e.g., Chen, 1995; 2002).   

Figure 9 depicts a stimulus from the simulation in Chapter 5.  Each subsketch represents a 

change in the physical system illustrated.   Within each subsketch, CogSketch automatically 

encodes qualitative spatial relationships between the entities depicted, using positional and 

topological relationships.  For example, the person in Figure 9 is above and touching the 

ground in all three states, but the person and the toy truck are not touching in the third state.  

 
Figure 9: A comic graph stimulus created using 

CogSketch. 
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Physical quantities such as area and axis coordinates are also computed by CogSketch and stored 

using relations and scalar quantities.  For example, the statement 

 

 (positionAlongAxis truck-4 Horizontal (Inches 220)) 

 

asserts that entity truck-4 is 220 inches to the right of the origin along the Horizontal axis.  

The arrows within a subsketch (e.g., the blue and green arrows in Figure 9) are user-generated 

annotations between objects, which represent relationships such as applied force (blue arrows) 

and movement (green arrows).  The arrows between subsketches indicate temporal order, via the 

startsAfterEndingOf relation.  Using quantity data, annotations, and temporal relations, the 

system can identify changes in physical quantities across states, which we refer to as physical 

behaviors.  CogSketch is used to encode physical behaviors comprising the training and testing 

data for two of the simulations presented below.  Since CogSketch automatically encodes the 

knowledge for these simulations, the knowledge representation choices were not made with the 

learning task in mind, so the stimuli were not hand-tailored for the specific learning tasks. 

3.8.1 Psychological assumptions about using comic graphs 

Although it is not background material per se, it is fitting to discuss the psychological 

assumptions we make by using sketched comic graphs as testing and training data.  We begin by 

describing how the simulations in this dissertation use sketches for testing and training. 

Experimenters in cognitive psychology and learning science frequently use multi-state 

sketches (like Figure 9) to describe a phenomenon occurring over time and then ask the subject 

for predictions or explanations (e.g., Hestenes et al., 1992; Chen, 1995; 2002).  Other 



93 
 

 
 

experimenters use sketches such as Figure 10 and ask the subject to compare two scenarios 

(Ioannides & Vosniadou, 2002; diSessa et al., 2004).  We refer to these sketched testing data.  

The simulations in Chapter 5 and Chapter 8 use the same sketched testing data as experimenters, 

redrawn by hand in CogSketch to be automatically encoded into relational knowledge for use by 

the simulation.  Using sketched testing data with CogSketch makes several assumptions about 

how people encode sketched knowledge, which we discuss below. 

The simulations in this dissertation also use sketches for learning.  For example, the sketch 

in Figure 9 is used by the simulation in Chapter 5 to learn humanlike preconceptions of pushing, 

moving, and blocking.  This use of sketched training data is very different from sketched testing 

data.  We list five considerations that arise from our choice of using comic graphs as learning 

stimuli: 

 

1. Real-life observations are represented as independent comic graph episodes.  As 

inhabitants of a continuous world, people must learn when a jumping event starts and 

ends, rather than being told the relevant start and end state in a comic graph.  Since we 

provide the system with clear-cut cases such as Figure 9, we do not expose the system to 

distracting qualitative states that might occur before or after the event. 

2. Observations in a continuous world are approximated by a sequence of still pictures. 

The simulations are not observing a world of continuous – and continuously changing – 

 

Figure 10: A sketch with two subsketches, 
redrawn from diSessa et al. (2004).  
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physical quantities.  Instead, they are given CogSketch’s output: qualitative spatial 

relations over objects and numerical values of spatial quantities.  The sketched data 

therefore conveys relative changes in position, but not relative changes in velocity, so 

the simulation does not need to differentiate velocity from acceleration, which is difficult 

for novice students (Dykstra et al., 1992). 

3. The sequence of events is already segmented into different qualitative states.  The 

simulations do not have to find the often-fuzzy boundaries between physical behaviors 

as an event unfolds over time.  In the Figure 9 example, the person pushes the truck, then 

the truck and car move, and then the truck and car stop – there is no temporal ambiguity 

in this chain of events. 

4. The objects and events in the stimuli are relevant to the concept being learned.  This is a 

factor of the sparseness of the sketches – they contain few confusing events, e.g., a 

dozen birds flying overhead, a broken wheel on a toy truck, and so forth.  As a result, 

there are less confounds for inferring causality between events. 

5. The encoding in the stimuli is relevant to the concept being learned.  The encoding is 

sparse in that CogSketch does not encode knowledge about the internal components 

individual glyphs, e.g., that the head of the person in Figure 9 is an oval with a major 

axis angle of 39 degrees.  Consequently, the qualitative relations produced by CogSketch 

comprise the majority of the encoding, and these are especially relevant for learning a 

qualitative theory of dynamics (e.g., Chapters 5 and 8).  The output of CogSketch is not 

nearly as rich as human visual perception; however, we do believe that CogSketch 

captures an important subset spatial knowledge that people encode.  This is not to say 

that the sketches contain no extraneous data; they contain entity attributes (e.g., Truck) 
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and extraneous conditions (e,g., the truck in Figure 9 is touching the car while it moves, 

which is not a necessary condition for movement) that must be factored out by learning 

algorithms. 

 

All of these consequences of our sketched-based approximation of the real world are reasons 

to expect our simulations to learn real-world concepts much faster than people.  Despite the 

differences between comic graphs and the real world, we believe that using automatically-

generated training data is a significant advance over using hand-coded stimuli to simulate real-

world experiences.  We discuss more specific implications of these representation choices in the 

simulation chapters, where relevant. 
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Chapter 4: A Computational Model of Explanation-Based Conceptual Change 

This chapter describes our computational model of conceptual change.  Except for the AI 

technologies discussed in Chapter 3, the computational model described in this chapter is a novel 

contribution of this dissertation.  We describe how knowledge is contextualized using 

explanations and how constructing and evaluating explanations affects the knowledge of the 

agent.  This is provides the explanatory power of the system, and is especially relevant to the 

third claim of this dissertation: 

 

Claim 3: Human mental model transformation and category revision can both be modeled 

by iteratively (1) constructing explanations and (2) using meta-level reasoning to select 

among competing explanations and revise domain knowledge. 

 

The core of our model includes the following: (1) a network for organizing knowledge; (2) an 

abductive algorithm for constructing explanations in the network; (3) meta-level strategies for 

selecting a preferred explanation; and (4) strategies for retrospectively explaining previously-

encountered phenomena.  This core model satisfies Claim 3. 

After we describe how knowledge is organized, we describe the specifics of how 

explanations are constructed, retrieved, and reused.  We then describe how preferences are 

computed over explanations, which drives the adoption and propagation of new information. 

4.1 Two micro-examples of conceptual change 

We consider the following two micro-examples of conceptual change in the remainder of this 

chapter: 
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1. Circulatory system example (mental model transformation, from Chapter 7): The 

agent’s mental model of the circulatory system involves a loop from a single-chamber 

model of the heart to the body and back.  After incorporating knowledge from a 

textbook, the agent revises its mental model so that (1) the heart is divided into left and 

right sides and (2) blood flows to the body from the left side of the heart. 

2. Force example (category revision, from Chapter 8): The agent uses a force-like quantity 

q that is present in all objects.  The agent cannot explain why a small ball travels farther 

than a large ball when struck by the same foot using its present concept of q.  

Consequently, the agent revises q so that it is transferrable between colliding objects, 

where the amount transferred is qualitatively inversely proportional to the size of the 

struck object. 

 

These two examples are not isolated changes; they are part of larger model transformations 

(e.g., that the blood from the body flows to the right side of the heart and is then pumped to the 

lungs) and trajectories of change (e.g., that forces exist between, and not within, objects) in their 

respective simulations.  But for ease of explanation in this chapter, here we consider them in 

isolation.  Both types of conceptual change use the same core explanation-based framework 

described here, but category revision requires some additional operations.  For instance, the 

category revision simulation in Chapter 8 uses heuristics to revise a quantity in the domain 

theory.  We discuss operations specific to category revision in Chapter 8. 
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4.2 Contextualizing knowledge for conceptual change 

Conceptual change involves managing inconsistent knowledge.  The agent must encode beliefs 

and models that are inconsistent with prior knowledge, use them to reason about the world, and 

then determine which of the available beliefs and models provide the best (i.e., simplest, most 

accurate, and most credible) account.  As we discussed in Chapter 3, we can divide knowledge 

into logical microtheories to retain local consistency where it’s important.  Our model uses 

microtheories (1) as sets of beliefs and model fragments and (2) as cases for analogical 

reasoning.  We begin by discussing how microtheories are used to contextualize different types 

of information. 

Recall the following from our compositional modeling discussion in Chapter 3: (1) a 

scenario is a set of statements that describes a problem; (2) the domain theory is a set of 

scenario-independent model fragments and statements; and (3) model formulation is the process 

of constructing a model of the scenario from elements of the domain theory.  It is important for 

the agent to have record of what information was gathered from an external scenario (e.g., via 

observation or reading) and what was inferred via model formulation.  This is achieved by 

representing each scenario as its own scenario microtheory.21  In the circulatory system micro-

example, multiple scenario microtheories contain the information from the textbook, and in the 

force example, two scenario microtheories contain the information about two observations: a 

foot kicking a small ball; and the same foot kicking a large ball.  Each scenario microtheory is 

annotated with metaknowledge (defined in Chapter 3) that records the source of the information 

(e.g., observation, textbook, or interaction with another individual).  

                                                 
21 See section 3.6 for a discussion of microtheories. 
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Some beliefs in a scenario microtheory describe processes, states, and events that the agent 

must explain.  Following Hempel and Oppenheim (1948), we call these explanandums.  Consider 

the circulatory system micro-example above: the agent encounters information from a textbook 

that the (1) heart is divided into two sides and (2) that blood is pumped from the left side to the 

body.  This textbook-based scenario microtheory contains propositional beliefs describing 

objects such as 

 

(isa l-heart (LeftRegionFn Heart)) 

  

which states the symbol l-heart is an instance of (LeftRegionFn Heart).  It also includes 

beliefs that together describe a single situation, such as 

 

(isa leftH2B PhysicalTransfer)  

(outOf-Container leftH2B l-heart) 

(into-Container leftH2B body) 

(substanceOf leftH2B Blood) 

 

which describes leftH2B, the flow of blood from l-heart to the body.  The four propositional 

beliefs describing the flow event leftH2B constitutes a single explanandum.  When a new 

explanandum is encountered in a scenario, it is explained via model formulation. 

When the agent encounters a new scenario such as the textbook information above, the 

scenario microtheory is added as a parent of the domain knowledge microtheory �.  Recall that 

when a microtheory is the parent of another, its statements are inherited by the child 

microtheory.  � thereby inherits all information from observations, interactions, and instruction 
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that the agent has encountered.  In addition to inheriting from scenarios, � also contains model 

fragments that have been induced from observations (e.g., via SAGE in Chapter 5).  Importantly, 

information in one scenario microtheory may contradict information in another scenario 

microtheory, so the information in � may be inconsistent (i.e., its conjunction could entail a 

logical contradiction).  Propositional beliefs in � may serve as premises.* 

When the agent constructs an explanation via model formulation, it uses subsets of � as the 

domain theory and the scenario since � inherits scenario information and contains model 

fragments.  The output of model formulation includes (1) statements that are logically entailed 

by instantiating and activating model fragments, (2) assumptions* that justify other beliefs, but 

have no justification themselves, and (3) justifications* that associate antecedent and consequent 

statements.  Figure 11 shows some justification structure resulting from model formulation in the 

circulatory system micro-example.  Some belief nodes in Figure 11, e.g., (contains heart 

blood), describe the specific structure of the circulatory system.  These are in � and inherited 

                                                 
* This term is defined in section 3.5. 
 

 

Figure 11: A small portion of justification structure generated from model formulation in the circulatory 
system micro-example.  The justification (triangle) at left is the logical instantiation of model fragment 

instance mfi0 based on the constraints of ContainedFluid (see Figure 6 for ContainedFluid 
definition) and the justification at right is the logical activation of mfi0. 
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from scenario microtheories. The belief (isa ContainedFluid ModelFragment) in Figure 

11 refers to the model fragment ContainedFluid which is also present in �.  Other belief 

nodes in Figure 11 (e.g., (isa mfi0 ContainedFluid), (containerOf mfi0 heart), 

and (active mfi0)) describe the scenario model.  These beliefs are not visible from �.  They 

are stored in the provisional belief microtheory � which contains beliefs generated via model 

formulation. 

The distinction between � and � is that � includes assertions about the world (e.g., 

(contains heart blood): “the heart contains blood”) and models for reasoning about the 

world (e.g. ContainedFluid).  In compositional modeling, you would find this information in 

scenarios and domain theories, respectively.  � contains the inferences (e.g., (containerOf 

mfi0 heart): “The container of the contained fluid mfi0 is the heart”) and assumptions that 

result from reasoning with the information in � and �.  Propositional beliefs in � are believable 

(but not necessarily believed) independently of �, but beliefs in � use � as a foundation for 

inference and assumption.  This means that � contains the scenario models produced by model 

formulation. 

The rationale for each inference and assumption in � is recorded using the justification 

structure produced via model formulation.  We defined justifications in our discussion of truth 

maintenance systems in Chapter 3, but note that our justifications have multiple consequences.22  

The justification structure is recorded as propositional statements in a justification microtheory.  

For instance, the rightmost justification in Figure 11 is described by the following statements: 

 

(isa j1 Justification) 

                                                 
22 A justification with multiple consequences can be converted into a set of multiple justifications – one for each 
consequence – by creating a single-consequence justification with the same set of antecedents for each consequence. 



102 
 

 
 

(antecedentsOf j1 (greaterThan (Amount blood heart) zero)) 

(antecedentsOf j1 (isa mfi0 ContainedFluid)) 

(consequencesOf j1 (active mfi0)) 

(consequencesOf j1 (qprop- (Pressure mfi0) (Volume heart))) 

 

The justifications produced by model formulation are used to reify explanations and 

construct explanation microtheories.  Each well-founded explanation in the justification structure 

corresponds to a different explanation, and the beliefs in each well-founded explanation are 

stored in separate explanation microtheories. 

The final microtheory of note is the adopted domain knowledge microtheory �a.  This is the 

subset of � that the agent presently accepts as true.  This does not mean that the agent explicitly 

regards the beliefs in � that are not present in �a (which we write �/�a) as false; rather, the 

agent may be undecided on the truth value of these beliefs.  Like �, �a is not necessarily 

internally consistent.  If �a is inconsistent, nothing is broken – we can simply say that the agent 

 

Figure 12: The relationship between microtheories (MTs) in our computational 
model.  Solid arrows represent “inherit all information from” (i.e., child-of), and 

dotted arrows represent “contains some information from.” 
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holds beliefs to be true that are logically inconsistent.  �a will become important later in this 

chapter, during our discussion of belief revision using cost functions. 

The relationships between different microtheories and microtheory types that we have 

discussed are shown in Figure 12.  The contexts � and � are collector microtheories of scenarios 

and scenario models, respectively.  Explanation microtheories contain subsets of information 

from � and � that collectively participate in a well-founded explanation.  Finally, �a contains 

the subset of the information from � which is presently believed by the agent. 

The remainder of our discussion of our computational model relies on this information 

organization scheme.  We next describe how explanations, justifications, and beliefs are related.  

For quick reference, condensed definitions of the above microtheories and of other terms used 

later in this chapter are included in a table in the appendix. 
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4.3 An explanation-based network for conceptual change 

Explanations, justifications, and beliefs can be viewed as a network that supports metareasoning 

and conceptual change.  This is an extension of a justification structure network (e.g., Figure 11).  

A portion of a network is shown in Figure 13, before (Figure 13a) and after (Figure 13b) for the 

circulatory system micro-example outlined above.  The legend of Figure 13 labels the key beliefs 

and model fragments for reference, but the specific beliefs are not yet important.  We describe 

(a)          (b) 

 
Legend  

f0 (isa heart Heart) 

f1 (physicallyContains heart Blood) 

f2 (isa Blood StuffType) 

f3 (isa body WholeBody)  

f4 (physicallyContains body Blood) 

mf0 (isa ContainedFluid ModelFragment) 

f5 (greaterThan (Amount Blood heart) 0) 

f6 (isa mfi0 ContainedFluid) 

f7 (substanceOf mfi0 Blood) 

f8 (containerOf mfi0 heart) 

… … 

mf1 (isa FluidFlow ModelFragment) 
 

f15 (isa mfi2 FluidFlow) 

f16 (fromLocation mfi2 mfi0) 

f17 (toLocation mfi2 mfi1) 

… … 

f22 (describes mfi2 naiveH2B) 

f23 (isa naiveH2B PhysicalTransfer) 

f24 (substanceOf naiveH2B Blood) 

f25 (outOf-Container naiveH2B heart)  

f26 (into-Container naiveH2B body) 

… … 

f31 (isa l-heart (LeftRegionFn Heart)) 

f32 (physicallyContains l-heart Blood) 
 

Figure 13: A portion of an explanation-based network. (a) Single explanation x0 for an 
explanandum naiveH2B (rightmost nodes). (b) After new knowledge is added, 

preferences are computed for new knowledge (<c), new model fragment instances (<mfi), 
and for the new explanation x1 (<xp). 
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the network with respect to this example.  To improve readability, we lay out the network on 

three tiers.  We describe them from bottom to top. 

Bottom (domain knowledge) tier 

The bottom tier of the network in Figure 13(a-b) is the domain knowledge tier, and contains 

information from �.  This includes propositional beliefs, specifications of quantities, and model 

fragments.  The bottom tier of Figure 13(a-b) contains the subset of � that is relevant to the 

circulatory system micro-example.  All propositional beliefs on this tier are supported by 

observation or instruction. 

Middle (justification) tier 

The middle tier plots provisional beliefs from � (represented as circles in Figure 13) and 

justifications (represented as triangles in Figure 13).  As in Figure 11, the antecedents of a 

justification are on its left, and its consequences are on its right.  The provisional beliefs and 

justifications in Figure 13(a-b) are the subsets that are relevant to the circulatory system micro-

example.  All of the justifications in the system are plotted on this tier.  Unlike the bottom tier, 

the belief nodes on this tier are not supported by observation or instruction – they are inferred 

during the explanation construction process, which we describe in section 4.4. 

Top (explanation) tier 

The top tier plots explanation nodes.  Figure 13(a-b) depicts a subset of all explanations � 

constructed by the agent, plotted with quadrilateral nodes x0 and x1 on the top tier.  Each 
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explanation represents a well-founded explanation for some situation or belief.  Each explanation 

is uniquely defined as x = ⟨J, B, M⟩, where 

  

• M is set of one or more explanandums M that are explained by x. 

• J is a set of justifications J that comprise a well-founded explanation (defined in Chapter 

3) for M.  In Figure 13, each explanation node has dashed lines to its justifications J. 

• B is the set of all beliefs that comprise the explanation.  B includes all antecedents and 

consequences of the explanation’s justifications J.  This includes domain knowledge 

from � and provisional beliefs from �, so B ⊆ � ∪ �.  The explanation’s microtheory 

contains all beliefs in B. 

 

Based on these definitions, the network in Figure 13(a-b) tells us a lot about the agent’s 

learning in the circulatory system micro-example.  Before encountering the textbook information 

(Figure 13a), the agent justifies the flow of blood to the body naiveH2B with an explanation x0 

that involves a FluidFlow process and two ContainedFluid instances: one for the heart and 

one for the rest of the body.  There are no other explanations for this phenomenon.  After the 

textbook scenario is incorporated (Figure 13b), the agent has information in � about the left 

heart (l-heart) and the flow of blood from the left heart to the body (leftH2B).  Figure 13b 

also contains a new, second explanation x1 which uses new and old information in � (the bottom 

their) and � (the middle tier).  The new explanation x1 justifies the old (naiveH2B) and new 

(leftH2B) situations, but note that the previous explanation x0 and its constituent justifications 

and beliefs still exist.  These explanations are now in competition.  In the following, we discuss 
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how explanations are constructed, how they compete, how they are reused, and how 

competitions are resolved to achieve conceptual change. 

4.4 Constructing explanations 

Our computational model constructs explanations for an explanandum m in two steps: (1) 

perform abductive model formulation to create one or more scenario models that justify m; (2) 

for each well-founded explanation of m within the resulting justification structure, create an 

explanation node in the network.  Since computing well-founded explanations is described in 

Chapter 3, we concentrate here on our abductive model formulation algorithm which is a 

contribution of this research. 

As stated above, compositional model fragments simulate parts of mental models.  Figure 14 

shows two model fragments: ContainedFluid and FluidFlow.  Figure 13 contains the belief 

nodes mf0 (isa ContainedFluid ModelFragment) and mf1 (isa FluidFlow 

ModelFragment) which are used to explain blood flowing from the heart (x0) and the left-heart 

(x1) to the body.  We use these explanations as examples for our description of explanation 

construction. 



108 
 

 
 

Before describing our algorithm, it is important to note that “abductive model formulation” 

is not synonymous with “abduction.”  Abduction computes the set of assumptions (or 

hypotheses) that best explains a set of observations.  In contrast, abductive model formulation 

computes qualitative models of a phenomenon by assuming the existence of entities and relations 

between them.  If we later compare these qualitative models to compute the best explanation, 

then we have performed a nontraditional type of abduction.  This section discusses the 

construction of the qualitative models, and we discuss the comparison of qualitative models later 

in this chapter. 

ModelFragment ContainedFluid 
 Participants: 
  ?con Container (containerOf) 
  ?sub StuffType (substanceOf) 
 Constraints: 
  (physicallyContains ?con ?sub) 
 Conditions: 
  (greaterThan (Amount ?sub ?con) Zero) 
 Consequences: 
  (qprop- (Pressure ?self) (Volume ?con)) 
 

When a container con physically contains 
a type of substance sub, a contained fluid 
exists.  When there is a positive amount of 
sub in con, the volume of con negatively 
influences the pressure of this contained 
fluid. 

ModelFragment FluidFlow 
 Participants: 
  ?source-con Container (outOf-Container) 
  ?sink-con Container (into-Container) 
  ?source ContainedFluid (fromLocation) 
  ?sink ContainedFluid (toLocation) 
  ?path Path-Generic (along-Path) 
  ?sub StuffType (substanceOf) 
 Constraints: 
  (substanceOf ?source ?sub) 
  (substanceOf ?sink ?sub) 
  (containerOf ?source ?source-con) 
  (containerOf ?sink ?sink-con) 
  (permitsFlow ?path ?sub  
               ?source-con ?sink-con) 
Conditions: 
  (unobstructedPath ?path) 
  (greaterThan (Pressure ?source)  
               (Pressure ?sink))) 
 Consequences: 
  (greaterThan (Rate ?self) Zero) 
  (i- (Volume ?source) (Rate ?self)) 
  (i+ (Volume ?sink) (Rate ?self)) 

When two contained fluids – a source and 
a sink – are connected by a path, and both 
are of the same type of substance, a fluid 
flow exists.  When the path is 
unobstructed and the pressure of source is 
greater than the pressure of sink, the rate 
of the flow is positive and it decreases the 
volume of source and increases the 
volume of sink. 

 

Figure 14: ContainedFluid (above) and FluidFlow (below) model fragments used in 
the simulation in Chapter 7.  English interpretations of each model fragment (at right). 
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Our abductive model formulation algorithm starts with the procedure justify-explanandum, 

shown in Figure 15, which is given three items as input: 

 

1. A domain context D which is a microtheory that contains a subset of the model fragments 

in �. 

2. A scenario context S which is a microtheory that contains propositional beliefs (i.e., no 

model fragments).  S contains a subset of domain knowledge in �, since � inherits from 

scenario microtheories which are necessary for model formulation.  S also contains 

provisional beliefs from � (from previous model formulation attempts) to reuse previous 

solutions.  For example, if the agent has previously determined that there is a 

ContainedFluid instance within the heart, it need not reconstruct this. 

3. An explanandum m that requires explanation.  Our algorithm takes in two different types 

of explanandums: (1) propositional beliefs; and (2) entities that describe processes, e.g., 

naiveH2B which describes the transfer of blood from heart to body.  When an 

explanandum is a belief, the algorithm directly justifies the belief, and when the 

explanandum is a process entity, the algorithm instantiates models that describe the 

entity.   For our example, we will use the process entity naiveH2B as the explanandum, 

which is described by facts f23-26 in Figure 13. 

 

Arguments S and D can be constructed from one or more explanations.  For instance, using a 

set of explanations {⟨J0, B0, M0⟩, …, ⟨Jn, Bn, Mn⟩}, we can construct S as a microtheory that 

contains all beliefs in the belief sets {B0, …, Bn} of the explanations and we can construct D as 
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the set of all model fragments instantiated in these belief sets.  We discuss this further in section 

4.5 below. 

When the explanandum provided to justify-explanandum is a process instance, the 

procedure justify-process does the rest of the work.  Otherwise, when the explanandum is a 

proposition describing a quantity change or an ordinal relationship, the procedures justify-

quantity-change and justify-ordinal-relation, respectively, do the rest of the work.  To be sure, 

there are other types of propositions that can be justified, but since our simulations involve 

explaining processes and state changes, these explanandums and procedures are sufficient for the 

simulations in this thesis.   
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Regardless the type of explanandum that is being explained, all paths through justify-

Front-ends to abductive model formulation 

 
procedure justify-explanandum(explanandum m, domain D, scenario S) 

if m is a symbol and m is an instance of collection C such that (isa C ModelFragment): 
justify-process(m, D, S) 

else if m unifies with (greaterThan ?x ?y): 
justify-ordinal(m, D, S) 

else if m unifies with (increasing ?x) or with (decreasing ?x): 
let q, d = quantity-of-change(m), direction-of-change(m) 
justify-quantity-change(q, d, D, S) 

 
procedure justify-process (process instance m, domain D, scenario S) 

// Find collections of the given entity within D 
let C = query D for ?x: (isa m ?x) 
// Find model fragments in D that are specializations of these collections. 
let F = query D for ?x: c ∈ C ∧ (isa ?x ModelFragment) ∧ (genls ?x c) 
for each f in F: 

// Find participant roles {〈�����, �����〉, … , 〈�����, �����〉} of f 
let P = participant-roles-of(f) 
// Find entities in S that fill participant roles of a f instance describing m 
let R = query S for 〈����, ? �〉 : 〈����, ����〉 ∈ P ∧ (role m ?x) 
abductive -mf-instantiation(f, R, D) 

 
procedure justify-ordinal-relation (ordinal relation m, domain D, scenario S) 

// m is of the form (greaterThan (MeasurementOf q s1) (MeasurementOf q s2))  
let q, s1, s2 = quantity-of(m), state-1-of(m), state-2-of(m) 
if query S for (after s2 s1) then: 

justify-quantity-change(q, i-, D, S) 
if query S for (after s1 s2) then: 

justify-quantity-change(q, i+, D, S) 
 
procedure justify-quantity-change (quantity q, direction d, domain D, scenario S) 

// Find direct and indirect influences of q 
instantiate-fragments-with-consequence((qprop q ?x), D, S) 
instantiate-fragments-with-consequence((qprop- q ?x), D, S) 
instantiate-fragments-with-consequence((d q ?x), D, S) 
let Ii = query S for indirect influences on q. // results are in form (qprop/qprop- q ?x) 
for each i in Ii: 

let di = direction-of-influence(i) // qprop or qprop-  
let qi = influencing-quantity(i) 
let dc = d  
if di = qprop- then: 

set dc =  opposite(d) 
justify-quantity-change(qi, dc, D, S) 
 

Figure 15: Pseudo-code for front-end procedures that trigger abductive model formulation. 
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explanandum call the procedure abductive-mf-instantiation.  This procedure takes a model 

fragment m (e.g., FluidFlow), a role binding list R that associates zero or more participant slots 

of the model fragment with known entities (e.g., {⟨?sub, Blood⟩, ⟨?source-con, heart⟩, 

⟨?sink-con, body⟩}), and the D and S arguments from justify-explanandum.  It instantiates 

and activates all possible instances of m that conform to the role binding list R provided the 

scenario information S.  Importantly, if it cannot bind some participant slot to an entity within S, 

it will assume the existence of an entity that satisfies this role, and it will assume propositions 

(i.e., constraints and conditions) as necessary.  For example, if there is no known Path-

Generic instances that satisfies the constraints for ?path participant of FluidFlow, the 

algorithm will assume the existence of such an entity. 

We begin by stepping through an example of explanation construction that uses justify-

process.  The behaviors of the justify-quantity-change and justify-ordinal-relation procedures 

are discussed in Chapter 6.  We use the explanation of situation naiveH2B in Figure 13 as an 

example. 
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Suppose that the agent’s knowledge is in the state depicted in Figure 16(a): the agent 

believes, due to PhysicalTransfer instance naiveH2B, that there is a transfer of blood from 

the heart to the body.  However, there is no knowledge of a path or specific process by which 

this occurs.  When the agent explains naiveH2B with the call justify-explanandum(naiveH2B, 

D, S), the procedure first determines whether naiveH2B can be justified by a model fragment.   

Since naiveH2B is a PhysicalTransfer, the system will check whether there are model 

fragments that can model a PhysicalTransfer.  Suppose the belief (genls FluidFlow 

PhysicalTransfer) is present in D, indicating that this is indeed the case. 

(a)          (b) 

 
Legend  

f0 (isa heart Heart) 

f1 (physicallyContains heart Blood) 

f2 (isa Blood StuffType) 

f3 (isa body WholeBody)  

f4 (physicallyContains body Blood) 

mf0 (isa ContainedFluid ModelFragment) 

f5 (greaterThan (Amount Blood heart) 0) 

f6 (isa mfi0 ContainedFluid) 

f7 (substanceOf mfi0 Blood) 

f8 (containerOf mfi0 heart) 

… … 

mf1 (isa FluidFlow ModelFragment) 
 

f13 (isa (SkolemFn mfi2 …) Path-Generic) 

f14 (permitsFlow (SkolemFn mfi2 …) …) 

f15 (isa mfi2 FluidFlow) 

f16 (fromLocation mfi2 mfi0) 

f17 (toLocation mfi2 mfi1) 

… … 

f22 (describes mfi2 naiveH2B) 

f23 (isa naiveH2B PhysicalTransfer) 

f24 (substanceOf naiveH2B Blood) 

f25 (outOf-Container naiveH2B heart)  

f26 (into-Container naiveH2B body) 

  
 

Figure 16: A portion of explanation-based network. (a) Before an explanation has been 
constructed for naiveH2B. (b) After an explanation x0 has been constructed for 

naiveH2B via abductive model formulation. 
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The next step is to find properties of naiveH2B that are important for modeling it as a 

FluidFlow. Consider the following participant roles of FluidFlow from Figure 14: 

 

?source-con Container (outOf-Container) 

?sink-con Container (into-Container) 

?source ContainedFluid (fromLocation) 

?sink ContainedFluid (toLocation) 

?path Path-Generic (along-Path) 

?sub StuffType (substanceOf) 

 

 The procedure must next search for participants for each of the following slots: {?source-

con, ?sink-con, ?source, ?sink, ?path, ?sub}.  If it cannot find a participant in the 

scenario, it must either instantiate a model to fill the role or assume the existence of the 

participant.  We discuss each of these cases.  First, some of these participants can be found in S.  

For example, the participants ?source-con, ?sink-con, and ?sub correspond to the roles 

outOf-Container, into-Container, and substanceOf, respectively.  The procedure 

queries S to determine which entities (if any) fill these roles of naiveH2B: 

 

(outOf-UnderSpecifiedContainer naiveH2B ?source-con) 

(into-UnderSpecifiedContainer naiveH2B ?sink-con) 

(substanceOf naiveH2B ?sub) 

(fromLocation naiveH2B ?source) 

(toLocation naiveH2B ?sink) 

(along-Path naiveH2B ?path) 
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Not all of this information is present in S, but some information about naiveH2B is 

represented as f24-26 in Figure 16: 

 

(outOf-UnderSpecifiedContainer naiveH2B heart) 

(into-UnderSpecifiedContainer naiveH2B body) 

(substanceOf naiveH2B blood) 

 

  From these assertions, the procedure constructs the binding list R = {⟨?source-con, 

heart⟩, ⟨?sink-con, body⟩, ⟨?sub, Blood⟩} to bind the participant variables to ground (i.e., 

non-variable) entities in S.  More work must be done: the three remaining participant slots (i.e., 

?source, ?sink, and ?path) must be bound and constraints must be tested in order to explain 

naiveH2B with a FluidFlow instance.  This is handled by calling abductive-mf-

instantiation(FluidFlow, R, S, D) in Figure 16. 

Abductive instantiation of FluidFlow with partial bindings R begins by finding participants 

that are themselves model fragments.  This includes ?source and ?sink, both of which are 

ContainedFluid instances.  The procedure finds constraints on these ContainedFluid 

instances by substituting the bindings R = {⟨?source-con, heart⟩, ⟨?sink-con, body⟩, 

⟨?sub, Blood⟩} into the FluidFlow constraints.  This substitution produces the following set 

of statements: 

 

(substanceOf ?source Blood) 

(substanceOf ?sink Blood) 

(containerOf ?source heart) 
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(containerOf ?sink body) 

(permitsFlow ?path Blood heart body) 

 

As shown in Figure 14, these statements contain two of the participant roles (substanceOf 

and containerOf) for participant slots (?sub and ?con, respectively) of ContainedFluid, 

so the system makes the two recursive procedure calls: 

 

abductive-mf-instantiation(ContainedFluid, R = {⟨?sub, Blood⟩, ⟨?con, heart⟩}, S, D) 

abductive-mf-instantiation(ContainedFluid, R = {⟨?sub, Blood⟩, ⟨?con, body⟩}, S, D) 
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These recursive invocations find no model fragments that can be participants (?sub or 

?con) of ContainedFluid.   The procedure finds all possible instances of ContainedFluid 

using the bindings R that obey the constraints (e.g., (physicallyContains heart Blood)) 

and participant types (e.g., (isa Blood StuffType)) in S and instantiates them.  Both 

Abductive model formulation  

 
procedure instantiate-fragments-with-consequence (proposition p, domain D, scenario S) 

let F = query D for model fragments with some consequence that unifies with p 
for each f in F: 

for each consequence c of f that unifies with p: 
let B = bindings-between(c, p) 
abductive-mf-instantiation(f, B, D, S) 

 
procedure abductive-mf-instantiation (model fragment m, role bindings R, domain D, scenario S) 

// Find participant collections {〈�����, �����〉, … , 〈�����, �����〉} of m. 
let Cm = participant-collections-of(m) 
// Find the constraints of m. 
let Sm = constraints-of(m) 
// Replace variable slots with known entities in constraints & participants 
set Sm = replace slot with ent in Sm for every 〈����, ���〉 ∈ � 
set Cm = replace slot with ent in Cm for every 〈����, ���〉 ∈ � 
// If a participant is a model fragment, instantiate it recursively. 
let F ={〈����, ����〉 ∈ ��: query D for (isa coll ModelFragment)} 
for each 〈����, ����〉 in F: 

// Using the local constraints Sm, find participant bindings for the recursive call. 
let Sf = ground statements in Sm which: 

1. have a participant role of coll as its predicate and 
2. have slot as a first argument. 

let Rf = bindings between participant slots of coll and corresponding entities in Sf  
// Make a recursive call to instantiate the participant. 
abductive-mf-instantiation(coll, Rf, D) 

// Find all instance bindings of m in D, including ones missing participants 
let Instances = query D for bindings of Sm ∧ Cm 
for each I in Instances: 

// Assume the existence of all unknown participants. 
let UnkParticipants = {〈����, ���, ����〉 ∈ �: ��������(���)} 
for each 〈����, ���, ����〉 in UnkParticipants: 

let e = new-skolem-entity(e, coll) 
set I = replace 〈����, ���, ����〉 with 〈����, �, ����〉 in I 

// Add the constraints, conditions, consequences, and participant roles to �, 
// and create justifications for this model fragment’s instantiation and activation. 
instantiate-model-fragment(m, I) 
 

Figure 17: Pseudo-code for abductive model instantiation 
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recursive invocations instantiate a single ContainedFluid instance: one for heart and one for 

body.  The following assertions are added to S and to the provisional belief microtheory �: 

 

(isa mfi0 ContainedFluid) 

(substanceOf mfi0 Blood) 

(containerOf mfi0 heart) 

 

(isa mfi1 ContainedFluid) 

(substanceOf mfi1 Blood) 

(containerOf mfi1 body) 

 

These beliefs are plotted as f6-8 and f9-11 in Figure 16.  Execution returns to the top-level call 

to abductive-mf-instantiation, where the procedure queries for remaining FluidFlow 

participants.  Based on the information in S – including the model fragment instances that have 

just been added – the procedure can bind more of the FluidFlow participants: {⟨?source-con, 

heart⟩, ⟨?sink-con, body⟩, ⟨?sub, Blood⟩, ⟨?source, mf0⟩, ⟨?sink, mf1⟩, ⟨?path, 

?path⟩}.   Note that it is still incomplete since there is no entity from the scenario that binds to 

the ?path entity.  This is because there is no entity in S is a Path-Generic and that satisfies 

the FluidFlow constraint (permitsFlow ?path Blood heart body).  In this case, the 

model fragment is still instantiated.  A new symbol (e.g., mfi2) is created for the model 

fragment instance, and unbound entities such as ?path are assumed and represented with a 

skolem term such as (SkolemParticipant mfi2 along-Path).  This skolem term 

indicates that this entity was assumed as a participant of mfi2 for the role along-Path.  The 

following two assertions are added to S and to �: 
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(isa (SkolemParticipant mfi2 along-Path) Path-Generic) 

(permitsFlow (SkolemParticipant mfi2 along-Path) Blood heart body) 

 

These beliefs are plotted as f6-8 in Figure 16(b).  Notice that this entity is described only in 

the middle (provisional belief �) layer, since it was generated from model formulation and not 

from a scenario (i.e., observation, interaction, or instruction).  It can be used like any other entity 

and may be a participant of model fragment instances in subsequent calls. 

Once the procedure has a complete list of ground participants, it creates a single instance 

mfi2 of type FluidFlow and uses this instance to justify the explanandum naiveH2B.  In other 

cases, there may be multiple instances that justify the explanandum – consider, for instance, that 

the agent knew about two Path-Generic instances that permit flow of Blood from heart to 

body.  In this case, the agent would not have assumed a ?path participant but would instead 

create a FluidFlow instance for each path.  The instance mfi2 is described with the following 

statements: 

 

(outOf-UnderSpecifiedContainer mfi2 heart) 

(into-UnderSpecifiedContainer mfi2 body) 

(substanceOf mfi2 Blood) 

(fromLocation mfi2 mfi0) 

(toLocation mfi2 mfi1) 

(along-Path mfi2 (SkolemParticipant mfi2 along-Path)) 
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All model fragment instantiations and model fragment activations are stored as 

justifications, and the associated beliefs are stored in �.  This comprises the entire middle 

(justification structure) tier in Figure 16(b), which contains in a single well-founded explanation 

for the explanandum naiveH2B.  This well-founded explanation has been reified as an 

explanation node x0 plotted in the top tier of Figure 16(b).  This is the product of the explanation 

construction algorithm. 

Now suppose that the agent learns additional details: (1) the heart is divided into left and 

right sides (l-heart and r-heart, respectively) and (2) there is a transfer leftH2B of blood 

form l-heart to body.  The agent can construct an explanation for leftH2B analogous to the 

process for naiveH2B.  A new FluidFlow instance must be created for leftH2B, but the 

ContainedFluid instance for body can be reused as its ?sink participant.  After explaining 

leftH2B, the network will resemble Figure 18.  There are three important items of note in 

Figure 18, which we will discuss in later sections of this chapter: (1) the new explanation x1 

explains leftH2B and also naiveH2B (since the l-heart is a more specific region of heart), so x0 

and x1 are in competition; (2) x0 and x1 use different but overlapping sets of beliefs and 

 

Figure 18: The network after two explanations have been constructed via abductive 
model formulation: x0 explains naiveH2B, and x1 explains naiveH2B and leftH2B. 
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justifications; and (3) preferences (represented as arrows) have been encoded between concepts 

<c, justifications <mfi, and explanations <xp.  Constructing a new explanation does not eliminate 

previous explanations; rather, it uses the product of previous explanations to build new 

structures. 

Our abductive model formulation algorithm is exhaustive and complete relative to the 

scenario S, domain theory D, and explanandum m.  It is incomplete with respect to S and D 

alone, since m guides the recursive search for model fragment instances.  For example, the 

beliefs (isa lvr Liver) and (physicallyContains lvr Blood) might have been in the 

scenario S, but a corresponding ContainedFluid would not have been instantiated over 

{⟨?sub, Blood⟩, ⟨?con, lvr⟩} because the explanandum naiveH2B constrained the source and 

sink containers to heart and body, respectively. 

The abductive model formulation algorithm results in (m+e)p model instantiation attempts in 

the worst case, where m is the number of models in the domain theory, e is the number of entities 

in the scenario, and p is the number of participant slots per model.  The algorithm is guaranteed 

to converge, assuming that there is no cycle in model fragment dependency.  Figure 19 illustrates 

the dependency graph for the above abductive model formulation example for naiveH2B.  Each 

 

Figure 19: A graph of the relationships between model fragments and other collections 
in the circulatory system example. 
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box is a model fragment (bold-bordered) or ordinary collections (dashed) and edges represent 

participant relationships between types.  For instance, the ?source participant slot of 

FluidFlow requires a ContainedFluid, and the ?con participant slot of a ContainedFluid 

requires a Container.  Each edge between two model fragments represents a single recursive 

invocation, so – in the example above – there are two recursive invocations for FluidFlow: one 

for ?source and one for ?sink.  The algorithm is guaranteed to terminate if it satisfies two 

constraints: 

1. There is no path in the graph from a model fragment m to a type t such that t is equal to m 

or is a superordinate of m in the genls hierarchy (see Chapter 2 for the definition of 

genls within an ontological hierarchy).  

2. Each model fragment has a finite number of participant slots (i.e., it is graphable with a 

finite number of nodes). 

3. The consequences of the model fragments do not introduce new entities that are not 

already included as a participant. 

 

To illustrate the necessity of the first constraint, consider what might happen if Container 

was (mistakenly) marked as a genls (superordinate) of FluidFlow while explaining naiveH2B: 

 

1. A call to abductive-mf-instantiation attempts to model a FluidFlow. 

2. A recursive invocation of abductive-mf-instantiation attempts to instantiate a 

ContainedFluid to fill the ?source participant slot. 
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3. Since the participant ?con of ContainedFluid can be modeled by a FluidFlow (i.e., 

(genls FluidFlow Container)), there would be a recursive invocation of 

abductive-mf-instantiation to attempt to instantiate a FluidFlow.  Return to (1). 

 

The second constraint is intuitive: if there are infinite participants of a model fragment, there 

may be infinite recursive invocations to instantiate these participants. 

These are reasonable constraints for a domain theory.  Aside from guaranteeing 

convergence, the first constraint guarantees that the resulting scenario model will be well-

founded, according to Forbus’ (1992) formal definition.  We include a preprocessing step that 

ensures that the domain theory D satisfies this constraint. 

The explanations produced by the algorithm contain more detail than everyday verbal 

explanations (i.e., they decompose phenomena into elementary concepts and causes).  In this 

dissertation, explanations are constructed to promote learning and to answer questions for 

experimental evaluation, not for inter-agent communication.  The problem of constructing 

explanations for another agent is best addressed elsewhere, since (1) communicating an 

explanation may have task-specific aspects, and (2) explaining to another person involves 

knowing what she believes and often including only beliefs and rationale that she lacks. 

One problem we have not yet addressed is the problem of multiple explanations: after well-

founded explanations have been reified as explanation nodes (e.g., x0 and x1 in Figure 18), there 

frequently exist multiple explanations for a single explanandum (e.g., naiveH2B in Figure 18).  

Explanation competition and the resolution these competitions are topics of discussion later in 

this chapter. 

 



124 
 

 
 

4.4.1 Psychological assumptions of explanation construction 

Here we discuss the psychological assumptions underlying our abductive model formulation 

algorithm that were not addressed in Chapter 1. 

Our abductive model formulation starts with the explanandum and works backwards to 

search over a subset of the domain knowledge.  A more complete model formulation algorithm 

would start from all known entities and work forward to instantiate and activate model 

fragments.  Since our model uses a directed backward search, it assumes that people do not 

consult all of their knowledge when constructing explanations.  This is supported by interview 

transcripts (e.g., in Sherin et al., 2012) where students must be reminded of information they 

have previously encountered before realizing their explanations are inconsistent.  In section 4.5, 

we discuss how similarity-based retrieval is used to retrieve and reuse previous explanations.  

This further reduces the space of domain knowledge that is searched during model formulation. 

Our algorithm instantiates all possible models that conform to an initial specification and 

then segments the resulting structure into multiple explanations.  This does not seem to be the 

case for people; the same students in Sherin et al. (2012) appear to construct a single explanation 

incrementally and only consider an alternative explanation once their initial explanation proves 

inadequate.  In Chapter 9, we discuss opportunities for making our algorithm more incremental 

and interleaving meta-level analysis. 

Our algorithm terminates once an explanandum has been grounded in non-model-fragment 

types, meaning that termination rests solely on (1) what the agent knows about the 

scenario/situation, and (2) the model fragments that are available.  Consequently, the agent will 

continue decomposing causes and mechanisms insofar as the scenario permits.  This is an 

unlikely psychological assumption, since it predicts that people will take longer to construct 
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mechanism-based explanations as they accrue more detailed knowledge about mechanisms.  We 

might remove this assumption by using modeling assumptions (Falkenhainer and Forbus, 1991) 

to limit the types of model fragments considered – and thereby the detail of the qualitative model 

– based on task- and domain-level properties.  Another possible solution is using analogy to infer 

explanation structure from one case to another.  We discuss these ideas further in Chapter 9. 

4.4.2 Explanation competition 

We have established that conceptual change involves entertaining conflicting ideas.  In the two 

micro-examples of conceptual change in this chapter, we see two different examples of conflict: 

(1) between two models of the circulatory system and (2) between two different quantities that 

represent force.  We have already described how explanations are constructed.  This section 

describes how explanations compete, and how they are used to organize information. 

As shown above, there can be multiple explanations for the same explanandum Mi.  For 

example, Figure 18 shows the network with two explanations: (1) an explanation x0 = ⟨J0, B0, M0 

= {naiveH2B}⟩ of naiveH2B and  (2) an explanation x1 = ⟨J1, B1, M1 = {naiveH2B, 

leftH2B}⟩ of both naiveH2B and leftH2B.  We say that two explanations compete over some 

explanandum(s) M if and only if they both explain those explanandums.  For example, x0 and x1 

compete to explain naiveH2B since M0 ∩ M1 = {naiveH2B}.  By contrast, there is no 

competition for leftH2B since x1 is its sole explanation. 

Explanation competition is important because it indicates a conflict between two different 

lines of reasoning.  In the circulatory system micro-example, naiveH2B is explained using 

knowledge of the heart (via x0) and also knowledge of the left heart (via x1).  This is not a serious 

conflict: one line of reasoning (x1) is just slightly more specific than the other (x0).  However, 
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there can only be one preferred explanation per explanandum.  The beliefs in preferred 

explanations – including their assumptions, model fragment instances, and inferences – are 

adopted by the agent, meaning that they are believed.  If x1 becomes the preferred explanation 

for both naiveH2B and leftH2B and x0 is not preferred for any explanandum, then the content 

of x1 will be adopted by the agent and the content exclusive to x0 will not. 

We can formalize the mapping from explanandums to their preferred explanation with an 

explanation mapping � = {〈��, ��〉, … , 〈��, ��〉} which maps each explanandum mi to its 

preferred explanation xi.  The mapping � is exhaustive over explanandums, but not exhaustive 

over explanations (i.e., a single explanation may be preferred for zero or more explanandums).  

We discuss how explanation preferences are computed later in this chapter. 

The explanation mapping plays two important roles in our model of conceptual change.  

First, it determines, in part, what the agent does and does not believe.  For any given belief, if the 

belief is in some explanation within the explanation mapping, the agent is justified in believing 

it. 

The second role of the explanation mapping is directing the search for knowledge when a 

new explanandum must be explained.  It helps build the S and D contexts for the abductive 

model formulation algorithm discussed above.  This means that the content of preferred 

explanations – and not their non-preferred competitors – is potentially reused in new 

explanations. 

4.5 Explanation retrieval and reuse 

Suppose that the agent is asked to explain some explanandum m (e.g., how blood gets from the 

heart to the body) on a questionnaire and m has already been explained by the agent.  How would 
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the agent go about explaining m?  Since m has already been explained, the explanation mapping 

� already associates m with its preferred explanation x = 〈�, �, �〉 and the processes and 

assumptions underlying m are available in x’s beliefs B.  This is the simplest case of retrieving 

and reusing a previous explanation. 

But how would the agent explain m if it had not been previously encountered?  Before 

constructing a new explanation using the abductive model formulation algorithm, the agent must 

first define the scenario S and domain theory D contexts.  One simple solution is to define D as 

all known model fragments in � and define S as all beliefs in � and �.  This would guarantee 

that the agent has access to all of the relevant information that it has ever encountered; however, 

we must also take efficiency into consideration.  If we increase the information in S and D (e.g., 

by filling them with all of the agent’s knowledge) we will potentially increase the number of 

recursive calls during model formulation, and we will certainly increase search time.  

Performance would therefore degrade as the agent accrues knowledge, leading to a utility 

problem (Minton, 1990), which we briefly discussed in Chapter 3.  Our solution is to 

automatically build S and D from the contents of previous explanations, which we described 

above in section 4.4.  This does not guarantee that the agent has access to all relevant 

information, but we do not assume that people have this psychological capability. 
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Given a new explanandum m or a new scenario microtheory Ms, the agent builds model 

formulation contexts (S and D) from previous explanations, as described above.  There are two 

separate procedures for retrieving previous explanations, shown in Figure 20: (1) find-relevant-

explanations-for-scenario is used when the agent encounters a new scenario microtheory such 

as a comic graph and (2) find-relevant-explanations-for-explanandum is used when only an 

explanandum or query is provided, without an accompanying scenario microtheory. 

The procedure find-relevant-explanations-for-scenario uses MAC/FAC to retrieve previous 

scenario microtheories that are similar to the new scenario.  It then returns all preferred 

explanations of the explanandums in these similar scenario microtheories.  Similarly, the 

procedure find-relevant-explanations-for-explanandum retrieves similar explanandums to the 

new explanandum and then returns all preferred explanations of the similar explanandums.   

Similarity-based retrieval of explanations from situations and cases.  

 
procedure find-relevant-explanations-for-explanandum (explanandum m) 

// Use MAC/FAC to find similar explanandums in �, using m as a probe. 
let SimExplanandums = macfac(m, �) 
// Return the explanation mappings for the similar explanandums. 
return {〈�′, �〉 ∈ �: �′ ∈ ���������������} 

 
procedure find-relevant-explanations-for-scenario (microtheory Ms) 

// The case library is all scenario microtheories of previous explanandums 
let CaseLib = ���_��������_������ℎ������ − �� 
// Use MAC/FAC to find similar cases, using Ms as a probe. 
let SimMicrotheories = macfac(Ms, CaseLib) 
// Find the explanandums for these similar microtheories. 
let Explanandums = {�′ ∈ �: �������������(�′) ∈ ���������ℎ������} 
// Return the explanation mappings for these explanandums. 
return {〈�′, �〉 ∈ �: �′ ∈ ������������} 

 

Figure 20: Pseudo-code for best explanation retrieval algorithms, which use 
MAC/FAC to find explanations that are relevant for a given explanandum or case. 
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Once the agent has retrieved a set X of explanations, it can construct D as the union of model 

fragments used in X, and S as the union of beliefs in Ms and all beliefs B in explanations 

〈�, �, �〉 ∈ �.  We call this preferred explanation reuse.  If no previous explanations exist, or if 

no explanations can be constructed by binding S and D in this fashion, then the system sets S to 

�, and D to the set of all model fragments in �.  The simulations in Chapters 6, 7, and 8 use this 

general pattern for building the S and D contexts for model formulation.   

Using preferred explanations to seed new explanations has a side effect: the contents of 

preferred explanations are propagated to new contexts, and the contents of non-preferred 

explanations are not.  This is a positive feedback cycle: if an explanation is preferred, its contents 

are more likely to be reused, which makes the contents more likely to be part of a new preferred 

explanation. 

So far, we have described several characteristics of explanations in our cognitive model: the 

process by which they are constructed; how they organize information; how they coexist and 

compete; and how they are retrieved and reused to explain new phenomena.  Next we discuss 

reasoning processes for evaluating explanations and calculating preferences. 

4.6 Finding the preferred explanation 

The simulations described in this dissertation use the above network structure to organize 

knowledge and aggregate explanations, but they use two different methods of computing 

preferred explanations: 

 

1. Epistemic preferences are preferential relations over explanations and domain 

knowledge.  They are computed using logical rules and stored as statements in 
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metaknowledge.  The preference ordering over a set of competing explanations is used to 

determine which is preferred for an explanandum. 

2. Cost functions map each explanation to a real number indicating its absolute suitability, 

given what is already believed in the adopted domain knowledge microtheory �a and in 

other preferred explanations.  The best explanation is the one with the lowest numerical 

cost. 

 

Chapter 6 describes a simulation that uses a cost function, and Chapters 7 and 8 describe 

simulations that use epistemic preferences.  We discuss these in the following sections, and we 

include ideas for integrating these two approaches in the conclusion of this dissertation. 

4.6.1 Rule-based epistemic preferences 

Sometimes a model fragment or entity from one explanation can be objectively compared to a 

model fragment or entity in another explanation, and this helps decide which explanation is 

better.  For instance, the entity left-heart – comprised of the left-atrium and left-ventricle – is 

objectively more specific than the entity heart.  If a rule in � states that “if x is a sub-region of y, 

then x is more specific than y,” then the agent can encode a specificity-based epistemic 

preference for left-heart over heart. 

In our model, an epistemic preference (hereafter “preference”) is a binary relation over two 

units of knowledge.  Each preference � <�
� � indicates that knowledge b is strictly preferred to 

knowledge a along dimension d (e.g., specificity, in the above example) over knowledge type t 

(i.e., concepts c, model fragment instances mfi, or explanations xp).  The preference between left-

heart and heart entities is shown in Figure 13(b) as a preference between concept-level beliefs 
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<c.  To be more specific, we would write (isa heart Heart) <�
�(isa l-heart 

(LeftRegionFn Heart)).  The dimensions of preference used in our simulations include: 

specificity (s); instructional support (i); existence prior to instruction (n); completeness (c); and 

revision (r).  We discuss the criteria for computing preferences in these dimensions below. 

Preferences b1 <c b2 between concepts (i.e., beliefs, model fragments, or quantity 

specifications) b1 and b2 are computed via logical criteria.  Importantly, if b1 and b2 are identical 

or comparable for specificity (i.e., �� ≤�
� �� or �� ≤�

� ��), we say they are s-comparable.  The 

term “commensurable” might apply here as well, but we have already defined it in Kuhn’s 

(1962) and Carey’s (2009) terms and avoid it here to reduce confusion.  Criteria for concept-

level preferences are as follows: 

 

Preference Encoded if and only if 

�� <�
� �� Belief or model fragment b1 is more specific than b2 as inferred by some 

rule(s) in the domain theory �. 

�� <�
� �� b1 and b2 are s-comparable; b1 is supported by instruction and b2 is not. 

�� <�
� �� b1 and b2 are s-comparable; b1 is prior knowledge (i.e., believed prior to 

instruction) and b2 is not. 

�� <�
� �� b1 and b2 are model fragments or quantity specifications, and b2 is a 

heuristic-based revision of b1 (see section 8.2 for details). 
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Provided concept-level preferences <c over domain knowledge, a preference i1 <mfi i2 

between model fragment instances i1 and i2 is derived from them.  These are largely influenced 

by concept-level preferences <c. 

 

Preference Encoded if all of the following criteria are true 

�� <���
�∈{�,�,�,�} �� • i1 and i2 are instances of the same model fragment. 

• At least one i2 participant is preferred <�
� or <���

�  to the same-slot i1 

participant and all other participants are s-comparable. 

• No i1 participant is strictly preferred <�
� or <���

�  to the same-slot i2 

participant in the same dimension d as the previous criterion. 

�� <���
�∈{�,�,�,�} �� • i1 and i2 are instances of model fragments m1 and m2, respectively. 

• �� <�
� �� (i.e., the model fragment of i2 is preferred to that of i1). 

• All participants of i2 are either identical or preferred <�
� to the same-slot 

participants of i1 in the same dimension d as the previous criterion. 

�� <���
� �� • i2 is more complete than i1: i1 contains at least one assumed participant,23 

and one or more of the same-slot i2 participants are not assumed. 

• All non-assumed same-slot participants of i1 and i2 are s-comparable. 

 

                                                 
23 Assumed participants are represented with skolem terms (e.g., (SkolemParticipantFn mfi2 along-
Path)) and not with entities from the scenario (e.g., heart or l-heart).  We discussed the conditions for 
assuming participants in our description of the abductive model formulation algorithm. 
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Finally, preferences <xp over explanations are encoded based on preferences <mfi over model 

fragment instances. 

 

Preference Encoded if all of the following criteria are true 

�� <��
�∈{�,�,�,�,�} �� • Explanations x1 and x2 are in competition. 

• At least one model fragment instance i2 of x2 is preferred to a model 

fragment instance i1 of x1 such that �� <���
� �� and all other model 

fragments are identical. 

• No model fragment instance i1 of x1 is preferred to a model fragment 

instance i2 of x2 such that �� <���
� �� over the same dimension d as the 

previous criterion. 

 

We have described how preferences over conceptual knowledge (i.e., beliefs, model 

fragments, and quantity specifications), model fragment instances, and explanations are derived.  

By these definitions, preferences between concepts <c trigger preferences between model 

fragment instances <mfi, which in turn trigger preferences <xp between explanations. 

Preferences between explanations decide which explanation is ultimately preferred and 

mapped in �, but this only works if there are no cycles in the explanation preference ordering.  

Cycles occur when an explanation x0 is directly or transitively preferred over competing 

explanation x1 for one dimension, and x1 is preferred over x0 for another dimension.  In the 

mental model transformation example above, consider the agent that starts with knowledge of the 

heart (i.e., (isa heart Heart)) but not the left heart (i.e., (isa l-heart (LeftRegionFn 
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Heart))) .  Upon learning about the left heart from the equivalent of a textbook, it will have the 

following specificity, instructional support, and prior knowledge preferences: 

 

(isa heart Heart) <�
�(isa l-heart (LeftRegionFn Heart)) 

(isa heart Heart) <�
� (isa l-heart (LeftRegionFn Heart)) 

(isa l-heart (LeftRegionFn Heart)) <�
�(isa heart Heart). 

 

If these preferences propagate upward to preferences over model fragment instances and 

competing explanations, the following preferences over explanations could occur: 

 

��� <��
� ��� 

��� <��
� ��� 

��� <��
� ��� 

 

In Figure 13(b), this cycle in preferences has been reconciled into a single explanation-level 

preference <xp.  This is achieved with preference aggregation, which we describe next. 

Aggregating epistemic preferences 

Epistemic preferences along several dimensions can be aggregated into a single dimension 

(Doyle, 1991).  Our model achieves this with a preference aggregation function.  The input to 

the function is a preference ranking sequence R over all dimensions D = {s,i,n,c,r} such as R = 

⟨s, i, n, c, r⟩ or R = ⟨n, c, s, i, r⟩.  Informally, the preference ranking describes the relative 

importance of each dimension of preference, for cycle resolution.  The output is a single, acyclic, 
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partial ordering <xp over explanations.  This is implemented by the following procedure that 

computes the aggregate ordering <xp: 

 

<xp ← ∅ 

for each d ∈ R 

    for each pref ∈ <��
�  

        if cycles(<xp + pref) = ∅ then 

            <xp ← <xp + pref 

 

For each dimension of preference, ordered by the preference ranking sequence, all 

preferences are added to the aggregate ordering unless they result in a cycle in the aggregate 

ordering.  This produces a partial, acyclic ordering over explanations, assuming that preferences 

<��
�  in each dimension d are acyclic.  The preference ranking R thereby influences the decision 

of which competing explanation is ultimately preferred, which will affect subsequent learning 

and question-answering. 

Psychological assumptions regarding rule-based epistemic preferences 

Here we discuss psychological assumptions underlying our use of rule-based epistemic 

preferences.  Some of the unsupported assumptions of epistemic preferences are resolved by our 

use of cost functions, which we describe in the next section. 

One assumption of our specificity preference is that people prefer more specific explanations 

and concepts over more general ones, all else being equal.  This has been common practice in AI 

for some time (e.g., Poole, 1985).  This seems intuitively accurate from an information theoretic 
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standpoint, since more general information can often be inferred from more specific information 

(e.g., since the left-heart pumps blood to the body, the heart pumps blood to the body).  Rottman 

and Keil (2011) show that people attribute more importance to components of an explanation 

with more elaboration.  This specific preference does not assume that people prefer to construct 

more specific explanations when communicating to others, since the explanations we discuss 

here are self-directed. 

Having a prior knowledge preference assumes that people may prefer to explain things in 

terms of entities they are already acquainted with (e.g., the heart) rather than entities that they 

recently encountered via instruction (e.g., left ventricle).  This is indeed the case for students in 

the control group of Chi et al. (1994a) who (1) explained blood flow in terms of the heart on a 

pretest, (2) read a textbook passage (twice) which included a description of the left-heart and 

left-ventricle pumping blood to the body, and (3) still explained blood flow in terms of the heart 

on the posttest.  This is one manner in which we model resistance to change, which is a notable 

problem in achieving conceptual change (for detailed discussion of resistance, see Feltovich et 

al., 1994; Chinn and Brewer, 1993). 

Our instructional support preference assumes that people prefer information that is 

supported by instruction over comparable information that is not.  This is supported by Chi et al. 

(1994a), who document students changing their mental models when they realize that their 

beliefs are inconsistent with a textbook passage. 

Our completeness preference assumes that people prefer explanations that make fewer 

existence assumptions, all else being equal.  We have defined an assumption as a statement that 

is not readily observed or justified, so all else being equal, assumptions increase uncertainty and 

decrease the simplicity of an explanation.  Lombrozo (2007) provides evidence that people prefer 
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simpler explanations, and that they believe simpler explanations to be more probable, all else 

being equal. 

Epistemic preferences describe one-dimensional dominance between concepts, model 

fragments, and explanations.  They are sufficient for simulating the conceptual changes 

described in Chapters 7 and 8, but we do not assume that this is a complete model of 

psychological explanation evaluation.  People have other criteria by which they judge causal 

explanations, including causal simplicity,24 coverage of observations, goal appeal, and narrative 

structure (Lombrozo, 2011).  We next discuss a how a cost function – used in the simulation in 

Chapter 6 – can capture some of these macro-level qualities. 

4.6.2 Cost functions 

In many cases, preferences over individual concepts cannot sufficiently capture what makes one 

explanation better than another.  There are many other considerations when evaluating an 

explanation: How simple is it?  How does it cohere with other explanations I’ve constructed?  

Does it have consistent causal structure?  Our cost function – used in the simulation in Chapter 6 

to compute explanation preferences – is designed to answer these questions.  In this section we 

describe the cost function and the elements of explanations that incur costs. 

A cost function is a numerical rating of the additional complexity that an explanation would 

incur the agent. It computes this by summing the cost of epistemic artifacts that would be 

incurred by accepting an explanation (i.e., mapping an explanandum to it in �).  Epistemic 

artifacts (hereafter “artifacts”) include assumptions, contradictions, quantity changes, model 

                                                 
24 Lombrozo (2011) describes simplicity as perceived probability, but it has also been formulated as the 
minimization of assumptions (Ng & Mooney, 1992) or the minimization of assumption cost (Charniak & Shimony, 
1990). 
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fragments, and more (in table form, below).  If an artifact within an explanation, e.g., an 

assumption, is already used within another preferred explanation in �, that artifact does not add 

to the cost of the explanation in question.  When multiple explanations compete to explain an 

explanandum m, the minimum-cost explanation x is chosen as the preferred explanation so that 

⟨m, x⟩ is added to �.  Next we catalog the types of explanation artifacts and describe how 

explanation costs are computed. 

Each artifact is identified by domain-general rules and patterns, and each has a numerical 

cost.  The cost of an explanation x = ⟨J, B, M⟩ is computed as the cost of all new artifacts that 

would be incurred by accepting x’s beliefs B.  For instance, B may contain new assumptions, 

new model fragment instances, and new beliefs that contradict beliefs in adopted domain 

knowledge �a or in preferred explanations in �.  As mentioned above, only new artifacts incur a 

cost, so there is a strong bias for explaining new explanandums with pre-existing assumptions 

and mechanisms. 

Each artifact a is uniquely defined by the tuple a = ⟨ta, Ba⟩, where 

 

• ta is the artifact type (e.g., Assumption), which determines the cost of a.  Types and 

associated costs are listed below. 

• Ba is a set of requisite beliefs, such that the cost of a is incurred if and only if all Ba are 

believed (i.e., Ba is a subset of the union of �a and the beliefs of all preferred 

explanations in �). 

 

We use this notation to describe artifacts in Chapter 7. 
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Let � = {a0, …, an} be the set of all artifacts and let �i ⊆ � the set of incurred artifacts (i.e., 

whose costs are incurred by the agent).  An artifact is a member of �i exactly when each of its 

requisite beliefs in Ba is in �a or in some preferred explanation in �.  For ease of discussion, we 

can define the union of adopted beliefs of the agent �a as all beliefs in the adopted domain theory 

and in preferred explanations: 

 

�� = �� ∪ � �: � = 〈�, �, �〉
〈�,�〉∈�

 

 

We can now compute the set of incurred artifacts �i as all artifacts in � whose beliefs Ba are in 

�a: 

 

�� = {〈��, ��〉 ∈ �: �� ⊆ ��} 

 

We list the artifact types ta used in the simulation in Chapter 6, and we describe how 

requisite beliefs Ba of each type are computed.  Importantly, one type of artifact has a negative 

cost, so it provides a utility to the agent rather than a penalty.   

 

ta: cost Ba constituents 

Contradiction: 100 Ba is any set of beliefs such that the conjunction of 

beliefs Ba – and no strict subset thereof – is inconsistent. 

Asymmetric quantity change: 40 Ba = {b}, where b is a statement in an explanation x’s 
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metaknowledge Bm that describes a quantity change in x 

that does not have a reciprocal quantity change in a 

cyclical state-space.25 

Assumed quantity change: 30 Ba = {b}, where b is an assumed quantity change.  These 

are costly because quantity changes must be explained 

at some point by introducing a process instance, since 

processes are the sole mechanism of change in a 

physical system (Forbus, 1984). 

Model fragment: 4 Ba = {(isa mf ModelFragment)}, where mf is a 

model fragment, e.g., ContainedFluid in the 

circulatory system micro-example. 

Assumption: 3 Ba = {b}, where b is an assumed proposition. 

Model fragment instance: 2 Ba = {(isa inst mf)} where inst is the instance name 

and mf is the model fragment type, e.g., (isa mfi0 

ContainedFluid) in the circulatory system micro-

example. 

Credibility: [-1000, 0) Ba = {b}, where b was communicated from another 

source.  The utility (i.e., negative cost) of accepting b is 

                                                 
25 Asymmetric quantity changes are possible in any cyclic state space, such as the water cycle, the carbon cycle, 
breathing, the seasons, and day/night.  The day/night explanation “night turns to day in Chicago because the earth 
rotates so that Chicago faces the sun, and day turns to night in Chicago because clouds cover the sun” is asymmetric: 
there is no mention of how the earth rotates to block Chicago from the sun for the next sunrise.  We provide more 
examples of asymmetric quantity changes in Chapter 6. 
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proportional to the credibility of the source. 

 

The artifacts and costs listed above are sufficient for simulating the mental model 

transformation in Chapter 6, but we do not believe this list is complete. Also, the costs listed 

above were determined empirically to maximize the accuracy of the simulation in Chapter 6, so 

we had to make several psychological assumptions which we discuss below. 

According to Occam’s razor, a simpler explanation is better, all else being equal.  The 

penalties for model fragments and their instances promotes qualitative parsimony (i.e., 

minimizing the new kinds of entities postulated) and quantitative parsimony (i.e., minimizing the 

Explanation and belief cost computation  

��� �� = {〈��, ��〉 ∈ �/��: �� ∩ � ≠ ∅} 

��� � = {〈��, ��〉 ∈ ��: �� ∈ (� ∪ ��)} 

��� � = {〈��, ��〉 ∈ ��: � ∈ ��} 

 
// Compute the cost that would be incurred by adopting an explanation. 
procedure explanation-cost (explanation � = 〈�, �, �〉) 

// Find artifacts Ax pertaining to x that are not presently incurred. 

// Find artifacts A incurred if x were adopted.  Recall �a is adopted beliefs. 

// Return the sum of the costs of these artifacts. 
return ∑ ����(�)�∈�  

 
// Compute the cost that can be saved by retracting a belief. 
procedure retraction-savings (belief b) 

// If b is not in a preferred explanation… 
if ∄〈�, 〈�, �, �〉〉 ∈ (� ∈ �) then 

// Find artifacts A supported by b that are presently incurred. 

// Return the sum of the cost of these artifacts. 
return − ∑ ����(�)�∈�  

else return 0 
 

Figure 21: Pseudo-code for computing an explanation’s cost and a belief’s cost using 
a cost function.  Note that the cost of any explanation that is presently adopted (i.e., 

an explanandum is mapped to it in �) is zero. 
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number of new entities postulated), respectively.  Promoting parsimony and penalizing 

assumptions makes a simpler explanation less costly, all else being equal. 

The cost function is used for two purposes in our computational model: (1) computing a 

preferred explanation from multiple competing explanations and (2) retrospectively changing �a 

and �.  In the case of explanation competition, a new explanandum m (e.g., the changing of 

Chicago’s seasons, in Chapter 6) is explained by the agent, and multiple explanations X compete 

to explain m.  The cost function is used to decide which explanation x ∈ X to associate with m as 

its preferred explanation in �.  Computing the cost of an explanation x is equivalent to 

computing the total cost of all artifacts in �/�i that would be added to �i if 〈�, �〉 ∈ �.  This 

algorithm is shown in Figure 21.  The agent uses the function explanation-cost to find the 

minimal cost explanation in X. 

The cost function is also used to retrospectively change �a and � to reduce cost.  For 

instance, it could be the case that the cost of �i could be significantly reduced by switching the 

preferred explanation for some explanandum(s) in � or removing some belief(s) from �a.  

Consider the sequence of events in Figure 22 that occurs in a simulation trial in Chapter 6: the 

agent makes the locally optimal choices for two explanations, but then learns some new 

information that renders the two explanations mutually inconsistent, despite retaining their 

individual internal consistency.  In this situation, the contradictions may be removed by 

removing the credible beliefs b0 or b1 from �a (thus losing the credibility bonus) or changing the 

preferred explanation for Chicago’s seasons (explanandum m0), Australia’s seasons 

(explanandum m1), or both.  Making these changes may alter the set of beliefs �a that the agent 

holds to be true, so this is a mechanism of belief revision. 



143 
 

 
 

Restructuring the entire contents of �a and remapping all explanandums in � to find the 

minimal cost configuration is very costly.  This is due to the number of possible mappings in � 

and beliefs in �a that must be considered.  If there are m explanandums with x explanations each 

and b domain beliefs which can be either adopted (i.e., in �a) or not (i.e., in �\�a), then there are 

2bxm possible configurations.  If there are 16 explanations for both Chicago and Australia, this is 

equivalent to 22*162 = 1024 configurations for just the two explanations and two domain beliefs 

in Figure 22.  While this is not a serious problem for this small example, the time complexity is 

exponential on the number of explanandums being considered.  We avoid this combinatorial 

explosion by using the greedy, local reconstruction algorithm shown in Figure 23. 

What the agent does  In our model: 

1. Explained Chicago’s difference in summer and winter 
temperatures (explanandum m0) with an explanation x0 of 
the earth being closest to the sun in Chicago’s summer and 
being furthest from the sun in Chicago’s winter. 

�� ∈ � 
〈��, ��〉 ∈ � 

2. Explained Australia’s difference in summer and winter 
temperatures (explanandum m1) with the similar 
explanation x1 to x0, using the same mechanisms and 
assumptions. 

�� ∈ � 
〈��, ��〉 ∈ � 

3. Learned from a credible source that Australia’s winter 
coincides with Chicago’s summer (belief b0) and 
Australia’s summer coincides with Chicago’s winter 
(belief b1). 

{��, ��} ⊆ �� 
〈�����������, {��}〉 ∈ �� 
〈�����������, {��}〉 ∈ �� 

4. Detected four contradictions due to b0, b1, and the 
beliefs in x0 and x1, e.g., the earth cannot be closest to the 
sun in Chicago’s summer and farthest in Australia’s winter 
at the same time, since they temporally coincide. 

Four contradiction artifacts 
added to �i, of the form 
〈������, {��, ��, ���, ���}〉 
where bx0 and bx1 are beliefs 
from x0 and x1, respectively. 

Figure 22: A sequence of events from the simulation in Chapter 6 that produces 
several contradictions between best explanations and credible domain knowledge. 



144 
 

 
 

Our local reconstruction algorithm takes a single artifact as input, finds the domain beliefs 

and explanations that support it, and greedily reconfigures the beliefs and affected explanandums 

to reduce the cost.  This involves remapping individual explanandums in � and adding or 

removing beliefs in �a.  Each explanandum under consideration changes its mapping in � to a 

lower-cost explanation (if there is one), and each belief in �a under consideration is added or 

removed from �a if it will reduce cost.  This occurs in a closed loop, until no single action can 

reduce the cumulative cost, and then the algorithm terminates.  It is guaranteed to terminate, 

Locally restructuring the KB  

��� �� = {�� ∈ �: 〈��, 〈�, �, �〉〉 ∈ � ∧ (�� ∩ �) ≠ ∅} 

��� �� = �� ∩ �� 

��� ������� = ���� 

��� � = {〈�, �, �〉 ∈ �: �� ∈ �} 

��� � = min
�∈�

�����������‒ ����(�) 

 
function restructure-around-artifact (artifact � = 〈��, ��〉) 

// Find supporting explanandums 

// Find supporting beliefs in the domain theory 

// Iterate until no further local revisions are made. 

while revised: 
set revised = false 
for each Mi in Ma: 

// Find explanations that can explain this. 

// Find the least cost explanation. 

// Make the least cost explanation the best explanation, if not already. 
if 〈��, �〉 ∉ � then: 

replace 〈��,∗〉 with 〈��, �〉 in � 
set revised = true 

for each d in Da: 
// If this belief can be retracted to reduce cost, retract it. 
if retraction-savings(d) > 0 then 

// Remove d from adopted beliefs. 
set ��= �� − � 

 

Figure 23: Algorithm for restructuring knowledge based on the presence of a high-
cost artifact. 
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since each action – and therefore each loop – must reduce the cost of incurred artifacts, and cost 

can only be finitely reduced.   

The series of unilateral changes in the restructuring algorithm is not guaranteed to find the 

minimum cost configuration; however, the average case performance is much more tractable 

with respect to the number of beliefs and explanandums considered.  Using the same analysis as 

above, the number of cost computations on each loop is 2b + xm, which equals 36.  The number 

of loops varies with the content of the explanations, and a carefully-engineered scenario could 

still produce a worst-case performance of 2bxm cost computations in total, identical to finding the 

optimal cost above.  In the Figure 22 example from Chapter 6, the algorithm takes a total of two 

loops to reach a stable configuration.  This required 72 cost computations instead of 1024 in the 

worst case for the same circumstance.  The algorithm is not guaranteed to remove the artifact 

that was provided as input; rather, the input artifact is used as a marker for possible cost 

optimization. 

Psychological assumptions regarding cost functions 

Cost functions capture psychological explanation preferences that are not possible using rule-

based epistemic preferences alone; however, they make some additional assumptions about how 

people evaluate explanations. 

Several psychological assumptions underlie the types of artifacts that incur a cost in our 

model.  In our model, process instances and quantity changes are the mechanisms and effects of 

a dynamic system, respectively.  These comprise the root and intermediary causes within a 

system.  People prefer explanations with fewer causes, all else being equal (Lombrozo, 2007), so 

it is sensible to penalize process instances and quantity changes. 



146 
 

 
 

By penalizing contradictions, we assume that people desire consistency within and across 

explanations.  This assumption is common to the other theories of conceptual change in Chapter 

2, and it is clearly supported in interviews (e.g., Sherin et al., 2012) where students revise their 

explanations when they detect inconsistencies. 

We assume that an explanation’s quality is not solely determined by its probability. When 

we refer to an explanation’s probability, we mean the joint probability of the explanation’s 

assumptions relative to other adopted beliefs.  To illustrate, here is how we might compute the 

most preferable explanation using probability alone: we use probabilities to represent the agent’s 

purported likelihood of a given belief, and then search for a maximum a-posteriori (MAP) truth 

value assignment to all existing assumptions.  The explanation that conforms to this set of 

assumptions would be the preferred explanation.  We could then model people’s simplicity 

preference (i.e., minimizing the number of causes, similar to above) by assigning more complex 

causes a lower prior probability.  Finally, we can avoid contradictions by encoding a zero for the 

joint probability of mutually inconsistent beliefs (e.g., {��, ��, ���, ���} in Figure 22).  Thus, 

when new knowledge causes an explanation, the agent could revise its explanation by searching 

for more probable truth value assignments for assumptions. 

The alternative, purely probabilistic model we have just described makes a very strong 

assumption that we do not make in our computational model: assignments of truth values to 

assumptions that are equally probable are equally preferable to people.  To illustrate why this is 

problematic, consider a student with two contradictions (⊥a and ⊥b) in his adopted beliefs.  Since 

⊥a or ⊥b alone will result in a probability of zero, resolving ⊥a while ⊥b still exists does not 

measurably improve the student’s interpretation of the world, so no action need be taken.  This is 
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not to suggest that a purely probabilistic approach to evaluating explanations is infeasible, but it 

would require additional considerations for evaluating explanations both locally and globally. 

Our cost function assigns all assumptions an identical cost, but it is not likely that people 

view all assumptions as equally desirable.  This could be improved by representing the 

uncertainty of beliefs – potentially using probabilities – and then computing the cost of an 

assumption as a function of uncertainty.  We discuss this further in Chapter 9.  

4.7 Retrospective explanation 

In our discussion of cost functions, we described a restructuring algorithm that manipulates 

previously explained beliefs and transitions support to lower-cost explanations.  This requires 

that previous explanations are already present for evaluation and potential transition.  

Importantly, beliefs and model fragments may have been added to � since an explanandum was 

encountered, so the agent might be able to construct a better explanation than presently exists.  

Retrospective explanation is the process of constructing new explanations for previous 

explanandums. 

The first task in retrospective explanation is to detect opportunities for retrospective 

explanation.  Adding knowledge to the domain theory � can change the space of possible 

explanations for an explanandum, but not all expansions of � affect all explanandums �.  In the 

simulations described in Chapters 7 and 8, concept preferences <c dictate opportunities for 

retrospective explanation. 
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As illustrated in Figure 24, explanandum leftH2B is explained with a model fragment 

FluidFlow, but not with the preferred model fragment ArterialFlow.  This might occur if 

ArterialFlow is a more specific <�
� model fragment, but it was learned after leftH2B was 

explained.  A similar pattern could occur when revising models of force and motion: the 

observation that a ball is rolling to the left has been explained with a model m0 of force-driven 

movement, but m0 has since been revised as m1 such that m0 <�
� m1.  In both of cases, a preferred 

model fragment was not present when an explanandum was explained.  A retrospective 

explanation opportunity exists in both of these cases.  More generally, a retrospective 

explanation opportunity exists any time a concept c has been used to explain an explanandum m 

and a preferred concept c’ (i.e., c <c c’) has not been attempted for use with that explanandum.  

Every retrospective explanation opportunity will thus be a triple of a belief plus a pair of 

concepts. 

 
Figure 24: Model fragment ArterialFlow is preferred over FluidFlow due to greater 

specificity, but leftH2B has not yet been explained using the preferred knowledge. 
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The simulations in Chapters 7-8 search for retrospective explanation opportunities any time 

concept-level preferences are computed after incorporating a scenario.26  Once a retrospective 

explanation opportunity is found, the explanandum is explained using the abductive model 

formulation algorithm described above.  This provides additional support for previously-

explained beliefs without disrupting existing explanations in the network.  The evaluation 

techniques described above (i.e., preference computation and cost function) can then be used to 

determine whether the new explanation is preferable to existing ones. This is how retrospective 

explanation results in belief revision. 

With respect to Figure 24, retrospective explanation may fail to construct a new explanation 

for leftH2B using ArterialFlow.  In this case, the triple ⟨leftH2B, FluidFlow, 

ArterialFlow⟩ is stored as a retrospective explanation failure so that the system will not 

attempt retrospective explanation for the same reason.  The existing explanation x1 will remain 

the best explanation for leftH2B.   

The agent may add new information (i.e., beliefs, models, and quantities) via inductive 

learning (e.g., Chapter 5), instruction (e.g., Chapter 7), or heuristic-based revision (e.g., Chapter 

8), but these additions do not by themselves constitute successful conceptual change.  The agent 

ultimately achieves conceptual changes using the methods described in this chapter.  After 

acquiring or revising information, the agent propagates it to new contexts and scenarios by using 

it to explain new and previous phenomena.  If the new explanations are preferable to prior ones, 

the agent re-justifies its beliefs with new explanations.  The agent can thereby adopt new 

combinations of information and new representations in the presence of conflicting knowledge, 

which is, by definition, conceptual change.  
                                                 

26 In situations where the agent does not have time to reflect on previous scenarios, retrospective explanation can be 
delayed until a later time.  We discuss the implications of delaying retrospective explanation – and ways to 
experimentally measure the effects – in section 9.4. 
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Chapter 5: Learning intuitive mental models of motion from observation 

Conceptual change does not begin with a blank slate.  This chapter presents a simulation of how 

intuitive models can be learned from a sequence of observations.  This provides an account of 

how flawed mental models are formed as a precursor to conceptual change, but it does not in 

itself constitute conceptual change.  Other systems have learned humanlike misconceptions from 

examples (e.g., Esposito et al., 2000), but with different methods and knowledge representations, 

as we discuss in Chapter 9. 

Students’ pre-instructional knowledge has been explored in the cognitive science literature 

in many domains.  This knowledge is also referred to as preconceptions, intuitive theories, and – 

when inconsistent with scientific theories – misconceptions or alternate conceptions.  Pre-

instructional knowledge in scientific domains (e.g., dynamics and biology) is presumably learned 

via observation and interaction with the world.  The simulation described in this chapter provides 

a computational account of how descriptive mental models of dynamics might be learned via 

observations.27 

We use the term descriptive mental models here because the models learned by this 

simulation describe what-follows-what without specifying conceptual mechanisms and physical 

processes that cause change.  Consider the following system of beliefs: 

 

When an object a is moving in the direction d of another object b: 
 a might touch object b and push it in direction d, in which case: 

b may block a, or 
b may move in direction d. 

 

                                                 
27 This chapter expands the original account described in Friedman, Taylor, and Forbus (2009). 
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This simple descriptive account of dynamics is incomplete and it does not appeal to any 

conceptual quantities such as force, inertia, or impetus,28 but it still has considerable predictive 

and explanatory power.  It contains temporal constraints (i.e., one state or event follows another 

in time), it is abstract (i.e., it does not mention specific types of objects such as “ball” or 

“block”), and it is parameterized (i.e., it can occur for multiple directions d). 

The structure of this simulation is shown in Figure 25.  The input to the system is (1) a set of 

event types to model and (2) a sequence of scenarios, implemented via microtheories, for 

learning about this set of events.  The system first finds instances of the event types within the 

stimuli and constructs temporally-encoded cases for each event instance.  Next, SAGE is used to 

construct generalizations of each type of event.  These generalizations are subsequently filtered 

and converted into qualitative models. 

To evaluate what is learned, the resulting qualitative models are used on two problem-

solving tasks from the learning science literature: one from Brown (1994), and one from the 

Force Concept Inventory (Hestenes et al., 1992).  This helps us determine whether the learned 

qualitative models can simulate the pre-instructional mental models of students.  We are 

                                                 
28 See Chapter 8 for a simulation that generates and uses conceptual quantities. 

 

Figure 25: Topology of the Chapter 5 simulation. 
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principally interested in simulating students’ misconceptions – recall that the objective of this 

simulation is to model how students learn from observation, and students do not arrive at correct 

Newtonian models using observation alone.  This simulation provides evidence to support the 

first two claims of this dissertation: 

 

Claim 1: Compositional qualitative models provide a consistent computational account of 

human mental models. 

 

Claim 2: Analogical generalization, as modeled by SAGE, is capable of inducing qualitative 

models that satisfy Claim 1. 

 

The other simulations provide additional support for Claim 1, but no other simulation provides 

support for Claim 2.  Importantly, the qualitative models learned in this simulation do not 

describe continuous causal mechanisms.  This is because SAGE does not hypothesize causal 

mechanisms such as processes and quantities where none are already believed to exist.  We next 

describe our simulation, including the training and testing data, the learning processes, and a 

comparison to human mental models. 

5.1 Using multimodal training data 

The training data for this simulation is multimodal because each training case is created 

using two different modes of input: sketches and simplified English.  This is a simplified 
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approximation29 of what a person might encounter in daily experience.  Each case contains 

relational knowledge that CogSketch30 encoded from hand-sketched comic graphs such as Figure 

26.  Each case also contains knowledge that the natural language understanding system EA NLU 

(Tomai & Forbus, 2009) semi-automatically encodes from one or more English sentences that 

describe the comic graph.  The following English sentences accompany the comic graph in 

Figure 26: 

 

The child child-15 is here.   

The child child-15 is playing with the truck truck-15.   

The car car-15 is here. 

 

Since cross-modal reference resolution is a difficult open problem, we factor it out by using the 

internal tokens from the sketch (in italics) within the sentence.  One can think of this as 

providing the same kind of information that a teacher would be giving a child by pointing at 

objects while talking about them.  EA NLU uses the term child-15 to refer to the Child entity 

that is playing with the Truck entity truck-15.  These are the same entity names used by 

                                                 
29 See Chapter 3 for a discussion of the psychological assumptions and limitations of using sketches as perceptual 
output. 
30 See Chapter 3 for a functional overview of CogSketch. 

 
Figure 26: A comic graph stimulus created using 

CogSketch 
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CogSketch.  The outputs of CogSketch and EA NLU are automatically combined into a single, 

coherent scenario microtheory. 

For each multimodal scenario microtheory, the simulation finds instances of target concepts 

(see Figure 25) such as the two PushingAnObject instances (blue arrows in the middle frame) 

and the two MovementEvent instances (green arrows in the rightmost frame) in Figure 26.  For 

each instance of each event, e.g., the truck moving in the rightmost frame of Figure 26, the 

system creates a new microtheory that describes that event.  The temporal extent of the event 

(e.g., the truck moving) is recorded as the currentState, and other statements in the comic 

graph are recorded in the event microtheory, relative to the current state.  For example, the event 

microtheory that describes the truck’s movement would contain the following statements: 

 

(cotemporal currentState (isa move-truck-15 MovementEvent)) 

(cotemporal currentState (objectMoving move-truck-15 truck-15)) 

(cotemporal currentState (motionPathway move-truck-15 Right)) 

(startsAfterEndingOf currentState (touching truck-15 child-15)) 

(startsAfterEndingOf currentState (isa push-15-0 PushingAnObject)) 

(startsAfterEndingOf currentState (providerOfForce push-15-0 child-15)) 

(startsAfterEndingOf currentState (objectActedOn push-15-0 truck-15)) 

(startsAfterEndingOf currentState (dir-Pointing push-15-0 Right)) 

 

The system encodes the truck’s rightward movement within in the currentState, and this 

happened right after (i.e., startsAfterEndingOf) the child touched the truck and pushed it to 

the right.  These statements alone provide a concise account of cause (e.g., PushingAnObject) 

and effect (i.e., MovementEvent); however, these are not the only statements in the event 
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microtheory.  There are many other statements that are irrelevant – or worse, confusing – for 

learning about cause and effect.  These include: 

 

(temporallySubsumes (touching truck-15 ground-15) currentState) 

(temporallySubsumes (touching car-15 truck-15) currentState) 

(temporallySubsumes (touching car-15 ground-15) currentState) 

(cotemporal currentState (isa move-car-15 MovementEvent)) 

(cotemporal currentState (objectMoving move-car-15 car-15)) 

(cotemporal currentState (motionPathway move-car-15 Right)) 

 

These irrelevant statements describe the truck touching the car, the car touching the ground, and 

the car moving simultaneously.  There are many more such irrelevant statements that are not 

shown here, including positional relations, relative sizes and shapes of the glyphs, and more.  

One important task in learning from observation is distinguishing causally-relevant information 

from incidental or distracting information.  This is done automatically with SAGE (see section 

3.4.3), and we address this challenge next. 

So far, we have shown how the system finds instances of its target concepts within 

multimodal scenario microtheories and creates a temporally-encoded microtheory for each 

instance.  The temporal relations help record what might be a cause and what might be an effect 

of each event, e.g., if movement starts after pushing, then movement is not a plausible cause of 

pushing, but it is a plausible effect.  Temporal relations also add significant relational structure to 

the representation of the event, which will aid in analogical learning with SAGE.  The next 

section describes how SAGE abstracts the central causal structure of these scenarios from the 

irrelevant, confusing statements. 
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5.2 Creating generalizations of Pushing, Moving, and Blocking with SAGE 

The system maintains a separate SAGE generalization context for each of the event types it is 

given to learn (see Figure 25).  This simulation creates three generalization contexts: one for 

PushingAnObject, one for Blocking, and one for MovementEvent.   Instances of events are 

added to the generalization context for that event type.  For example, each temporally-encoded 

microtheory that describes a MovmentEvent instance is added to the MovementEvent 

generalization context – and no other – to be automatically generalized using SAGE.31 

The contents of these generalization contexts during a simulation are illustrated in Figure 27.  

Using a separate SAGE generalization context for each concept prevents SAGE from conflating 

different concepts during supervised learning.  Within each context, however, SAGE may have 

multiple generalizations.  For instance, within the PushingAnObject context, there may be a 

pushing generalization where a MovementEvent follows the push, and another pushing 

generalization where a Blocking occurs simultaneously with the push and no MovementEvent 

ensues.  This clustering is unsupervised, arising from the properties of the data itself.   

                                                 
31 The SAGE generalization algorithm is described in Chapter 3. 

 
Figure 27: The three SAGE generalization contexts after using SAGE to generalize 

temporally-encoded microtheories about pushing, moving, and blocking. 
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As discussed in Chapter 3, each SAGE generalization contains a set of statements, and each 

statement has a probability.  Recall that the microtheories given to SAGE in this simulation 

contain temporal relations between a currentState and other events and statements.  

Consequently, the generalizations produced by SAGE will be probabilistic accounts of what 

happened before, during, and after the currentState.  The statements with high probability 

are more characteristic of the event than low probability statements. 

The probabilistic generalizations produced by SAGE are not themselves causal models.  

However, they contain sufficient temporal and statistical information to create descriptive 

qualitative models. 

5.3 Converting SAGE generalizations to qualitative models 

This work is the first to construct qualitative models from probabilistic generalizations.  SAGE 

generalizations are converted to qualitative models in two steps: (1) probability filtering and (2) 

causal assignment.  Probability filtering involves discarding expressions within the 

generalization that are below a given probability threshold.  This retains expressions that are 

more probable in the generalization (e.g., that two objects are touching during a push event) and 

discards expressions that are less probable (e.g., that one of the objects is a toy truck). 
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After low-probability statements are filtered, causal assignment determines each remaining 

statement’s causal role with respect to the central event.  This is a simple lookup, using the 

temporal relation(s) between the statement and the currentState where the event occurs. The 

lookup table is shown in Figure 28.  Sometimes there is equal evidence that a statement can play 

multiple roles, such as {constraint, cause} or {constraint, effect} or {constraint, cause, effect}.  

In these cases, the system always chooses constraint.  To illustrate why this is the case, suppose 

that our generalization describes object a starting to touch object b whenever a starts to push b, 

but never before and never after.  It could be that: 

 

1. touching causes pushing,  

2. touching is an effect of pushing, or  

3. touching is a necessary constraint for pushing to occur.   

 

The bias for adding touching as a constraint seems intuitive, but it has important 

implications for the resulting qualitative model.  Recall from our discussion of qualitative model 

fragments in Chapters 3 and 4 that constraints limit the logical applicability of the model 

fragment.  Adding touching as a constraint for pushing – rather than a consequence of pushing – 

will limit the logical applicability of the model, all else being equal.  This means that the model 

will apply in fewer situations, so some events may go unpredicted or unexplained.  However, 

s relation to event e Roles in model 
s starts before e starts cause 
s starts after e starts effect 
s subsumes & starts before e constraint, cause 
s subsumes & starts with e constraint, cause, effect 
s and e are cotemporal constraint, cause, effect 

Figure 28: Given a statement s and its temporal relationship to an event e, 
how to calculate the causal role(s) of s in a qualitative model of e. 
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limiting the logical applicability of a model also reduces false positives – that is, it will less 

frequently make erroneous predictions or misattributions of causality. 

After causal assignment occurs, every high-probability statement in the SAGE 

generalization has been assigned a role in a qualitative model.  The entities in the constraints are 

converted to variables and become the participants of the resulting model.  This produces 

encapsulated histories (Forbus, 1984), which are descriptive qualitative models that causally or 

temporally relate events over time.  Figure 29 shows one such qualitative model learned by the 

simulation.  It describes a PushingAnObject event and several spatial and relational 

constraints over the objects involved, and a MovementEvent occurs as a result.  The set of 

constraint statements are directly imported as constraints of the model, but causes and effects are 

listed in the consequences of the model.  For instance, in Figure 29, the MovementEvent ?m1 is 

an effect of the PushingAnObject ?p1, so the following statement is a consequence: 

 

Model Push05  
 Participants: 
  ?P1 Entity, ?P2 Entity,  
  ?P3 PushingAnObject, 
  ?D1 Direction, ?D2 Direction 

 

 
 Constraints: 
  (providerOfForce ?P3 ?P1)  
  (objectActedOn ?P3 ?P2) 
  (dir-Pointing ?P3 ?D1) 
  (touching ?P1 ?P2) 
  (dirBetween ?P1 ?P2 ?D1) 
  (dirBetween ?P2 ?P1 ?D2) 

 
Object p1 touches and pushes 
object p2 in direction d1.  The 
direction between p1 and p2 is d1. 

 
 Consequences: 
  (causes 
    (active ?self) 
    (exists ?M1 
      (and (isa ?M1 MovementEvent) 
           (objectMoving ?M1 ?P2)  
           (motionPathway ?M1 ?D1))) 

 
This causes object p2 to travel in 
the direction d1 of the push. 

Figure 29: One of the qualitative models learned by the simulation that causally relates 
pushing and movement.  Summaries of constraints and consequences shown at right. 
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  (causes 
    (active ?self) 
    (exists ?M1 
      (and (isa ?M1 MovementEvent) 
           (objectMoving ?M1 ?P2) 
           (motionPathway ?M1 ?D1))) 

 

Recall that the constraints and participants of a qualitative model are logical antecedents to 

the construction and activation of an instance of the model (e.g., (active ?self)) over those 

participants.  For example, when an instance Push05-Instance of model Push05 is created 

and activated with ?p2 bound to pushed-ent and ?d1 bound to pushed-dir, the following 

statements will be inferred in the scenario: 

(active Push05-Instance) 
   

(causes 
  (active Push05-Instance) 
  (exists ?M1 
    (and (isa ?M1 MovementEvent) 
         (objectMoving ?M1 pushed-ent) 
         (motionPathway ?M1 pushed-dir))) 
 

The causal relation therefore indicates that the activation of the model fragment instance will 

cause a new MovementEvent with the pushed object moving in the direction of the push.  This 

means that if this model is instantiated in a scenario, the agent should predict movement to occur 

as an effect, either in the present state or in a subsequent state. 

Suppose, contrary to Figure 29, that ?m1 is actually a cause in the model rather than an 

effect.  In this case, the following statement would be a consequence of the model: 

  (causes 
    (exists ?M1 
      (and (isa ?M1 MovementEvent) 
           (objectMoving ?M1 ?P1) 
           (motionPathway ?M1 ?D1)) 
    (active ?self)) 
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This states that if the agent must explain what caused the state of events represented in the 

constraints of the model, a MovementEvent ?m1 is the cause.  This means that if the model is 

instantiated in a scenario, the agent should predict some event ?m1 to also occur in the present 

state or to have occurred in the immediately preceding state.  The presence of this causal factor 

within the consequences block of the model may seem counterintuitive, but we must not conflate 

logical consequences (e.g., as in model formulation) with causal consequences (i.e., effects). 

For this simulation, we gave the system 17 multimodal comic graphs as training data.  These 

comic graphs described 50 instances of events, all either PushingAnObject, Blocking, or 

MovementEvent.  This resulted in 50 temporally-encoded microtheories describing each event 

instance, which resulted in ten SAGE generalizations (shown in Figure 27) after analogical 

learning.  These were transformed into descriptive qualitative models of pushing (e.g., Figure 

29), moving, and blocking, using the processes described above. 

To summarize, SAGE generalizations are probabilistic abstractions of observations, but they 

are not causal models in themselves.  These are converted into qualitative models in two steps: 

(1) filtering is used to select the high probability statements, and (2) using the temporal relations 

of these statements to determine their role in a qualitative model.  We next discuss how these 

qualitative models compare to the mental models of students on two problem-solving tasks. 

5.4 Comparing the system’s models of motion to students’ mental models 

We cannot directly observe students’ mental models – if we could, there would be little question 

of how they are represented and how they change.  Consequently, we can only compare the 

system’s models to students’ mental models by comparing the predictions and explanations they 

generate during problem-solving tasks.  We chose two problems from the learning science 
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literature: one from Brown (1994), and one from the Force Concept Inventory (Hestenes et al., 

1992).  We discuss each problem, the results from students, and the results from our simulation. 

Brown (1994) showed a group of 73 high-school students a book resting on the surface of a 

table, and asked them whether the table exerts a force on the book.  Here are the most popular 

answers provided by the students: 

 

1. Yes.  The table must exert an upward force the book to counteract the downward 

force of the book (33 students). 

2. No. Gravity pushes the book flat, and the book exerts a force on the table.  The table 

merely supports the book (19 students). 

3. No. The table requires energy to push (7 students). 

4. No. The table is not pushing or pulling (5 students). 

5. No. The table is just blocking the book (4 students). 

6. No. The book would move upward if the table exerted a force (4 students). 

 

Thirty-three students correctly explained that the table pushes up against the book.  The 

forty-student majority denied that the table exerted a force on the book, but for five different 

reasons (answers 2-6).  Some students gave more than one incorrect explanation.  For our present 

purposes, we are interested in modeling the incorrect answers, because these are the intuitive 

models of dynamics that students hold prior to conceptual change.  If the simulation’s qualitative 

models are comparable in content to student mental models, then the simulation will make the 

same set of mistakes as students. 
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Our simulation was given a sketch of the same problem, illustrated in Figure 30.  The 

system had a domain theory containing the qualitative models learned via SAGE and the facts 

that the omnipresent force of gravity pushes all things (i.e., instances of Entity) downward, but 

is not an Entity itself.  Given the sketched scenario illustrated in Figure 30, we queried the 

system to (1) find all instances of PushingAnObject that are consistent with the scenario and 

then (2) explain why a PushingAnObject event between the table and the book in the upward 

direction must or must not exist. 

To complete the first task, the system uses model-based inference (described in Chapter 3) 

to instantiate all qualitative models whose participants and constraints are satisfied in the 

scenario.  Specifically, the system begins by inferring that gravity pushes all objects downward 

and then instantiates its qualitative models to create causal explanations and predictions about 

these PushingAnObject events.  All of these events were explained by a model that relates 

PushingAnObject and Blocking.  This model was used to infer two blocking events: 

 

1. Gravity pushes down on the book which pushes down on the table, and the table 

blocks the book. 

2. Gravity pushes down on the table which pushes down on the ground, and the table 

blocks the ground. 

 

 
Figure 30: The sketch for the problem-solving task from Brown (1994). 
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The first inference is similar to student answers (2) and (5) above, used a total of 23 times in 

Brown’s (1994) experiment, except the simulation does not mention the concept of support in 

student answer (2).  This explanation given by the students and the system does not directly 

confirm or deny that the table pushes the book, but it does describe the causal relationship 

between pushing and blocking within the scenario. 

The system’s second task is to explain why the table must or must not push the book, if there 

is sufficient evidence present.  This involves (1) assuming that the PushingAnObject does in 

fact occur in the scenario, (2) instantiating qualitative models as in the first task, and then (3) 

searching for contradictions that arise as a result.  Contradictions are found by querying for 

inconsistent patterns, e.g., a statement and its negation are simultaneously believed in the same 

state or an observable event (e.g., MovementEvent) is inferred but not observed in the scenario.  

If a contradiction is found, this constitutes an indirect proof that the table does not push the book.  

The system uses the qualitative model in Figure 29 to achieve this.  This results in the following 

inference: 

 

3. The table pushing the book would result in the book moving upward. 

Since movement is not observed, this is contradictory. 

 

This inference is similar to student answer (5), used by four students in Brown (1994). 
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In one multiple choice question from the Force Concept Inventory (Hestenes et al., 1992), 

students are shown a top-down sketch of a puck sliding to the right along a frictionless surface, 

and asked which path it would traverse if given an instantaneous kick forward.  The problem and 

the proportion of student responses are shown in Figure 31, left.  We sketched the problem using 

CogSketch as a comic graph with a fork in the state space (Figure 31, right), such that after the 

kick, the puck could traverse one of five different paths (a-e).  The simulation decides which path 

the puck will traverse by exhaustively instantiating models qualitative models in the pre-fork 

state where the foot kicks the puck.  The answer (a-e) that matches the simulation’s prediction is 

chosen. 

The only model that can be instantiated (i.e., its participants and conditions are satisfied) in 

this scenario is the model in Figure 29.  The causal consequence of this instance is that the puck 

(bound to slot ?p2) is the subject of a MovementEvent in the direction ?d1 (bound to Up).  This 

behavior is described in choice (a) in the scenario, so this is the choice made by the system.  

Choice (a) was the most popular incorrect answer of the students tested by Hestenes et al. (1992), 

which suggests that it is a common misconception. 

 
Figure 31: Problem from the Force Concept Inventory, and student/simulation 

responses (left).  Sketch of the same problem using CogSketch (right). 
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5.5 Discussion 

This simulation induces descriptive qualitative models from observations using analogical 

generalization.  When the qualitative models were used to solve two problems from the learning 

science literature, they produced some of the same incorrect explanations and predictions as 

novice students. 

The fact that our system uses qualitative models to simulate some of the predictions and 

explanations of novices supports the claim that qualitative models provide a consistent 

computational account of human mental models.  Since these models were induced from 

sketched observations, this simulation also supports the claim that analogical generalization is 

capable of inducing qualitative models.  Importantly, the qualitative models learned by this 

simulation are mechanism-free, since they only describe causal relationships between discrete 

events.  Since novices and experts alike are capable of explaining mechanisms of change (e.g., 

physical processes and influences between quantities), more evidence is needed to support the 

first claim. 

The match between our system and novice students rely upon the psychological assumptions 

of our model discussed in Chapter 1 and the perceptual assumptions about comic graphs 

discussed in Chapter 3.  To summarize: the training data of this simulation are sparser than the 

observations human encounter in the world because they contain only causally-relevant entities 

(e.g., there are no birds flying overhead) and they are already segmented into meaningful 

qualitative states.  These simplifications reduce the complexity of learning and permit the system 

to learn much faster than people.  Further, since the system has complete information about each 

state, each event (e.g., instance of PushingAnObject) is always observed in conjunction with 

its constraints (e.g., touching statements).  This means that there is a perfect correlation for 
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events and their observed constraints in this simulation, but this information is not always 

available to people. 

We have sketched a simplified account of how people might develop mental models from 

observing the world: abstracting common structure and inferring causal relations based on 

temporal relations.  Whether the system can learn scientifically-accurate, Newtonian models via 

observation is an empirical question.  It is not a question of knowledge representation, since 

qualitative models can represent scientifically-accurate models of dynamics (see Forbus, 1984); 

rather, it is a question of the inductive learning process.  And since the vast majority of students 

only develop a Newtonian understanding of the world after formal instruction, we should not 

expect an accurate model of human learning to induce Newtonian dynamics from observation 

alone. 

This first simulation only utilizes the explanation-based network insomuch as it generates 

qualitative models to populate the domain theory, and then uses these models to make inferences 

during problem solving.  The next simulations address how qualitative models change, provided 

instruction and interaction. 
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Chapter 6: Revising mechanism-based models of the seasons 

Thus far, we have simulated how mental models might be induced from observations.  However, 

this does not account for how mental models change, or how knowledge is incorporated via 

communication or instruction.  The simulation in this chapter addresses these two topics.  We 

model middle-school students in a study by Sherin et al. (2012) who construct – and in some 

cases, revise – explanations of why the seasons change, during a clinical interview. 

This simulation and the simulations in Chapters 7-8 assume that when a student revises her 

mechanism-based explanation of a phenomenon, such as seasonal change, she has also revised 

her underlying mental model of that phenomenon.  Recall that in Chapter 1, we assumed that 

mental models are used to construct explanations of phenomena.  If a student revises her 

explanation, she has constructed a new explanation that she prefers over her previous 

explanation.  More specifically, she has recombined her knowledge into a different mental 

model, and its structure, assumptions, and inferences are preferable to that of the former mental 

model in the context of the phenomenon explained.  So, explanation revision is a good indicator 

of mental model revision. 

This simulation provides support for claims 1 and 3 of this dissertation:  

 

Claim 1: Compositional qualitative models provide a consistent computational account of 

human mental models. 

 

Claim 3: Human mental model transformation and category revision can both be modeled 

by iteratively (1) constructing explanations and (2) using meta-level reasoning to select 

among competing explanations and revise domain knowledge. 
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Since we are simulating how students reason about seasonal change, we represent student 

domain knowledge with qualitative model fragments to support claim 1.  We use the 

explanation-based model of conceptual change described in Chapter 4 to simulate mental model 

transformation and support claim 3.  We begin by discussing the learning science study with 

students, and then we discuss our simulation setup.32 

6.1 How commonsense explanations (and seasons) change 

The experimenters in Sherin et al. (2012) interviewed 35 middle-school students regarding the 

changing of the seasons to investigate how students use commonsense science knowledge.  Each 

interview began with the question “Why is it warmer in the summer and colder in the winter?” 

followed by additional questions and sketching for clarification. If the interviewee’s initial 

explanation of seasonal change did not account for different parts of the earth experiencing 

different seasons simultaneously, the interviewer asked, “Have you heard that when it’s summer 

[in Chicago], it is winter in Australia?” This additional information, whether familiar or not to 

the student, often lead the student to identify an inconsistency in their explanation and 

reformulate an answer to the initial question by recombining existing beliefs. 

The interview transcript from the student “Angela” is listed in the appendix, courtesy of 

Sherin et al.  Angela begins by explaining that the earth is closer to the sun in the summer than in 

the winter, which we call the near-far explanation.  The seasons change as the earth approaches 

and retreats from the sun throughout its orbit of the sun.  This is illustrated by a student sketch in 

Figure 32a.  When the interviewer asks Angela if she has heard that Australia experiences its 

                                                 
32 This builds upon the simulation published in Friedman, Forbus, & Sherin (2011) 
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winter during Chicago’s summer, and whether this is a problem for her explanation, Angela sees 

that her explanation is problematic.  She eventually changes her answer by explaining that the 

spin of the earth changes the seasons: the parts of the earth that face the sun experience their 

summer, while the parts that face away experience winter.  We call this the facing explanation.  

Other students used the near-far explanation and the facing explanation, and many students drew 

upon idiosyncratic knowledge, e.g., that they had seen a picture of a sunny day in Antarctica, 

which influenced their explanations. 

The interviewer did not relate the correct scientific explanation during the course of the 

interview, so the students transitioned between various intuitive explanations.  The scientifically 

accurate explanation of the seasons is that the earth’s axis of rotation is tilted relative to its 

orbital plane, so it always points in the same direction throughout its orbit around the sun. When 

the northern hemisphere is inclined toward the sun, it receives more direct sunlight than when 

tilted away, which results in warmer and cooler temperatures, respectively.  This is illustrated in 

(a) 

 

(b) 

 

Figure 32: Two diagrams explaining seasonal change, courtesy of Sherin et al. (2012). 
(a) Sketch from a novice student, explaining that the earth is closer to the sun in the 
summer than in the winter. (b) Scientific explanation involving tilt and insolation. 
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Figure 32b.  While many students mentioned that the earth’s axis is tilted, fewer used this fact in 

an explanation, and none of these were scientifically accurate. 

Sherin et al. created a master listing of conceptual knowledge used by the students during 

the interviews, including propositional beliefs, general schemas, and fragmentary mental models.  

Five of the students from the study were characterized with enough precision for us to encode 

their beliefs and mental models using propositions and qualitative model fragments, respectively.   

The rest of this chapter describes a simulation of how these five students construct 

explanations of dynamic systems from fragmentary domain knowledge and how these 

explanations are revised after new information renders them inconsistent. Each trial of the 

simulation corresponds to a subset of these students, so the starting domain knowledge varies 

across the trials, but the rest of the simulation is identical.  We use the Angela trial to describe 

the workings of the simulation.  As mentioned above, the students interviewed were not given 

the correct explanation, but we include an additional simulation trial that has access to the 

knowledge required for the correct explanation. This demonstrates that the system can construct 

the correct explanation when provided correct domain knowledge. 
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Our simulation of the students in Sherin et al. uses the conceptual change model described in 

Chapter 4 including: (1) the explanation-based network; (2) qualitative model fragments; (3) the 

abductive model formulation algorithm; and (4) cost functions to compute preferences over 

explanations.  We next describe how these processes construct and revise qualitative models and 

explanations. 

 

ModelFragment AstronomicalHeating 
 Participants: 
  ?heater HeatSource (providerOf) 
  ?heated AstronomicalBody (consumerOf) 
 Constraints: 
  (spatiallyDisjoint ?heater ?heated) 
 Conditions: nil 
 Consequences: 
  (qprop- (Temp ?heated) (Dist ?heater  ?heated)) 
  (qprop (Temp ?heated) (Temp ?heater)) 
 

When an astronomical body 
heated and a heat source heater 
are spatially separated, the 
temperature of heated: (1) 
increases with the temperature of 
heater and (2) decreases as the 
distance between them increases.  

ModelFragment Approaching-PeriodicPath 
 Participants: 
  ?mover AstronomicalBody (objTranslating) 
  ?static AstronomicalBody (to-Generic) 
  ?path Path-Cyclic (alongPath) 
  ?movement Translation-Periodic (translation) 
  ?near-pt ProximalPoint (toLocation) 
  ?far-pt DistalPoint (fromLocation) 
 Constraints: 
  (spatiallyDisjoint ?mover ?static) 
  (not (centeredOn ?path ?static)) 
  (objectTranslating ?movement ?mover) 
  (alongPath ?movement ?path) 
  (on-Physical ?far-pt ?path) 
  (on-Physical ?near-pt ?path) 
  (to-Generic ?far-pt ?static) 
  (to-Generic ?near-pt ?static) 
 Conditions: 
  (active ?movement) 
  (betweenOnPath ?mover ?far-pt ?near-pt) 
 Consequences: 
  (i- (Dist ?static ?mover) (Rate ?self)) 

An object mover travels on a 
cyclic path path relative to 
another object static where path is 
not centered on static.  If mover is 
approaching – but not at – the 
closest point on path to static, 
then there is a rate of approach 
which decreases the distance from 
mover to static. 

 

Figure 33: AstronomicalHeating (top) and Approaching-PeriodicPath (bottom) 
model fragments used in the simulation.  English interpretations of both model 

fragments included at right. 
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6.2 Simulating how students construct and revise explanations 

The students interviewed by Sherin et al. (2012) performed two tasks that are especially relevant 

to conceptual change. 

 

1. Explain existing beliefs (e.g., Chicago and Australia are warmer in their summers than 

they are in their winters) when prompted. 

2. Incorporate new, credible, information (e.g., Chicago’s summer coincides with 

Australia’s winter) and change explanations as needed to improve coherence. 

 

These are the tasks we are interested in simulating in this chapter.  We model the first task by (1) 

using the abductive model formulation algorithm described in Chapter 4 to construct 

explanations and then (2) using the cost function to determine which explanation is preferred.  

We model the second task by (1) adding new domain knowledge, (2) searching for 

contradictions, and then (3) using the cost reduction procedure described in Chapter 4 

(restructure-around-artifact in Figure 23) to find more suitable sets of explanations for existing 

beliefs, when possible. 

For the Angela trial, the system starts with a set of model fragments for both the near-far 

explanation and the facing explanation, since Angela constructed both of these explanations 

during the interview without learning these concepts from the interviewer.  Two of these model 

fragments and their simplified English translations are shown in Figure 33.  The system also 

contains propositional beliefs, such as the belief that Chicago is warmer in its summer than in its 

winter.  This belief is represented by the following statement: 
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(greaterThan (M (Temp Chicago) ChiSummer) 
             (M (Temp Chicago) ChiWinter)) 
 

The M function in this statement take two arguments – a quantity term such as (Temp Chicago) 

and a state such as ChiSummer – and denotes the measurement of the quantity within the state.  

This statement therefore translates to “the temperature of Chicago is greater in its summer than 

in its winter.”  ChiSummer and ChiWinter are the subjects of other beliefs in the system’s 

domain knowledge beliefs such as: 

 

(isa ChiWinter CalendarSeason) 

(isa ChiAutumn CalendarSeason) 

(isa ChiSummer CalendarSeason) 

(isa ChiSpring CalendarSeason) 

(contiguousAfter ChiWinter ChiAutumn) 

(contiguousAfter ChiAutumn ChiSummer) 

(contiguousAfter ChiSummer ChiSpring) 

(contiguousAfter ChiSpring ChiWinter) 

 

These beliefs, including the greaterThan statement, are all present in the system’s adopted 

domain knowledge microtheory �a at the beginning of the simulation trial, but they are not yet 

used within any explanations. 

6.2.1 Explaining Chicago’s seasons 

At the beginning of our Angela trial, we query the system for an explanation of why it is warmer 

in Chicago’s summer than in its winter.  This is done by calling justify-explanandum in (Figure 
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34; but also see Chapter 4) with the following inputs: the greaterThan statement as the 

explanandum; the model fragments in �a as the domain theory; and the adopted domain 

knowledge microtheory �a as the scenario.  The justify-explanandum procedure uses the 

abductive model formulation procedure (Chapter 4, Figure 17) to instantiate model fragments 

that help justify the explanandum.  These procedures build the network structure for explanation 

x1 of Chicago’s seasons shown in Figure 35.  We step through the procedures in Figure 34 in 

greater detail to show how the explanation x1 in Figure 35 is constructed.  Chapter 4 provided a 

detailed example of abductive model formulation, so we concentrate here on the justify-ordinal-

relation and justify-quantity-change procedures that invoke the abductive model formulation 

procedure.  We assume that an explanandum is one of the following: (1) a symbol that refers to a 

process instance; (2) an ordinal relation represented by a greaterThan statement; or (3) a 

quantity change represented by an increasing or decreasing statement.  This means that our 

system does not justify the existence of physical objects, since we are primarily concerned with 

explaining physical phenomena and events.  Also, our system does not justify equalTo 

relations, since – without information to the contrary – these can be explained by the absence of 

direct and indirect influences.  Any lessThan relation can be converted into a greaterThan 

relation by reversing its two arguments. 
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When justify-explanandum is called on the belief that Chicago is warmer in its summer than its 

winter, the system detects that the explanandum is an ordinal relation, and invokes justify-ordinal-

relation.  This procedure binds q to (Temp Chicago), s1 to ChiSummer, and  s2 to ChiWinter.  It 

then queries to determine whether (1) ChiWinter is after ChiSummer and whether (2) ChiSummer is 

after ChiWinter.  Since both are true, the beliefs f19-20 in Figure 35 are encoded to justify the 

explanandum.  Now the system must justify how (Temp Chicago) decreases between chiSummer 

Front-ends to abductive model formulation 

 
procedure justify-explanandum(explanandum m, domain D, scenario S) 

if m is a symbol and m is an instance of collection C such that (isa C ModelFragment): 
justify-process(m, D, S) 

else if m unifies with (greaterThan ?x ?y): 
justify-ordinal-relation(m, D, S) 

else if m unifies with (increasing ?x) or with (decreasing ?x): 
let q, d = quantity-of-change(m), direction-of-change(m) 
justify-quantity-change(q, d, D, S) 

 
procedure justify-ordinal-relation (ordinal relation m, domain D, scenario S) 

// m is of the form (greaterThan (M q s1) (M q s2))  
let q, s1, s2 = quantity-of(m), state-1-of(m), state-2-of(m) 
if query S for (after s2 s1) then: 

justify-quantity-change(q, i-, D, S) 
if query S for (after s1 s2) then: 

justify-quantity-change(q, i+, D, S) 
 
procedure justify-quantity-change (quantity q, direction d, domain D, scenario S) 

// Find direct and indirect influencaes of q 
instantiate-fragments-with-consequence((qprop q ?x), D, S) 
instantiate-fragments-with-consequence((qprop- q ?x), D, S) 
instantiate-fragments-with-consequence((d q ?x), D, S) 
let Ii = query S for indirect influences on q. // results are in form (qprop/qprop- q ?x) 
for each i in Ii: 

let di = direction-of-influence(i) // qprop or qprop-  
let qi = influencing-quantity(i) 
let dc = d  
if di = qprop- then: 

set dc =  opposite(d) 
justify-quantity-change(qi, dc, D, S) 
 

Figure 34: Pseudo-code for constructing explanations about ordinal relations and quantity 
changes, from Chapter 4. 
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and chiWinter and how it increases between chiWinter and chiSummer.  This is achieved with 

the following two procedure invocations: 

 

justify-quantity-change((Temp Chicago), i-, D, S) 

justify-quantity-change((Temp Chicago), i+, D, S) 

 

Notice that these invocations make no mention of ChiWinter and ChiSummer.  This is 

because the system is building a model of the mechanisms by which the temperature of Chicago 

might increase and decrease.  These beliefs and causal mechanisms are explicitly quantified in 

specific states using temporal quantifiers represented as white triangles in Figure 35.  We discuss 

temporal quantifiers before continuing our walk-through. 

Consider the temporal quantifier that justifies f20 with f18 in Figure 35.  This states that we 

can believe f20 (i.e.,(holdsIn (Interval ChiSummer ChiWinter) (decreasing 

(Temp Chicago)))) so long as the belief f18 (i.e., (decreasing (Temp Chicago))) and 

all beliefs justifying f18 hold within the state (Interval ChiSummer ChiWinter).  This 

compresses the explanation structure: without these temporal quantifiers, we would have to store 

each belief b left of f20 as (holdsIn (Interval ChiSummer ChiWinter) b).  The 

temporal quantifiers in the network can be used to decompress the explanation into this format 

without any loss of information, but we can perform temporal reasoning without decompressing. 

The invocation of justify-quantity-change((Temp Chicago), i-, D, S) begins by abductively 

instantiating all model fragments in the domain theory that contain a consequence that unifies 

with (qprop (Temp Chicago) ?x), (qprop- (Temp Chicago) ?x), or (i- (Temp 

Chicago) ?x).  This uses the abductive model formulation algorithm described in Chapter 4.  

The result is the instantiation of qualitative models that can contain indirect (i.e., qprop and 
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qprop-) and direct (i.e., i-) influences on Chicago’s temperature to help explain why it 

decreases.  After these invocations, the procedure justify-quantity-change finds these and other 

influences which explain Chicago’s temperature decreasing within the scenario model.  In our 

example, it finds the qualitative proportionality (qprop (Temp Chicago) (Temp 

PlanetEarth)) represented as f16 in Figure 35, which states that the temperature of Chicago 

will decrease if the temperature of the earth decreases.  Next the system attempts to justify the 

earth decreasing in temperature (decreasing (Temp PlanetEarth)), plotted as f14 in 

Figure 35.  This results in the recursive invocation: 

 

justify-quantity-change((Temp PlanetEarth), i-, D, S) 

 

In this recursive invocation, the system finds the model fragment AstronomicalHeating 

(shown in Figure 33) with the following consequences: 

 

(qprop- (Temp ?heated) (Dist ?heater ?heated)) 

(qprop (Temp ?heated) (Temp ?heater)) 

 

When the system binds ?heated to PlanetEarth and invokes abductive model formulation, it 

instantiates and activates an instance of AstronomicalHeating with produces the statements 

f9-11 in Figure 35, including: 

 

(qprop- (Temp PlanetEarth) (Dist TheSun PlanetEarth)) 

(qprop (Temp PlanetEarth) (Temp TheSun)) 
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Legend 
f0 (isa earthPath EllipticalPath) f9 (active AH-inst) 
f1 (spatiallyDisjoint earthPath TheSun) f10 (qprop- (Temp PlanetEarth)  

        (Dist TheSun PlanetEarth)) 
f2 (isa TheSun AstronomicalBody) f11 (qprop (Temp PlanetEarth)  

       (Temp TheSun)) 
m0 (isa ProximalPoint ModelFragment) f12 (i+ (Dist TheSun PlanetEarth) 

    (Rate RPP-inst)) 
m1 (isa DistalPoint ModelFragment) f13 (increasing (Temp PlanetEarth)) 
m2 (isa Approaching-Periodic ModelFragment) f14 (decreasing (Temp PlanetEarth)) 
m3 (isa AstronomicalHeating ModelFragment) f15 (qprop (Temp Australia) (Temp PlanetEarth)) 
m4 (isa Retreating-Periodic ModelFragment) f16 (qprop (Temp Chicago) (Temp PlanetEarth)) 
f3 (isa TheSun HeatSource) f17 (increasing (Temp Chicago)) 
f4 (spatiallyDisjoint TheSun PlanetEarth) f18 (decreasing (Temp Chicago)) 
f5 (isa APP-inst Approaching-PeriodicPath) f19 (holdsIn (Interval ChiWinter ChiSummer) 

   (increasing (Temp Chicago))) 
f6 (isa AH-inst AstronomicalHeating) f20 (holdsIn (Interval ChiSummer ChiWinter)  

   (decreasing (Temp Chicago))) 
f7 (isa RPP-inst Retreating-PeriodicPath) f21 (greaterThan (M (Temp Australia) AusSummer)  

             (M (Temp Australia) AusWinter)) 
f8 (i- (Dist TheSun PlanetEarth)  

    (Rate APP-inst)) 
f22 (greaterThan (M (Temp Chicago) ChiSummer)  

             (M (Temp Chicago) ChiWinter)) 

 

 
Figure 35: Network plotting explanations x0 and x1 that explain seasonal change in Australia (x0) and Chicago 

(x1) using a near-far model of the seasons. 

Consequently, when the procedure next searches for indirect influences of (Temp 

PlanetEarth), it determines that it can justify the earth’s cooling with an increase of (Dist 

TheSun PlanetEarth) or a decrease of (Temp TheSun).  This makes another recursive 

invocation of justify-quantity-change to justify an increase of (Dist TheSun 

PlanetEarth).  This ultimately creates a Retreating-Periodic instance whose rate increases 

the earth’s distance to the sun (statement f12 in Figure 35) during a segment of the earth’s orbit 

around the sun. 
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We have described how the system justifies Chicago decreasing in temperature.  The system 

justifies Chicago’s increase in temperature in an analogous fashion.  It uses some of the model 

fragment instances created to explain Chicago’s decrease in temperature, such as the 

AstronomicalHeating instance.  It also instantiates new model fragments, such as an 

Approaching-Periodic instance whose rate decreases the earth’s distance to the sun 

(statement f8 in Figure 35) which justifies the earth’s increase in temperature (statement f13 in 

Figure 35). 

After the system has computed the justification structure for the explanandum, it finds all 

well-founded explanations of the explanandum and creates a unique explanation node (e.g., x1 in 

Figure 35) for each.  As we discussed in Chapter 4, multiple explanations may compete to 

explain the same explanandum.  In our simulation of Angela, there are multiple explanations for 

Chicago’s seasons, only one of which (x1) is shown in Figure 35.  Consider the following 

simplified explanations in English: 

 

• x1: The earth retreats from the sun for Chicago’s winter and approaches for its summer 

(shown in Figure 35). 

• x’1: The sun’s temperature decreases for Chicago’s winter and increases for its summer. 

• x’2: The sun’s temperature decreases for Chicago’s winter, and the earth approaches the 

sun for its summer. 

• x’3: The earth retreats from the sun for Chicago’s winter, and the sun’s temperature 

increases for its summer. 
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Explanations {x1, x’1, x’2, x’3} compete with each other to explain f22.  However, x’1, x’2, and 

x’3 are all problematic. Explanations x’2 and x’3 contain asymmetric quantity changes in a cyclic 

state space: a quantity (e.g., the sun’s temperature) changes in the summer → winter interval 

without returning to its prior value somewhere in the remainder of the state cycle, winter → 

summer.  Explanation x’1 is not structurally or temporally problematic, but the domain theory 

contains no model fragments that can describe the process of the sun changing its temperature.  

Consequently, the changes in the sun’s temperature are assumed rather than justified by process 

instances.  Assumed quantity changes are problematic because they represent unexplainable 

changes in a system.  These are also problematic under the sole mechanism assumption (Forbus, 

1984), which states that all changes in a physical system are the result of processes.33  We have 

just analyzed and discredited system-generated explanations x’1-3 which compete with 

explanation x1.  The system makes these judgments automatically, using the artifact-based cost 

function described in Chapter 4. 

The cost function computes the cost of an explanation as the sum of the cost of new artifacts 

(e.g., model fragments, model fragment instances, assumptions, contradictions, etc.34) within that 

explanation. In our example, x1 is the preferred (i.e., lowest cost) explanation, so the system 

assigns x1 to the explanandum within the preferred explanation mapping �, and thereby explains 

Chicago’s temperature variation using the near-far model. 

 

 

 

                                                 
33 The agent might explicitly assume that an unknown, active, process is directly influencing the quantity, but such 
an assumption is still objectively undesirable within an explanation.  
34 For a complete listing of epistemic artifacts and their numerical costs, see section 4.6.2. 
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6.2.2 Explaining Australia’s seasons 

We next query the system for an explanation of why Australia is warmer in its summer than in its 

winter.  This invokes justify-explanandum which constructs explanations for Australia’s 

seasons, including the explanation x0 in Figure 35.  When the system chooses among competing 

explanations for Australia’s seasons using the cost function, the cost of each explanation is 

influenced by the explanations it has chosen for previous explanandums (e.g., Chicago’s 

seasons).  This is because artifacts only incur a cost if they are not presently used in a preferred 

explanation.  All else being equal, the system is biased to reuse existing artifacts such as model 

fragments (e.g., AstronomicalHeating), model fragment instances (e.g., 

AstronomicalHeating instance AH-inst represented as f6 in Figure 35), and assumptions 

that are in other preferred explanations.  This causes the system to choose a near-far explanation 

for Australia’s seasons (x0 in Figure 35) which contains much of the justification structure of the 

preferred explanation for Chicago’s seasons (x1 in Figure 35). 

6.2.3 Comparing the system’s explanations to student explanations 

At this point, we want the system to describe the mechanisms that cause seasonal change and 

temperature change.  Sherin et al. do not give the interviewees a pretest or posttest; rather, they 

ask the student to explain it freely.  Generating causal explanations in English is outside the 

scope of this research, so we have our system describe causal models using influence graphs as 

illustrated in Figure 36.  Given one or more explanations, the system automatically constructs an 

influence graph of the explanations by (1) creating a vertex for every quantity described in the 

explanation and (2) creating a directed edge for every influence described in the explanation.  In 
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the case of Figure 36, the system graphs the two preferred explanations, so that both Australia’s 

seasons and Chicago’s seasons are explainable using the same mechanisms. 

The majority of the influence graph in Figure 36 describes continuous causal mechanisms 

that are common to both explanations.  The only explanation-specific components are the 

temperatures of Chicago and Australia and their qualitative proportionalities to the temperature 

of the earth.  This illustrates how knowledge is reused across explanations and how new 

phenomena are explained in terms of existing causal structure.  Thus, even though explanations 

exist as separate entities in our computational model, they share significant structure. 

6.2.4 Accommodating new, credible information 

Thus far, we have described how the system constructs and computes preferences for the two 

explanations plotted in Figure 35: one for how Chicago’s seasons change (x1) and another for 

how Australia’s seasons change (x0).  Other explanations for Chicago’s and Australia’s seasons 

exist in the system, but are not preferred since they incur a greater cost. 

 
Figure 36: An influence diagram of the near-far explanation of both 

Chicago’s (Chi) and Australia’s (Aus) seasons.  Nodes are quantities and 
edges describe positive and negative direct influences (i+, i-) and indirect 

influences (q+, q-).  Bracketed ranges quantify process activity. 
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In Sherin et al.’s study, recall that if a student’s explanation did not account for different 

seasons in different parts on the earth – like our simulation’s presently-preferred explanations – 

the interviewer asked them whether they were aware that Chicago’s winter coincided with 

Australia’s summer.  This caused some students, including Angela, to revise their explanation of 

seasonal change.  This section describes how we simulate the incorporation of new information 

and the subsequent explanation revision. 

To begin, the following statements are added from the human user: 

 

(cotemporal ChiSummer AusWinter) 

(cotemporal ChiAutumn AusSpring) 

(cotemporal ChiWinter AusSummer) 

(cotemporal ChiSpring AusAutmn) 

 

We refer to this as the opposite seasons information. These statements are from a trusted 

source, so each statement incurs a credibility artifact35 of cost -1000 (where negative cost 

indicates a benefit).  This means that for each of these four statements, the system receives a 

numerical benefit as long as it keeps the statement in the adopted domain knowledge 

microtheory �a.  It will lose this benefit if it removes the statement from �a, though the 

statement will continue to exist in the general domain knowledge microtheory �. 

After adding these statements to �a the system searches for contradictions across its 

preferred explanations (i.e., x0 and x1 in Figure 35) and adopted domain knowledge in �a.  This 

is performed with domain-general rules for detecting contradictions, such as: 

 

                                                 
35 See the section 4.6.2 for an overview and example of credibility artifacts. 
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• A belief and its negation cannot be simultaneously believed. 

• A quantity cannot simultaneously be greater than n and less than or equal to n. 

• A quantity cannot simultaneously be less than n and greater than or equal to n. 

 

The quantity rules also apply to derivatives of quantities, so the system detects when quantities 

are believed to simultaneously increase and decrease. 

To illustrate this behavior within the Angela example, consider Australia’s explanation x0 = 

⟨J0, B0, M0⟩ and Chicago’s explanation x1 = ⟨J1, B1, M1⟩.  According to the definition of 

explanations in Chapter 4, B0 is the set of beliefs in x0 and B1 is the set of beliefs in x1.  Since 

both explanations refer to the near-far model, the following statements (as well as many others) 

are included in these belief sets: 

 

B0 contains the temporally-quantified statement: 

(holdsIn (Interval AusSummer AusWinter)  
   (decreasing (Temp PlanetEarth))) 

(i.e., “Between Australia’s summer and its winter, the earth cools.”) 

 

B1 contains the temporally-quantified statement: 

(holdsIn (Interval ChiWinter ChiSummer)  
   (increasing (Temp PlanetEarth))) 

(i.e., “Between Chicago’s winter and summer, the earth warms.”)  

 

Before the opposite seasons information was incorporated, these statements were not 

contradictory.  After we add the opposite seasons information, the system infers that the interval 

from Australia’s summer to its winter coincides with the interval from Chicago’s winter to its 
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summer.  Therefore, the earth’s temperature is believed to increase and decrease simultaneously, 

which an impossible behavior within a physical system.  This is flagged by the contradiction 

detection rules, and the following contradiction artifact is created: 

 

      〈Contra, { (cotemporal ChiSummer AusWinter), 
   (cotemporal ChiWinter AusSummer), 
   (holdsIn (Interval AusSummer AusWinter) 
    (decreasing (Temp PlanetEarth))), 
   (holdsIn (Interval ChiWinter ChiSummer)  
    (increasing (Temp PlanetEarth)))}〉 

 

Three additional contradictions are detected between these explanations: (1) the opposite 

simultaneous heating/cooling of the earth; (2) the earth simultaneously approaching and 

retreating for Chicago and Australia, respectively; and (3) the earth simultaneously retreating and 

approaching for Chicago and Australia, respectively.  Artifacts are created for these 

contradictions as well.  Each contradiction artifact incurs a cost of 100. 

Despite gaining numerical benefits for accepting the instructional knowledge about opposite 

seasons in Chicago and Australia, the system has detected four contradictions and incurred the 

respective costs.  Recall from Chapter 4 that the cost of an artifact, such as the contradiction 

artifact shown above, is only incurred if every constituent belief is either (1) in the adopted 

domain knowledge microtheory �a or (2) in the belief set of a preferred explanation in the 

explanation mapping �.  Consequently, these contradiction costs might be avoided – while still 

retaining the credibility benefits – by revising the � or �a.  This involves retracting beliefs from 

�a and switching its preferred explanation(s) to disable this contradiction artifact and other 

costly artifacts.  This is the role of the procedure restructure-around-artifact described in 

Chapter 4 (Figure 23).  When this procedure is called with one of the newly-incurred 
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contradiction artifacts as the input argument, the procedure finds (1) beliefs in �a that support 

the contradiction (i.e., the two cotemporal statements above) and (2) explanandums whose 

explanations support the contradiction (i.e., Chicago’s seasonal temperature difference and 

Australia’s seasonal temperature difference). 

For each supporting belief in �a, the system determines whether removing the belief from 

�a will lower the overall cost.  For example, removing (cotemporal ChiSummer 

AusWinter) from �a will remove all four contradictions for a benefit of 400, but it would also 

disable the credibility benefit of 1000, so there would be a net loss.  Therefore, no change will be 

made here.  The same is true of removing (cotemporal ChiWinter AusSummer) from �a. 

For each supporting explanandum, the system computes the lowest cost explanation.  For 

example, changing Chicago’s seasonal explanation to another explanation (e.g., the facing 

explanation, described above) revokes the beliefs that earth’s temperature and distance from the 

sun changes during Chicago’s seasonal intervals.  The facing explanation was not initially the 

lowest-cost explanation for Chicago’s seasons, but these contradictions have since made the two 

near-far explanations much more costly. 

When the system changes its explanation for Chicago’s seasons to the facing explanation, it 

disables all four contradictions; however, the restructure-around-artifact procedure is not yet 

complete.  When it processes the final explanandum, Australia’s seasons, the system finds that it 

can further reduce cost by changing Australia’s preferred explanation from the near-far 

explanation to a facing explanation.  This is because using the same model fragments, model 

fragment instances, and assumptions as Chicago’s new explanation (i.e., the facing model) is less 

expensive than using the near-far model to explain Australia’s seasons.  The system then iterates 



188 
 

 
 

through the beliefs and explanandums again to determine whether additional unilateral changes 

can reduce cost, and since no further action reduces cost, the procedure terminates. 

When the procedure terminates, both Chicago’s and Australia’s seasons have been mapped 

to explanations that use the facing model.  The corresponding influence graph for both preferred 

explanations is shown in Figure 37.  Both explanations use RotatingToward and 

RotatingAway processes to explain change in temperature, the rates of which are qualitatively 

proportional to the rate of the earth’s rotation. 

We have just described how the simulation accommodates new information by revising 

explanation preferences in � to reduce cost.  As we discussed in Chapter 4, the restructuring 

procedure is guaranteed to converge because it only performs belief revision if cost can be 

reduced, and cost cannot be reduced infinitely.  Restructuring is a greedy algorithm, so it is not 

guaranteed to find the optimal cost configuration of explanation preferences. 

This concludes the Angela trial.  Like the student Angela, the computational model begins 

the session by explaining the seasons with a near-far explanation and ends the session with a 

 
Figure 37: An influence diagram of the facing explanation of both 

Chicago’s (Chi) and Australia’s (Aus) seasons. 
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facing explanation.  We simulate five of the students from Sherin et al.’s study, including 

Angela.  We continue with a description of the simulation setup and experimental results. 

6.3 Simulation results 

We implemented our model on top of the Companions cognitive architecture (Forbus et al., 

2009), ran each trial as described above, and compared our system’s explanations to those of 

students.  In each trial, the system starts with a subset of knowledge pertaining to a student from 

Sherin et al., but no explanations have been constructed.  In terms of Figure 35, the starting state 

of the system is a series of nodes on the bottom (domain theory) tier of the network, but none 

elsewhere.  The system is then queried to construct explanations for Chicago’s and Australia’s 

seasons, after which we provide the simulation with the information about opposite seasons, and 

query the simulation again for an explanation of the seasons. 
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The individual differences of the students within the interviews involve more than just 

variations in domain knowledge.  For example, some students strongly associate some models 

and beliefs with the seasons (e.g., that the earth’s axis is tilted) without knowing the exact 

mechanism.  To capture this (e.g., in the “Deidra & Angela” trial below), our system includes an 

additional numerical penalty over beliefs to bias explanation preference.  We describe this 

further below. 

Ali & Kurt trial.  The system’s initial domain knowledge includes: (1) the earth rotates on a 

tilted axis, (2) temperature is qualitatively proportional to sunlight, and (3) the earth orbits the 

sun.  However, there is no knowledge that each hemisphere is tilted toward and away during the 

orbit.  Consequently, the system computes nine explanations for both Chicago and Australia, and 

computes preference for the facing explanations shown in Figure 37, with a cost of 56.  This 

explanation is consistent with the opposite seasons information, so no revision occurs as a result.  

Like Ali and Kurt, the simulation starts and ends with the facing explanation. 

 

 

Figure 38: Influence graphs for additional explanations produced by the simulation. (a) 
The tilt of the axis increases and decreases each hemisphere’s distance to the sun. (b) A 

simplified correct explanation of the seasons. 
 

(a) (b) 
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Deidra & Angela trial.  The system’s initial domain knowledge includes: (1) the earth 

rotates, (2) the earth orbits the sun and is sometimes closer and sometimes farther, and (3) 

sunlight and proximity to the sun both affect temperature.  To model Deidra and Angela’s 

preference for the distance-based explanation, for this trial we used an additional ten-point cost 

on the belief (qprop (Temp X) (Sunlight X)).  Under these parameter settings, the 

system constructs 16 explanations36 and computes a preference for the near-far explanations 

graphed in Figure 36, with a cost of 56.  The system also created facing explanations (graphed in 

Figure 37) with a cost of 66, due to an additional ten-point penalty on the belief (qprop (Temp 

X) (Sunlight X)).  This penalty makes the facing explanation more expensive than the near-

far explanation.  When confronted with the opposite seasons information, the system (like Deidra 

and Angela) detects inconsistencies and changes its preferred explanation from the near-far 

explanations to the facing explanations. 

Amanda trial.  The system’s initial domain knowledge includes: (1) the earth orbits the sun, 

(2) the earth rotates on a tilted axis, (3) when each hemisphere is tilted toward the sun, it receives 

more sunlight and is more proximal to the sun, and (4) sunlight and proximity to the sun both 

affect temperature.  In the interview, Amanda mentions two main influences on Chicago’s 

temperature: (1) the distance to the sun due to the tilt of the earth, and (2) the amount of sunlight, 

also due to the tilt of the earth.  Through the course of the interview, she settles on the latter.  

Amanda could not identify the mechanism by which the tilt changes throughout the year.  We 

simulated Amanda once with process models for TiltingToward, and TiltingAway, 

producing graphs Figure 38(a) and Figure 38(b) with costs 52 and 67, respectively.  However, 

since Amanda could not identify the processes that increased and decreased the tilt of the earth, 

                                                 
36 The increased number of explanations is due to the belief that proximity in addition to amount of sunlight affect 
temperature. 
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we simulated her again without these process models.  This produced two similar graphs, but 

without anything affecting AxisTilt-Toward(Earth,Sun).  This was the final model that 

the student Amanda chose as her explanation.  The graphs in Figure 38 both describe the tilt of 

the earth as a factor of the seasons: graph (a) is incorrect because it describes tilt affecting 

distance and temperature, and graph (b) is a simplified correct model. 

By varying the domain knowledge and manipulating the numerical costs of beliefs, we can 

use the simulation to (1) construct student explanations and (2) revise explanations under the 

same conditions as students.  Further, in the Amanda trial, we provided additional process 

models to demonstrate that the simulation can construct a simplified correct explanation. 

6.4 Discussion 

In summary, this simulation (1) constructs explanations from available domain knowledge via 

abductive model formulation, (2) evaluates the resulting explanations using a cost function, and 

(3) detects inconsistencies and re-evaluates its explanations when given new information.  By 

changing the initial knowledge of the system, we are able to simulate different interviewees’ 

commonsense scientific reasoning regarding the changing of the seasons.  We also demonstrated 

that the system can construct the scientifically correct explanation using the same knowledge 

representation and reasoning approaches. 

This simulation supports the claim that model fragments can simulate mechanism-based 

psychological mental models.  This is because model fragments (e.g., those in Figure 33) were 

used to describe processes and conceptual entities, and were able to capture the causal 

mechanisms of students’ explanations.  This simulation also supports the third claim of this 

dissertation: that conceptual change – in this case, mental model transformation – can be 
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simulated by constructing and evaluating explanations.  The “Deidra & Angela” trial exemplifies 

this behavior by shifting explanations and underlying influence graphs (i.e., from that in Figure 

36 to that in Figure 37), which represent different student mental models. 

The numerical explanation scoring strategy used in this simulation is domain-general, albeit 

incomplete.  To be sure, other factors not addressed by our cost function are also important 

considerations for explanation evaluation: belief probability, epistemic entrenchment, diversity 

of knowledge, level of specificity, familiarity, and the variable credibility of information (and 

information sources).  Incorporating these factors will help model individual differences in 

response to instruction (e.g., Feltovich et al., 2001).  We discuss some possible extensions in 

Chapter 9.   

We believe that this simulation is doing much more computation than people to construct 

the same explanations.  For example, the system computed and evaluated 16 explanations in the 

Deidra & Angela trial when explaining Chicago’s seasons.  As described in Chapter 4, our 

system uses an abductive model formulation algorithm, followed by a complete meta-level 

analysis of competing explanations.  People probably use a more incremental approach to 

explanation construction, where they interleave meta-level analysis within their model-building 

operations.   Such an approach would avoid reifying explanations that are known to be 

problematic (e.g., explanations x’1-3 in section 6.2.1), but it would involve monitoring the model 

formulation process.  The transcript of Angela’s interview in the appendix helps illustrate the 

incremental nature of psychological explanation construction: Angela appears to construct a 

second explanation only after she realizes that her initial explanation is flawed. 

This simulation demonstrates that our computational model can reactively revise its 

explanations to maintain consistency and simplicity.  However, this does not capture the entirety 
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of conceptual change, or even the entirety of mental model transformation.  For instance, Angela 

and Deidra incorporated new information that forced them to recombine pre-existing knowledge 

into a new explanation, but they did not have to incorporate unfamiliar information about 

astronomy into their explanations.  In contrast, when students learn from formal instruction or 

read from a textbook, they often encounter information about new entities, substances, and 

physical processes that must be incorporated into their current mental models.  This is the subject 

of the simulation described in the next chapter.    
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Chapter 7: Mental model transformation from textbook information 

The last chapter simulated the revision of mechanism-based mental models when new 

information causes inconsistencies.  Formal instruction can involve more subtle conflicts than 

this, such as learning about a biological system at a finer granularity and making sense of new 

entities and processes.  Consider the mental model transformation example from Chapter 4: a 

student believes that blood flows from a single-chambered heart, through the human body, and 

back, and then reads that blood actually flows from the left side of the heart to the body.  This 

new information does not directly contradict the student’s mental model since the text does not 

explicitly state that blood does not flow from the heart; rather, the new information is more 

specific than the student’s present mental model, and the conflict between beliefs and models is 

not as overt as it was in the previous chapter.  This simulation constructs and evaluates 

explanations – similar to the previous chapter’s simulation – to incrementally transform 

compositional qualitative models when provided a stream of textbook information.  We simulate 

the students in Chi et al. (1994a) who complete a pretest about the circulatory system, read a 

textbook passage on the topic, and then complete a posttest to assess their learning. 

Recall from Chapter 2 that act of explaining to oneself helps people revise flawed mental 

models (Chi et al., 1994a; Chi, 2000).  Chi et al. (1994a) showed that when students are 

prompted to explain concepts to themselves while reading a textbook passage about the human 

circulatory system, they experience a greater gain in learning than students who read each 

sentence of the passage twice.  Chi and colleagues call this the self-explanation effect.  Chi 

(2000) describes how self-explanation causes mental model transformation: 
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1. Explaining the new information causes the recognition of qualitative conflicts (i.e., 

different predictions and structure) between the mental model and the model presented 

in the textbook. 

2. The conflict is propagated in the mental model to find contradictions in the 

consequences. 

3. The mental model is repaired using elementary addition, deletion, concatenation, or 

feature generalization operators.   

 

The self-explanation effect is central to our computational model, but we do not implement 

it according to Chi’s (2000) description.  Our simulation simulates the psychological self-

explanation effect by: 

 

1. Constructing new explanations using new textbook information. 

2. Evaluating the new explanations alongside previous ones. 

3. Re-mapping explanandums to new explanations when preferences are computed as such. 

 

As shown in the previous chapter’s simulation, changing the preferred explanation for an 

explanandum can simulate belief revision.  We describe this process in detail below. 

Like the previous simulation, this simulation uses qualitative models to simulate students’ 

mental models, and it uses the same central model of conceptual change.  Consequently, this 

simulation provides additional support for the first and third claims of this dissertation: 
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Claim 1: Compositional qualitative models provide a psychologically plausible 

computational account of human mental models. 

 

Claim 3: Human mental model transformation and category revision can both be modeled 

by iteratively (1) constructing explanations and (2) using meta-level reasoning to select 

among competing explanations and revise domain knowledge. 

 

We briefly discuss Chi et al.’s (1994a) study, which is the basis for comparison in this 

simulation.  We then discuss how textbook information is integrated into our system via 

explanation construction, and the results of our simulation (published as Friedman & Forbus, 

2011). 

7.1 Self-explaining improves student accommodation of textbook material 

Chi et al. (1994a) studied the self-explanation effect on 21 eighth-grade students.  Each student 

was given a pretest to assess their knowledge of the human circulatory system.  Each student 

then read a 101-sentence textbook passage about the circulatory system, after which they 

completed a posttest.  There were two conditions: the control group (9 students) read each 

sentence in the passage twice, and the experimental group (12 students) read the passage once, 

but was prompted by the experimenter to explain portions of the text throughout the reading. 

Part of the pretest and posttest involved plotting the flow of oxygen-rich and oxygen-poor 

blood through the human body, using arrows between various parts of the body.  The tests also 

included conceptual questions about the behavior and function of circulatory system 

components.  The mental models found by the experimenters are shown in Figure 39: the first 
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five are incorrect, and the final “double loop (2)” model is a correct but simplified model.  We 

describe each from left to right: 

 

1. No loop: blood flows from a single-chambered heart to the body and does not return. 

2. Ebb and flow: blood flows from heart to the body and returns to the heart through the 

same blood vessels. 

3. Single loop: blood flows from heart to body through one set of vessels and returns to 

the heart through an entirely different set of vessels. 

4. Single loop (lung): blood flows in a heart-lung-body or heart-body-lung cycle and 

the lungs play a role in oxygenating blood. 

5. Double loop (1): blood flows directly from heart to both lungs and body, and blood 

returns directly to the heart from the lungs and body. 

6. Double loop (2): same as double loop (1), except the heart has four chambers, blood 

flows top-to-bottom through the heart, and at least three of the following: 

• Blood flows from right ventricle to lungs 

• Blood flows from lungs to left atrium 

• Blood flows from left ventricle to body 

• Blood flows from body to right atrium 

 
Figure 39: Student models of the human circulatory system from Chi et al. (1994a). 
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The experimenters found that the prompted group experienced a significant gain in learning 

relative to the control group, and that prompted students who self-explained most frequently 

achieved the “double loop (2)” model on the posttest.  In total, 33% of the control group and 

66% of the prompted group reached the correct mental model at the posttest.  Results are 

summarized in Figure 40, with respect to the models shown in Figure 39. 

Figure 40 shows that some students in the control group who started with the same model on 

the pretest ended with different models in the posttest.  This is indicated by the fork at “No 

Loop” (i.e., two of these students end at “No Loop,” and the remaining student transitions to 

“Double Loop (1)”), and the fork at “Single Loop” (i.e., two of these students transition to 

“Double Loop (1)” and the remaining student transitions to “Double Loop (2)”).  This means that 

factors other than the starting model affect students’ learning on this task.  We broadly refer to 

these factors as individual differences.  Students in the control group were largely left to learn 

according to their individual learning strategies, while students in the prompted group were 

influenced by prompting of the experimenter.  Our simulation attempts to capture (1) the 

 
Figure 40: Transitions between pretest and posttest models for control and prompted 
groups in Chi et al. (1994a).  Numbers indicate the number of students who made the 

given transition.  See Figure 39 for an illustration of each mental model. 
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individual differences of the control group using different explanation evaluation strategies and 

(2) the majority of the prompted group using a single explanation evaluation strategy. 

7.2 Simulating the self-explanation effect 

This simulation is laid out similarly to the previous chapter’s simulation.  The input to the system 

includes: (1) starting domain knowledge; (2) a single preference ranking37 for computing 

preferences over explanations; and (3) a sequence of scenario microtheories containing 

information from a textbook passage.  The information in the passage was hand-translated by me 

into predicate calculus.  Items 1 and 2 vary across simulation trials to simulate different students, 

and item 3 is constant over all trials.  Each trial of this simulation proceeded as follows: 

 

1. Begin the trial with domain knowledge specific to one of the six mental models shown in 

Figure 39.  No explanations are present. 

2. Construct explanations for all blood flows believed to exist in the domain theory. 

3. Generate an influence graph of all flows of blood, oxygen, and carbon dioxide from the 

union of preferred explanations.  This validates the initial circulatory model, for 

comparison with student pretests. 

4. Incrementally integrate textbook information about the circulatory system from a 

sequence of scenario microtheories. 

5. After all of the textbook information has been integrated, generate influence graphs again 

from the union of preferred explanations as done in step (3).  This determines the final 

circulatory model, for comparison with student posttests. 

                                                 
37 See section 4.6.1 for how preference rankings affect explanation preferences. 
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We use the simulation’s influence graphs from steps (3) and (5) to assess the simulation’s 

learning and compare it to the mental model transformations of Chi et al.’s students in Figure 40.  

We have already described the explanation construction procedures in detail: section 4.4 

describes how an explanation of heart-to-body blood flow is constructed in this simulation.  This 

is the essence of simulation step (2) above.  Additionally, Chapter 6 describes how influence 

graphs are constructed from multiple preferred explanations, which is the essence of steps (3) 

and (5) in this simulation.  We therefore concentrate on step (4) of the simulation: incrementally 

integrating textbook information. 

ModelFragment ContainedFluid 
 Participants: 
  ?con Container (containerOf) 
  ?sub StuffType (substanceOf) 
 Constraints: 
  (physicallyContains ?con ?sub) 
 Conditions: 
  (greaterThan (Amount ?sub ?con) Zero) 
 Consequences: 
  (qprop- (Pressure ?self) (Volume ?con)) 
 

When a container con physically contains 
a type of substance sub, a contained fluid 
exists.  When there is a positive amount of 
sub in con, the volume of con negatively 
influences the pressure of this contained 
fluid. 

ModelFragment FluidFlow 
 Participants: 
  ?source-con Container (outOf-Container) 
  ?sink-con Container (into-Container) 
  ?source ContainedFluid (fromLocation) 
  ?sink ContainedFluid (toLocation) 
  ?path Path-Generic (along-Path) 
  ?sub StuffType (substanceOf) 
 Constraints: 
  (substanceOf ?source ?sub) 
  (substanceOf ?sink ?sub) 
  (containerOf ?source ?source-con) 
  (containerOf ?sink ?sink-con) 
  (permitsFlow ?path ?sub  
               ?source-con ?sink-con) 
Conditions: 
  (unobstructedPath ?path) 
  (greaterThan (Pressure ?source)  
               (Pressure ?sink))) 
 Consequences: 
  (greaterThan (Rate ?self) Zero) 
  (i- (Volume ?source) (Rate ?self)) 
  (i+ (Volume ?sink) (Rate ?self)) 

When two contained fluids – a source and 
a sink – are connected by a path, and both 
are of the same type of substance, a fluid 
flow exists.  When the path is 
unobstructed and the pressure of source is 
greater than the pressure of sink, the rate 
of the flow is positive and it decreases the 
volume of source and increases the 
volume of sink. 

 

Figure 41: ContainedFluid (above) and FluidFlow (below) model fragments used in 
the simulation.  English interpretations of each model fragment (at right). 
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7.2.1 Explanandums: situations that require an explanation 

Unlike the simulation in the last chapter, the explanandums in this simulation are not single 

statements.  Rather, each explanandum describes a single situation, such as: 

 

(isa naiveH2B PhysicalTransfer)  

(outOf-Container naiveH2B heart) 

(into-Container naiveH2B body) 

(substanceOf naiveH2B Blood) 

 

These four statements describe a situation called naiveH2B.  The isa statement identifies it as a 

PhysicalTransfer instance, and the outOf-Container, into-Container, and 

substanceOf statements identify the entities that fill these roles of naiveH2B.  Although the 

situation is described across four statements, the situation itself (naiveH2B) is the explanandum.  

Consider another explanandum situation called leftH2B: 

 

(isa leftH2B PhysicalTransfer)  

(outOf-Container leftH2B l-heart) 

(into-Container leftH2B body) 

(substanceOf leftH2B Blood) 

   

Using multiple statements to describe explanandums allows us to describe events with 

incomplete information.  A more complete account of flow would also mention the paths through 

which the substance travels from source to destination.  The path is, after all, a component of our 
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FluidFlow model fragment in Figure 41.  Formal instruction does not always provide all of the 

information about the components of a natural system, especially when systems are described 

from the top-down.  For example, consider the following sentence from the textbook passage 

used by Chi et al.: 

 

“Blood returning to the heart [from the body]… enters the right atrium.” 

 

A more complete passage would mention the superior and inferior vena cava, but these are 

omitted, perhaps to keep focus on the more general function and structure of the system.  

Consequently, students must assume the existence of a flow path from the body to the right 

atrium.  Likewise, our simulation assumes the existence of entities to fill the roles of model 

fragments when necessary, using the abductive mechanism described in section 4.4. 

7.2.2 Constructing explanations to generate the pre-instructional model 

When a simulation trial begins, there are no justifications or explanations in the system.  The 

simulation has the following information in its domain knowledge microtheory: (1) a set of 

model fragments including those in Figure 41; (2) propositional beliefs about the structure of the 

circulatory system; and (3) a set of explanandum situations (described above) pertaining to a 

single model of the circulatory system shown in Figure 39.  For example, a simulation trial that 

begins with the “single loop” model contains the following explanandum situations: 

 

• Blood flows from the heart to the body (i.e., naiveH2B). 

• Blood flows from the body to the heart. 
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It also contains the following information in its domain theory: 

 

• A vessel path pathH2B permits blood flow from the heart to the body. 

• A different vessel path pathB2H permits blood flow from the body to the heart. 

 

For an even simpler example, consider the “no loop” circulatory model in Figure 39 described 

above.  This is simulated by providing the simulation with the naiveH2B information and no 

(a)          (b) 

 
Legend  

f0 (isa heart Heart) 

f1 (physicallyContains heart Blood) 

f2 (isa Blood StuffType) 

f3 (isa body WholeBody)  

f4 (physicallyContains body Blood) 

mf0 (isa ContainedFluid ModelFragment) 

f5 (greaterThan (Amount Blood heart) 0) 

f6 (isa mfi0 ContainedFluid) 

f7 (substanceOf mfi0 Blood) 

f8 (containerOf mfi0 heart) 

… … 

mf1 (isa FluidFlow ModelFragment) 
 

f13 (isa (SkolemFn mfi2 …) Path-Generic) 

f14 (permitsFlow (SkolemFn mfi2 …) …) 

f15 (isa mfi2 FluidFlow) 

f16 (fromLocation mfi2 mfi0) 

f17 (toLocation mfi2 mfi1) 

… … 

f22 (describes mfi2 naiveH2B) 

f23 (isa naiveH2B PhysicalTransfer) 

f24 (substanceOf naiveH2B Blood) 

f25 (outOf-Container naiveH2B heart)  

f26 (into-Container naiveH2B body) 

  
 

Figure 42: A portion of explanation-based network. (a) Before an explanation has been 
constructed for naiveH2B. (b) After an explanation x0 has been constructed for naiveH2B 

via abductive model formulation. 
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information about paths.  The existence of a path will be assumed (i.e., without committing to a 

specific blood vessel or pathway) for the flow. 

All of the starting explanandums and propositional beliefs are contextualized within scenario 

microtheories.38  Each of these scenario microtheories is tagged as a starting microtheory (i.e., it 

existed prior to instruction) by labeling the informationSource of the microtheory as Self-

Token (i.e., the symbol denoting the simulation itself).  This is important, since the simulation 

will later resolve explanation competition based on the informationSource of the constituent 

beliefs. 

The next step is to construct an explanation for each starting explanandum.  The system 

automatically detects explanandums by querying for situations that match a specific pattern: 

descriptions of processes (e.g., blood flow, oxygen consumption) that are not themselves model 

fragment instances.  For each explanandum, the system uses the justify-explanandum procedure 

and subsequent justify-process procedure to construct an explanation, both of which are 

described in Chapter 4.  Consider the simple case of starting with the “no loop” student model.  

Figure 42(a) shows the system’s state prior to explaining naiveH2B, and Figure 42(b) shows the 

same portion of the network after explanation x0 is constructed for naiveH2B.  

                                                 
38 See section 4.2 for discussion of scenario microtheories. 
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7.2.3 Determining the simulation’s circulatory model 

Students in Chi et al. were asked to draw the blood flow in the human circulatory system as part 

of their pretest and posttest assessment.  We assess our simulation’s circulatory model twice: (1) 

after explaining the starting explanandums and (2) after integrating the textbook information.  

Both of these assessments are conducted by having the system automatically generate influence 

graphs.  This is accomplished with the following steps: 

 

1. Find all explanandums M in the adopted domain knowledge microtheory �a that 

describe the transfer, consumption, or infusion of blood, Oxygen, or Carbon Dioxide. 

2. Using the explanandum mapping � described in Chapter 4, locate identify the preferred 

explanations X for each explanandum M. 

Figure 43: Influence graphs generated by the system to describe the relative 
concentrations, infusion, and consumption of Oxygen.  Left: using “Double loop (1)” 

model.  Right: using “Double loop (2)” model.  
Key: R(x)=Rate of process of type x; Amt(x, y)=Amount of x in y; C(x, y)=Concentration of 

x in y; B(x)=Blood in region x; (R/L)A=R-/L-Atrium; (R/L)V=R-/L-Ventricle. 
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3. Using all of the beliefs of explanations X, construct an influence graph describing 

transfers, consumption, or infusion of blood, Oxygen, or Carbon Dioxide. 

 

This produces between one and three influence graphs, since all student circulatory models 

in Chi et al. describe the transfer of blood, but not all of them describe oxygen and carbon 

dioxide (see Figure 39 and the corresponding coding criteria).  Influence graphs describing 

Oxygen are shown in Figure 43 for two different circulatory models: “double loop (1)” (left) and 

“double loop (2)” (right).  The “double loop (1)” graph describes oxygenated blood flowing from 

the lung to the heart via a vein pathway Vein0, where it mixes with deoxygenated blood from 

the body, flowing to the heart via vein pathway Vein1.  The “double loop (2)” graph has no such 

mixture. 

Influence graphs constitute a partial comparison to the students in Chi et al., since the 

students also completed a quiz about the function of the circulatory system.  Influence graphs 

effectively map the simulation’s circulatory model onto the space of student models in Figure 39, 

but it does not directly measure the simulation’s knowledge about the function of the circulatory 

system and its impact on human nutrition. 

7.2.4 Integrating textbook information 

At this point, the system has (1) constructed explanations for each starting explanandum and (2) 

generated an influence graph to describe its initial circulatory model.  This section describes how 

textbook information is integrated to incrementally transform this circulatory model.  The 

portion of the textbook passage used by our simulation is listed in the appendix.  For the 
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remainder of this section, we suppose that the simulation started with the “no loop” model of the 

circulatory system discussed above. 

We present the textbook information in small increments, as a sequence of scenario 

microtheories.  Unlike the starting scenario microtheories with Self-Token as the source of 

information, these microtheories are encoded with source Instruction.  Otherwise, they only 

vary in content.  The first sentence from the textbook passage describes the general structure of 

the heart: “The septum divides the heart lengthwise into two sides.”  The corresponding scenario 

microtheory contains the following facts: 

 

(isa septum Septum) 

(physicallyContains heart septum) 

(isa l-heart (LeftRegionFn Heart)) 

(isa r-heart (RightRegionFn Heart)) 

(partitionedInto heart l-heart) 

(partitionedInto heart r-heart) 

(between l-heart r-heart septum) 

(rightOf r-heart l-heart) 

 

First, the adopted domain knowledge microtheory �a is added as a child of the new scenario 

microtheory so that the new information is visible from this context.  This scenario microtheory 

does not contain an explanandum, so nothing new requires an explanation.  However, new 

entities are described, including septum, l-heart, and r-heart.  These entities did not exist 

in the simulation’s “no loop” circulatory system model.  Consequently, the simulation uses the 
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preference rules described in Chapter 4 to encode preferences over entities, where possible.  The 

following preferences are computed: 

 

1. (isa heart Heart) <�
�(isa l-heart (LeftRegionFn Heart)) 

2. (isa heart Heart) <�
�(isa r-heart (RightRegionFn Heart)) 

3. (isa heart Heart) <�
� (isa l-heart (LeftRegionFn Heart)) 

4. (isa heart Heart) <�
� (isa r-heart (RightRegionFn Heart)) 

5. (isa l-heart (LeftRegionFn Heart))<�
�(isa heart Heart) 

6. (isa r-heart (RightRegionFn Heart))<�
�(isa heart Heart) 

 

Preferences 1 and 2 are specificity (s) preferences, and are computed based on the 

specificity, since heart is partitionedInto the subregions r-heart and l-heart.  

Preferences 3 and 4 are instruction (i) preferences: since l-heart and r-heart are both 

comparable to heart for specificity and are supported by instruction (i.e., with information 

source Instruction), they are preferred in this (i) dimension.  Finally, preferences 5 and 6 are 

prior knowledge (n) preferences: since l-heart and r-heart are both comparable to heart 

for specificity, but neither were present prior to instruction (as was heart, with information 

source Self-Token), heart is preferred in this (n) dimension. 

The next scenario microtheory describes the sentence “The right side pumps blood to the 

lungs, and the left side pumps blood to other parts of the body,” and contains the following 

statements: 

 

(physicallyContains r-heart Blood) 
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(physicallyContains l-heart Blood) 

(physicallyContains lung Blood) 

 

(isa rightH2L PhysicalTransfer) 

(outOf-Container rightH2L r-heart) 

(into-Container rightH2L lung) 

(substanceOf rightH2L Blood) 

 

(isa leftH2B PhysicalTransfer) 

(outOf-Container leftH2B l-heart) 

(into-Container leftH2B body) 

(substanceOf leftH2B Blood) 

 

This scenario microtheory describes two processes: rightH2B describes blood flow from 

right-heart to lungs and leftH2B describes blood flow from left-heart to body.  Preferences can 

be computed between explanandums provided the following rule: 

 

If one explanandum e1 has one or more role fillers (e.g., l-heart in leftH2B) that are 

preferred for specificity <�
� over the corresponding role filler of another explanandum e2 

(e.g., heart of naiveH2B), and all other corresponding role fillers that are not preferred 

are identical, encode a specificity preference e1 <�
� e2. 

 

This rule is domain general, since it describes specificity over all events; not just physical 

transfers and blood flows.  Recall that in our example, the simulation starts with the “no loop” 
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model.  This means that before encountering leftH2B, the network contains only explanandum 

naiveH2B.  This means that the following preference will be computed: 

 

1. naiveH2B <�
� leftH2B 

2. naiveH2B <�
� leftH2B 

3. leftH2B <�
� naiveH2B 

 

  These indicate that (1) leftH2B is more specific than naiveH2B, (2) leftH2B is 

supported by instruction and naiveH2B is not, and (3) naiveH2B was present prior to reading, 

and leftH2B was not.  The simulation next automatically constructs and evaluates explanations 

for new explanandums leftH2B and rightH2L.  We describe how leftH2B is explained. 

Since our discussion focuses on a simulation trial with the “no loop” model, the network 

contains only an explanation for naiveH2B, as in Figure 44(a).  To explain leftH2B, the 

simulation invokes justify-explanandum using leftH2B as the explanandum argument.  This 

constructs an explanation for leftH2B using knowledge about l-heart from the first scenario 

microtheory.  This explanation x1 is shown in Figure 44(b), coexisting with the explanation x0 for 

naiveH2B.  Notice that in Figure 44(b), some of the preferences computed above are shown.  

Moreover, since the explanandum leftH2B is preferred for specificity over naiveH2B, any 

explanation for leftH2B (e.g., new explanation x1) also explains naiveH2B.  This is reflected in 

Figure 44(b). 

According to our discussion of explanation competition in Chapter 4, any two explanations 

that explain the same explanandum(s) are in competition.  In Figure 44(b), x0 and x1 both explain 

naiveH2B, so rule-based preferences are used to compute preferences between x0 and x1.  These 
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preferences and a preference aggregation function will determine which explanation will be 

assigned to naiveH2B in the explanandum mapping �.  The following preferences are computed 

as follows, using the above domain-level preferences already discussed above.  Let cheart be the 

ContainedFluid instance with participants ⟨?sub, blood⟩ and ⟨?con, heart⟩, and let cleft be 

the ContainedFluid instance with participants ⟨?sub, blood⟩ and ⟨?con, l-heart⟩.  

Similarly, let fheart be the FluidFlow instance with binding ⟨?source-con, heart⟩, and let fleft 

be the FluidFlow instance with binding ⟨?source-con, l-heart⟩. 

 

1. cheart <���
�  cleft 

2. cheart <���
�  cleft 

3. cleft <���
�  cheart 

4. fheart <���
�  fleft 

5. fheart <���
�  fleft 

6. fleft <���
�  fheart 

 

These preferences over model fragment instances are used to compute three explanation-

level preferences between the prior heart-to-body explanation x0 and the new left-heart-to-body 

explanation x1: 

 

1. x0 <��
� x1 

2. x0 <��
� x1 

3. x1 <��
� x0 
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One of these explanations must be mapped to naiveH2B as its preferred explanation in the 

explanandum mapping �; however, the three explanation-level preferences above describe a 

preference cycle.  Cycles are resolved using a preference aggregation function, as described in 

Chapter 4.  The preference aggregation function is given a preference ranking which is an 

ordering over preference dimensions {s, i, n, r}, where a dimension earlier in the ordering is 

more important than a dimension later in the ordering.  The aggregation function begins with the 

first dimension of the preference ranking and honors those preferences, and then honors each of 

the preferences in the next dimension as long as it does not create a cycle, and so-on for all 

dimensions.  If n precedes s and i in the preference ranking, the system will prefer x0 over x1; 

otherwise, x1 will be preferred.  This ultimately determines which explanation will be mapped to 

naiveH2B in �, and thereby affects how the system will explain blood flow on the posttest.   

The preference ranking also applies to explanandums: if n precedes s and i in the preference 

ranking, then (based on the above preferences) the explanandum naiveH2B will be preferred 

over leftH2B.  Explanandum preferences are used for pruning – if explanandum a is preferred 

over explanandum b then explanandum b is not used for problem solving, question answering, or 

generating an influence graph. 

Since preferences are computed over entities and model fragment instances, the preference 

ranking ultimately affects the granularity and terminology of the explanation.  For example, if 

the prior knowledge preference n is first, the system will prefer pre-instructional entities (e.g., 

heart) over more specific entities and regions thereof (e.g., left-heart, right-heart, left-ventricle, 

right-ventricle, left-atrium, and right-atrium), and this will be reflected in the choice of 

explanations.  This is an example of how we can model resistance to change: favoring pre-
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instructional entities over new entities whenever a choice is available makes the system 

selectively incorporate new information into its qualitative models.  Conversely, if instruction (i) 

is first in the preference ranking, then textbook information will displace pre-instructional 

information in preferred explanations. 

As mentioned above, the preference ranking is an input to the simulation, so each trial has a 

single preference ranking that it uses throughout learning.  By varying this preference ranking, 

we can change the outcome of learning and thereby simulate different students, including 

individual differences.  In this simulation the preference ranking is an approximation of a 

student’s learning strategy.  Recall that some students in the control group who started with the 

same mental model in the pretest diverged in their mental models at the posttest.  As we will 

show, the preference ranking helps account for these differences. 

We have described how our computational model integrates new information by 

constructing explanations and computing preferences.  The content of each scenario microtheory 

varies, but the explanation construction and evaluation mechanisms are constant. 
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7.2.5 Assuming model participants 

In some cases, an explanandum is presented to the system when the system does not have 

complete information.  Consider the sentence “Blood returning to the heart [from the body], 

which has a high concentration of carbon dioxide and a low concentration of oxygen, enters the 

right atrium.”  The corresponding scenario microtheory contains the following statements: 

 

(isa bloodToAtrium-Right FlowingFluid) 

(substanceOf bloodToAtrium-Right Blood) 

(outOf-Container bloodToAtrium-Right body) 

 
 

Legend  
f0 (isa heart Heart) 

f1 (physicallyContains heart Blood) 

f2 (isa Blood StuffType) 

f3 (isa body WholeBody)  

f4 (physicallyContains body Blood) 

mf0 (isa ContainedFluid ModelFragment) 

f5 (greaterThan (Amount Blood heart) 0) 

f6 (isa mfi0 ContainedFluid) 

f7 (substanceOf mfi0 Blood) 

f8 (containerOf mfi0 heart) 

… … 

mf1 (isa FluidFlow ModelFragment) 
 

f15 (isa mfi2 FluidFlow) 

f16 (fromLocation mfi2 mfi0) 

f17 (toLocation mfi2 mfi1) 

… … 

f22 (describes mfi1 naiveH2B) 

f23 (isa naiveH2B PhysicalTransfer) 

f24 (substanceOf naiveH2B Blood) 

f25 (outOf-Container naiveH2B heart)  

f26 (into-Container naiveH2B body) 

… … 

f31 (isa l-heart (LeftRegionFn heart)) 

f32 (physicallyContains l-heart Blood) 
 

Figure 44: Portion of explanation-based network.  (a): After explaining blood flow from heart to body 
(naiveH2B).  (b): After explaining blood flow from the left-heart to the body (leftH2B), with preferences across 

concepts (<c), model fragment instances (<mfi), and explanations (<xp). 

(a) (b) 
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(into-Container bloodToAtrium-Right right-atrium) 

 

(valueOf ((ConcentrationOfFn Oxygen) bloodToAtrium-Right) 

         (LowAmountFn (ConcentrationOfFn Oxygen))) 

(valueOf ((ConcentrationOfFn CarbonDioxide) bloodToAtrium-Right) 

         (HighAmountFn (ConcentrationOfFn CarbonDioxide))) 

 

From this description of the blood that flows from the body to the right atrium, the system 

can gather most of the participants of a FluidFlow: the substance is blood; the source container 

is the body; the destination container is the right atrium; and the ContainedFluid instances 

corresponding to these containers are the source and destination fluids.  However, no entity is 

included in this scenario microtheory that conforms to the collection and constraints of the 

?path participant of this FluidFlow, and the agent may not know of any entity that permits 

blood flow from the body to the right atrium. 

As discussed in section 4.4, the model formulation algorithm assumes the existence of 

entities to fill these participant slots.  When explaining the situation bloodToAtrium-Right, 

suppose the model formulation algorithm cannot bind a known entity to the ?path participant 

slot which corresponds to the role along-Path of FluidFlow (see Figure 41 for details).  The 

algorithm still creates a new FluidFlow model fragment instance with a unique symbol such as 

mfi5, and will construct an entity with a skolem term (discussed in Chapter 5) such as 

(SkolemParticipant mfi5 along-Path).  This indicates that this entity was assumed as a 

participant of mfi5 for the role along-Path.  The following two assertions are inferred as well: 

 

(isa (SkolemParticipant mfi2 along-Path) Path-Generic) 

(permitsFlow (SkolemParticipant mfi5 along-Path) Blood body right-atrium) 
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These statements describing the assumed entity will be part of the resulting explanation.  This 

allows the system to construct qualitative models with partial information. 

7.3 Simulation results 

Here we describe the results of our simulation.  Each trial of our simulation varied across three 

parameters: (1) the system’s starting model, one of the six shown in Figure 39; (2) whether or not 

the system constructs explanations for new explanandums, and (3) the preference ranking.  

Varying the latter two settings makes two psychological assumptions which we discuss in the 

next section.   

Each trial proceeds in the same fashion: (1) validate the starting (pretest) model with 

influence graphs; (2) incorporate the textbook information via a sequence of scenario 

microtheories as described above; and (3) determine the ending (posttest) model with influence 

graphs. 

The results are shown in Figure 45.  Each node in the figure corresponds to a student 

circulatory model in Figure 39, and each labeled arrow between circulatory models indicates that 

the simulation transitions from one model to another using the labeled preference ranking.  For 

instance, by engaging in full self-explanation with preference ranking ⟨s/i,*,*,*⟩ (i.e., the last 

three preferences are irrelevant, provided the first is either instruction or specificity), the 

simulation could transition to the correct “double loop (2)” circulatory model from any initial 

model.  Further, recall that using ranking ⟨n,*,*,*⟩ biases the system to favor explanations that 

use prior (i.e., starting model) entities, such as heart, over comparable entities encountered via 

instruction, such as left-ventricle.  This resulted in the simulation learning the most 
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popular final model in Chi’s control group, “double loop (1)” (Figure 43, left).  This mode uses 

heart instead of the more specific regions of the heart used in “double loop (2)” (Figure 43, 

right).  By disabling explanation construction (Figure 45, ∅), the system always remained at its 

initial circulatory model. 

Individual differences in the control group were modeled using different preference 

orderings ⟨n,*,*,*⟩ (4 students), ∅ (3 students), and ⟨s/i,*,*,*⟩ (2 students).  The prompted 

students were modeled using preference ordering ⟨s/i,*,*,*⟩ (8 students) and ⟨n,*,*,*⟩ (2 

students).  The remaining two prompted students were not modeled by the system.  Both 

transitioned to the “single loop (lung)” model – one from “no flow” and one from “single loop.”  

The inability of our system to generate these transitions may be due to representation differences, 

either in the starting knowledge or in the representation of the instructional passage.  We discuss 

this further in the next section. 

By varying the initial circulatory model, the preference rankings, and whether or not the 

system constructs explanations, the system was able to capture 19 out of 21 (>90%) of student 

model transitions in the psychological data.  Individual differences in the control group were 

  
Figure 45: Circulatory model transitions for all simulation trials. 
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captured by three parameter settings, and the majority of the prompted group was modeled by 

encoding a preference for explanations that contained specific and instructional concepts, 

⟨s/i,*,*,*⟩. 

7.4 Discussion 

We have simulated self-explanation using model formulation, metareasoning, and epistemic 

preferences.  By altering its preference rankings, we are able to affect how the system prioritizes 

its knowledge and integrates new information. 

Our simulation trials vary with respect to (1) whether the system explains textbook 

information, and (2) the preference ranking it uses to evaluate explanations. Since our model 

learns by explaining, changing setting (1) to disable explanation construction prohibits learning.  

This means that some simulation trials will not integrate any textbook information, which 

therefore assumes that some students do not learn from reading the textbook passage.  This was 

indeed the case for students in Chi et al.’s control group, since two students in Figure 40 started 

and ended with the same incorrect model.   

Varying the preference ranking assumes that students have different strategies for 

assimilating information from text.  This must be the case, because we cannot explain the 

learning patterns of the control group in Figure 40 based on their starting model alone: of the 

three students in the control group who began with the “single loop” model, two of them 

transitioned to “double loop (1),” and one transitioned to “double loop (2).”  Consequently, the 

system must capture these individual differences with at least two different learning strategies, 

which we model using preference rankings. 
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For autonomous learning systems and for modeling human learning over multiple reading 

tasks, the preference ranking might need to be more dynamic, reflecting depth of experience 

versus the credibility of the source.  Nevertheless, the simulation demonstrates good coverage of 

the psychological data.   

We have shown that the space of preference rankings ⟨s/i,*,*,*⟩ results in the correct model 

from any initial model for this task.  This may not be the case for other domains and for students 

whose mental models are flawed by containing extraneous components.  For instance, in this 

study, textbook entities (e.g., left-ventricle) were generally at least as specific as the 

entities in students’ initial models (e.g., heart).  This means that the partial orderings <�
� and 

<�
�  had a near-perfect correspondence over entities.39  We can imagine other cases where this 

might not be true.  For example, a student may have erroneous initial beliefs about a left-

ventricle-basin region of the left-ventricle.  Since this region does not actually exist, 

the initial, incorrect entity is more specific than the instructional entity.  Any preference ranking 

that places specificity before instruction, such as ⟨s,*,*,*⟩, would retain the left-ventricle-

basin misconception in the posttest.  The opposite would be true if instruction is ranked over 

specificity. 

This simulation supports our hypothesis that constructing and evaluating explanations can 

model the benefits of self-explanation.  Additionally, the knowledge representation was 

sufficient to explain the flows of blood, CO2, and O2 in the pretests and posttests in ways that are 

compatible with students’ explanations, so that the system’s qualitative models are comparable 

                                                 
39 Specificity and instruction do not overlap perfectly in this study.  Consider a student who already knows about the 
left atrium and left ventricle (the two sub-regions of the left heart): when they read about the left heart early in the 
text, the entities in their initial mental model are temporarily more specific than the entities in the textbook model. 
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to students’ mental models.  This provides evidence for our claim that compositional qualitative 

models can simulate human mental models. 

While our methods were sufficient to simulate the majority of the students, two of the 

students in the self-explanation group were not captured.  These students both used the “single 

loop (lung)” model at the posttest – one transitioned there from the “no flow” model and the 

other from the “single loop” model.  This suggests that our model of self-explanation is 

incomplete.  These students might have hypothesized system components based on the function 

of the system.  If informed that (1) the lungs oxygenate the blood and that (2) the purpose of the 

circulatory system is to provide the body with oxygen and nutrients, one might infer that blood 

flows directly from the lungs to the body. 

In our simulation, self-explanation generates network structure and preferences, which 

makes new knowledge available for later problem-solving.  When we disabled self-explanation 

(Figure 45, ∅), the new knowledge was unavailable for later use. 

We have shown how existing models are recombined to explain new situations and 

accommodate new information.  This has simulated how people revise and reason with mental 

models: new domain elements are acquired through simulated instruction, and conceptual change 

is achieved by combining elements of domain knowledge into new, preferred models.  This does 

not account for the revision of categories and model fragments themselves.  We simulate this 

type of conceptual change in the next chapter.  
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Chapter 8: Revising a category of force when explanations fail 

Naïve theories of force are some of the most widely-studied misconceptions, and are also some 

of the most resilient to change.  The questions of how intuitive theories of force are learned, 

represented, and revised are debated in the literature, but there is some agreement that they are 

mechanism-based (McCloskey, 1983; Ioannides & Vosniadou, 2002; diSessa et al., 2004) and 

learned and reinforced by experience (Smith, diSessa, & Roschelle, 1994). 

Here we describe a simulation that creates and revises a force-like category to explain a 

sequence of observations.40  Categories and model fragments are created and revised upon 

explanation failure.  After each observation, the system completes a questionnaire from previous 

psychology experiments (Ioannides & Vosniadou, 2002; diSessa et al., 2004) so we can compare 

its answers to those of students.  We then plot the system’s learning trajectory against student 

data to show that the simulation can learn and transition between student-like categories of force.  

The system transitions between mutually inconsistent specifications of a force-like category, 

along a humanlike trajectory.  This simulation thereby provides evidence for claims 1 and 3 of 

this dissertation: 

 

Claim 1: Compositional qualitative models provide a consistent computational account of 

human mental models. 

 

Claim 3: Human mental model transformation and category revision can both be modeled 

by iteratively (1) constructing explanations and (2) using meta-level reasoning to select 

among competing explanations and revise domain knowledge. 

                                                 
40 This builds upon the simulation described in Friedman and Forbus (2010). 
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Like the simulations in Chapters 6 and 7, this simulation constructs and evaluates 

explanations to simulate human conceptual change.  However, this simulation also uses 

heuristics to revise its model fragments and categories when it fails to explain an explanandum, 

and then it attempts explanation again.  This conforms to the following pattern of events: 

 

1. A new explanandum within a scenario requires an explanation. 

2. No explanation can be constructed that is consistent with the scenario.  We call this an 

explanation failure. 

3. The system finds heuristics that are applicable to the present failure mode. 

4. Applicable heuristics are sorted by their estimated complexity of change to domain 

knowledge. 

5. Beginning with the heuristic that incurs the least change, execute the heuristic to add or 

revise domain knowledge as necessary.  If explanation still fails, repeat with the next 

heuristic. 

 

After each explanandum within a scenario is explained, MAC/FAC is used to retrieve a 

similar, previously explained scenario.  If the two scenarios are sufficiently similar, 

discrepancies are detected between the new and previous scenario, and are explained using the 

same process as above, using heuristics to revise knowledge as necessary.  We describe both of 

these explanation-driven processes of change in detail below.  First, we outline the results of 

Ioannides & Vosniadou (2002) and diSessa et al. (2004), which serve as the bases for 

comparison in this simulation. 
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8.1 Assessing the changing meaning of force in students 

Ioannides & Vosniadou (2002) conducted an experiment to assess students’ ideas of force.  They 

used a questionnaire of sketched vignettes which asked the student about the existence of forces 

on stationary bodies, bodies being pushed by humans, and bodies in stable and unstable 

positions.  They concluded that several meanings of force were held by the students: 

 

1. Internal Force (11 students): A force exists inside all objects, affected by size/weight. 

2. Internal Force Affected by Movement (4 students): Same as Internal Force, but 

position/movement also affects the amount of force. 

3. Internal & Acquired (24 students): A force exists due to size/weight, but objects 

acquire additional force when set into motion. 

4. Acquired (18 students): Force is a property of objects that are in motion.  There is no 

force on stationary objects. 

5. Acquired & Push-Pull (15 students): Same as (4), but a force exists on an object, 

regardless of movement, when an agent pushes or pulls it. 

6. Push-Pull (1 student): A force only exists when objects are pushed or pulled by an 

agent. 

7. Gravity & Other (20 students): Forces of gravity, of push/pull, and acquired force when 

objects are moving. 
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8. Mixed (12 students): Responses were internally inconsistent, and did not fall within the 

other categories. 

 

The frequencies of responses by grade are listed in Figure 46.  Though these data were 

gathered on different students across grades, they illustrate a trend: Kindergarteners favor the 

“Internal” meaning of force, and then transition through the “Internal & Acquired” meaning to 

the “Acquired” meaning.  By grade 9, students tend to adopt the “Acquired & Push-Pull” and 

“Gravity & Other” meanings. 

diSessa et al. (2004) conducted a replication of Ioannides & Vosniadou (2002) using a 

modified questionnaire, but was not able to reliably classify students using the same coding 

criteria.  diSessa et al.’s conclusions include: (1) students do not form and transition between 

coherent theories (cf. Ioannides & Vosniadou, 2002); (2) rather, student theories are composed of 

small, contextualized, pieces of knowledge, some of which are idiosyncratic; and therefore (3) 

classifying each student into one of several coherent theories does not help us understand the 

processes by which students use and revise conceptual knowledge.  diSessa et al.’s conclusions 

are consistent with the knowledge in pieces perspective discussed in Chapter 2. 

Meaning of Force K 4th 6th 9th Total 
Internal 7 4 11 
Internal/Movement 2 2 4 
Internal/Acquired 4 10 9 1 24 
Acquired 5 11 2 18 
Acquired/Push-Pull 5 10 15 
Push-Pull 1 1 
Gravity/Other 3 1 16 20 
Mixed 2 6 4   12 

Figure 46: Occurrences of meaning of force, by grade. 
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Despite this controversy, the student data from Ioannides & Vosniadou’s study provides a 

clear basis for comparison for our simulation.  Additionally, since our approach incorporates 

ideas from both knowledge in pieces (i.e., we represent domain knowledge with globally 

incoherent, composable elements) and theory theory (i.e., explanations are coherent aggregates 

of said elements), we have the opportunity to demonstrate how an agent with globally incoherent 

domain knowledge can transition through a trajectory of apparently coherent meanings of force. 

Ioannides & Vosniadou and diSessa et al. both used a sketch-based questionnaire to 

characterize each student’s concept of force.  Ioannides & Vosniadou’s questionnaire varied 

slightly from diSessa et al.’s version, so we used the more recent and succinct (diSessa et al.) 

variation.  The questionnaire contains ten scenarios, five of which are illustrated in Figure 47 

Training Testing 

 

Sketch-A       Sketch-B 

 
Figure 47:  At left: a four-frame comic graph used as training data. 
At right: five of the ten questionnaire scenarios used as testing data. 

 

(1) 

(2) 

(3) 

(4) 
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(right).  Each scenario contains two sketches (A and B) of a person and a rock, and the student is 

asked three questions: 

 

1. What forces act on rock A? 

2. What forces act on rock B? 

3. Is the force on rock A same or different as the one on rock B? 

 

One or more aspects vary between the A and B sketch within a scenario (e.g., the size of the 

rock, the size of the person, and the motion of the rock).  This helps identify which variables 

determine the existence and magnitude of force, which ultimately determines the student’s ideas 

of force. 

8.1.1 Replicating the force questionnaire and approximating students’ observations 

We sketched the questionnaire from diSessa et al. using CogSketch (illustrated in Figure 47, 

right).  We use sketched annotations, as described in Chapter 5, to indicate pushing (blue arrows) 

and movement (green arrows) as indicated in the original questionnaire.  We use the same coding 

strategy as diSessa et al. and Ioannides & Vosniadou to classify our simulation’s meaning of 

force.  To simplify coding, we interpret diSessa et al.’s question (3) as: 

 

3. Which rock has greater force(s) acting on it, if they are comparable? 

 

This allows us to query for an ordinal relationship (e.g., greaterThan, lessThan, or 

equalTo) between the quantities of force on the rocks. 
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We also use CogSketch to sketch comic graphs (see Figure 47, left), which are used as 

training data.  These comic graphs are similar to those in Chapter 5, except they contain no 

annotations.  Consequently, the system has to detect motion and infer force-like quantities 

independently.  As mentioned above, the entire sketched questionnaire is interleaved after each 

comic graph training datum to determine which, if any, student meaning of force in Figure 46 is 

used by the system.  Each simulation trial thus generates a sequence of force categories.  We can 

plot this sequence of force categories against the student data in Figure 47 to determine whether 

the system’s trajectory of learning follows a pattern within the results of Ioannides & Vosniadou 

(2002). 

We next discuss how comic graphs are processed and explained by the simulation, and how 

heuristics are used to revise knowledge upon failure. 

8.2 Learning by explaining new observations 

When the simulation is given a new comic graph as a training datum, it detects all quantity 

changes in the comic graph, such as movements along the x-axis.  These quantity changes are 

explanandums, so the simulation must explain why each quantity change starts, persists, and 

stops.  If no explanation can be constructed that is consistent within the scenario, then the system 

revises its domain knowledge until all quantity changes can be explained.41  We discuss these 

operations in the order in which they occur, using the comic graph shown in Figure 47(left) to 

illustrate. 

                                                 
41 When people encounter anomalies, they can ignore them altogether (Feltovich et al., 2001), hold them in 
abeyance, or exclude them from their domain theory (Chinn & Brewer, 1998).  Our simulation’s only response to 
anomaly is revision, so we expect rapid transition between concepts of force.  We address this in the discussion 
section of this chapter. 
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The simulation first finds quantity changes by comparing adjacent subsketches (e.g., 

subsketches 3 and 4 in Figure 47, left) using the spatial quantities encoded by CogSketch.  If a 

quantity varies over a constant threshold (to account for unintentional jitter while sketching), a 

quantity change is encoded over that quantity for the transition.  For example, in the 2→3 and 

3→4 transitions, the x-coordinate of the ball decreases.  Once the system computes all quantity 

changes within a comic graph, it must explain why each quantity change begins and ends. 

For our discussion, suppose the simulation is explaining the ball’s movement as seen in the 

transitions 2→3→4.  Suppose also that this is the first comic graph that the system has 

encountered.  Since the simulation begins with no model fragments and no explanations, it will 

fail to explain the ball’s movement.  Heuristics are used to revise and extend domain knowledge 

in order to accommodate this observation. 

8.2.1 Declarative heuristics for failure-based revision 

Like model fragments, heuristics are declarative.  This means that the system can inspect them in 

order to decide which to use.  To illustrate why this is important, suppose that the system is 

unable to explain an object’s motion, and two heuristics apply to the situation: (1) revise an 

Heuristic createDecreaseProcess 
 Participants: 
  ?obj Entity 
  ?q Quantity 
 Constraints: 
  (decreasing (?q ?obj))   
 Consequences: 
  (isa ?process ModelFragment) 
  (revise ?process (addParticipant ?e Entity)) 
  (revise ?process (addConsequence (> (Rate ?self) 0)) 
  (revise ?process (addConsequence (i- (?q ?e) (Rate ?self)) 

ModelFragment m1 
 Participants: 
  ?e Entity 
 Constraints: 
  nil 
 Conditions: 
  nil 
 Consequences: 
  (> (Rate ?self) 0) 
  (i- (x-pos ?e)  
      (Rate ?self)) 

 

Figure 48: Left: a heuristic createDecreaseProcess that automatically creates a new 
model fragment to explain a quantity decreasing.  Right: Process model of leftward 

movement m1 automatically created with this heuristic. 
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existing model fragment by adding a statement to its conditions; or (2) hypothesize a new, 

unobservable category that causes objects to resist motion, and then revise a model fragment to 

account for this.  Which heuristic should the system choose?  They psychology literature 

suggests that students make minimal changes to their theories when confronted with anomalous 

data (Chinn and Brewer, 1993), so our system makes the minimal change possible.  It inspects 

heuristics to rate the amount of change they will incur, and sort them accordingly.  Heuristics are 

defined using similar vocabulary as model fragments.  Figure 48 (left) shows one such heuristic 

used by the system, which we will describe within our example. 

Continuing our example in the previous section, suppose the simulation is given the comic 

graph of the foot kicking the ball to the left in Figure 47(left), and must explain the ball moving.  

Since the system begins without any model fragments or explanations, it fails to explain the 

ball’s movement.  It finds applicable heuristics by testing the participants and constraints of the 

heuristics.  The heuristic createDecreaseProcess in Figure 48 (left) applies to this situation, 

since a quantity ?q of an entity ?obj is decreasing (i.e., a ball’s x-axis position is decreasing).  

The consequences of this heuristic (1) add a new, empty model fragment ?process to the 

domain knowledge microtheory and (2) revise ?process so that it describes the corresponding 

quantity ?q of an entity ?e decreasing.  This produces the process model m1 (Figure 48, right) 

which describes an object moving to the left.  The ball’s leftward movement can now be 

explained using m1. 
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The system now has a rudimentary model fragment m1 which describes objects – actually, 

all objects – moving continually to the left.  The resulting network is shown in Figure 50(a).  

Next, the system must explain why the ball stops moving.  Provided only model fragment m1, 

this is not possible.  The system must revise its knowledge again to resolve this next failure.  

This revision is illustrated in Figure 49, where the heuristic addHiddenQtyCond  is used to 

revise m1 as m2.  The participants and constraints of heuristic addHiddenQtyCond  assert that it 

Heuristic addHiddenQtyCond 
 Participants: 
  ?s CurrentState 
  ?p ProcessInstance 
  ?t ProcessType 
 Constraints: 
  (startsAfterEndingOf ?s ?p) 
  (isa ?p ?t) 
 Consequences: 
  (exists ?cq) 
  (isa ?cq ConceptualQuantity) 
  (revise ?t (addQtyCondition ?cq)) 

ModelFragment m2 
 Participants: 
  ?e Entity 
 Constraints: 
  nil 
 Conditions: 
  (> (q ?e) 0) 
 Consequences: 
  (> (Rate ?self) 0) 
  (i- (x-pos ?e) (Rate ?self)) 

Figure 49: Left: a heuristic addHiddenQtyCond that revises process models by adding a 
hidden (conceptual) quantity. 

Right: m2, the result of revising m1 (Figure 48, right) with addHiddenQtyCond.  Hidden 
quantity q, a placeholder force-like quantity, is revisable by other heuristics. 

 

Figure 50 (a) Model fragment m1 (Figure 48, right) explains the ball moving, but not the ball 
stopping.  (b) After revising m1 as m2 (Figure 49, right), m2 explains both phenomena, and 

preferences are computed. 
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is applicable when some process model (e.g., m1) ends before the current state.  The 

consequences of the heuristic (1) assert the existence of a new, hidden quantity ?cq and (2) 

revise the conditions of the model fragment (m1) to require the existence of ?cq.  Consider that 

the system generated the ground symbol q to represent the conceptual quantity ?cq.  The result 

is model fragment m2, which describes things moving when they have q at a rate qualitatively 

proportional to their q.  Hidden conceptual quantities, such as q, are categories that are not 

observable in a scenario, and their existence is inferred via the conditions and consequences 

model fragments.  The network after applying the heuristic addHiddenQtyCond and 

explaining the ball stopping is shown in Figure 50(b).  This includes the new quantity q and a 

preference m1 <c m2.  Note that the previous model m1 still exists in the system – instead of 

directly revising the model fragment m1 into m2, the system copies m1 before performing the 

revision.  This copy-revise-prefer approach means that the structure of any previous explanations 

that use m1 would remain intact.  The preference over model fragments m1 <c m2 causes the 

derivation of explanation-level preference x0 <xp x1, as described in section 4.6.1.  The preference 

m1 <c m2 also indicates opportunities for retrospective explanation, as discussed in section 4.7.  

We discuss the role of retrospective explanation later in this chapter. 

As noted by Kass (1994), adaptation mechanisms – such as these revision heuristics – fall on 

a spectrum from (1) a multitude of domain-dependent adaptation strategies, and (2) a smaller 

number of very general, domain-independent strategies.  In this simulation, no heuristic 

explicitly mentions movement or x/y coordinate quantities, so they are not purely domain-

dependent; however, in the case of heuristic addHiddenQtyCond (Figure 49) and others like it, 

heuristics can be very specialized in their applicability.  We next discuss how the system chooses 

between heuristics when several are applicable. 



233 
 

 
 

8.2.2 Choosing among applicable heuristics 

A heuristic’s applicability to a situation is determined by its participants and constraints, and its 

complexity of change is determined by its consequences.  Some consequences create new model 

fragments and categories altogether.  For instance, createDecreaseProcess created model 

fragment m1, and addHiddenQtyCond created a new conceptual quantity q.  These 

consequences extend the domain knowledge of the agent.  Other consequences revise existing 

model fragments (e.g., addHiddenQtyCond revises a model fragment to extend its conditions 

and consequences) and categories.  Heuristics are ordered from minimum to maximum estimated 

change by tallying their consequences.  The cost of each consequence is as follows:   

 

• Revising a conceptual quantity’s specification: 3 

• Revising (i.e., copying and revising) a model fragment: 7 

• Creating an altogether new model fragment: 20 

• Creating an altogether new conceptual quantity: 20 

 

Using this cost metric, the system can assign a numerical cost to each applicable heuristic by 

summing the cost of its consequences.  The system then sorts heuristics by ascending cost and 

executes them in that order until it can explain the situation. 

8.2.3 Revising conceptual quantities 

Like model fragments, conceptual quantities such as q can be revised using heuristics when the 

system fails to explain an explanandum.  When the quantity q is created by the heuristic 
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addHiddenQtyCond, it has a magnitude that permits leftward movement.  While 

accommodating subsequent training data, heuristics can revise q to: (1) add a vector component 

so that q has a spatial direction as well as a magnitude; (2) add an influence from another 

quantity, such that an object’s size influences its amount of q; (3) add direct influences from 

process rates, e.g., to describe the transfer of q between objects or consumption of q; or (4) 

change q to a quantity that only exists between – and not within – objects.  When a quantity q is 

revised as q’, the former specification q remains, so that existing explanations that use q are not 

affected.  As with revised model fragments, a preference q <c q’ is automatically encoded in the 

network. 

To illustrate another failure-based revision, consider an example where the system must 

explain a cup sliding to the right along a table, but at present, it only has a model fragment 

describing leftward movement m2 (Figure 49, right).  Rather than construct a new model 

fragment altogether, it can use the heuristic vectorizeQty (Figure 51, left) to revise its model 

fragment m2 into model fragment m3 (Figure 51, right).  This heuristic revises both the model 

fragment as well as the conceptual quantity q.  The quantity q now has a directional component 

Heuristic vectorizeQty 
 Participants: 
  ?obj Entity 
  ?quant SpatialQuantity 
  ?c-quant ConceptualQuantity 
  ?t ProcessType 
 Constraints: 
  (increasing (?quant ?obj)) 
  (consequence ?t (i- (?quant ?ent) (Rate ?self))) 
  (condition ?t (> (?c-quant ?ent) 0)) 
 Consequences: 
  (isa ?c-quant VectorQuantity) 
  (revise ?t (addParticipant ?d Direction)) 
  (revise ?t (directionalizeQuantity ?quant ?d)) 
  (revise ?t (directionalizeQuantity ?c-quant ?d)) 

ModelFragment m3 
 Participants: 
  ?e Entity 
  ?d Direction 
 Constraints: 
  nil 
 Conditions: 
  (> (q[?d] ?e) 0) 
 Consequences: 
  (> (Rate ?self) 0) 
  (i+ (pos[?d] ?e) (Rate ?self)) 

Figure 51: Left: a heuristic vectorizeQty that transforms a scalar conceptual quantity into a 
vector quantity and revises the according model fragment to take a direction. 

Right: m3, the result of revising m2 (Figure 49, right) with vectorizeQty. 
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such as left or right, and according to model fragment m3, something moves left or right 

when it has q in that direction.  The symbol zero is used to represent the directional component 

when a quantity is not changing. 

8.2.3.1 Ontological properties of conceptual quantities 

We have described the mechanism by which conceptual quantities are revised, but there are 

ontological questions regarding the initial conceptual quantity q.  For instance, does q have a 

spatial extent?  How does it combine with the q of other objects?  How is it acquired or 

consumed?  How does it change its directional component?  We look to the cognitive 

psychology literature for insight. 

Pfundt and Duit (1991) analyzed approximately 2,000 published articles about novice 

misconceptions in the domain of force dynamics.  These illustrate that novices do not generally 

conceive of force as an interaction between two material objects.  The most common 

misconception is that force is a property of a single object.  Chi and colleagues (Chi, 2008; 

Reiner et al., 2000; Chi et al., 1994b) argue that novices often attribute this internal property of 

force with the ontological properties of a substance schema.  The substance schema listed in 

Reiner et al. (2000) contains eleven ontological attributes, though these are not claimed to be 

complete or globally coherent: 

 

1. Substances are pushable (able to push and be pushed). 

2. Substances are frictional (experience “drag” when moving in contact with a surface). 

3. Substances are containable (able to be contained by something). 

4. Substances are consumable (able to be “used up”). 
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5. Substances are locational (have a definite location). 

6. Substances are transitional (able to move or be moved). 

7. Substances are stable (do not spontaneously appear or disappear). 

8. Substance can be of a corpuscular nature (have surface and volume). 

9. Substances are additive (can be combined to increase mass and volume). 

10. Substances are inertial (require a force to accelerate). 

11. Substances are gravity sensitive (fall downward when dropped). 

 

Not all of these attributes are relevant for our system’s conceptual quantity q that mediates 

motion, but we use these guidelines for constraining the properties of conceptual quantities when 

there is any question.  For instance, according to model fragment m2, q is a property of an entity 

and not an abstract property, so it is locational and (in some sense) containable.  Additionally, 

since conceptual quantities must be stable, the system must justify how an object’s q increases 

and decreases.  This is achieved using: (1) processes that describe consumption of quantities over 

time so that q is consumable (see also the “dying away” p-prim in diSessa, 1993) and (2) 

processes that describe the transfer of quantities between objects so that q is transitional. 

If we apply these principles to the directional conceptual quantity q described within model 

fragment m3, an entity has q[left] when it travels leftward, q[right] when it travels 

rightward, and q[zero] when it is still.  This means that other processes affect the direction of 

an object’s q, which in turn affects the object’s position in space.  Without a transfer across 

objects, the sum of an object’s q across directions is constant.  This satisfies the stability 

constraint of the substance schema. 
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In the psychology literature, Ioannides and Vosniadou (2002) are investigating the 

“meaning” of force.  In our model, the meaning of a quantity (e.g., q) is a conjunction of these 

ontological constraints on the quantity, the direct and indirect influences, and model fragments 

(e.g., m2 in Figure 49) that describe the existence and behavior of the quantity within a scenario.  

As quantities and model fragments change, so will the presence and role of q within the 

questionnaire scenarios that we use as testing data. 

Thus far, we have described how the system explains quantity changes within observations 

and revises model fragments and quantities.  However, the system also explains differences in 

behavior between similar observations, using analogy.  This comparative explanation process is 

important for finding qualitative proportionalities between quantities.  We discuss this next. 

8.2.4 Inter-scenario analysis 

After the system explains the quantity changes within a comic graph observation, it retrieves a 

similar previous observation to determine whether there are any discrepancies.  If there are 

variations in the quantity changes between observations (e.g., one object moves further than 

another object) then they must be explained.  Failure to explain these discrepancies results in the 

use of heuristics to revise domain knowledge, as described above.  We call this inter-scenario 

analysis, and we illustrate this with an example. 

Suppose that the comic graph labeled “Scenario A” in Figure 52 has already been explained 

by the simulation.  Suppose also that the simulation has just explained the quantity changes 

within a second comic graph labeled “Scenario B” in Figure 52.  Scenario B is identical to 

Scenario A, except that a smaller ball is kicked a greater distance.  Finally, suppose that both 

scenarios were explained using the same specification of q and model fragment m3 (Figure 51, 



238 
 

 
 

right), as well as process model fragment instances that describe the q[zero] of an object 

transitioning to q[left/right] of the object, and visa-versa, obeying the stability constraint of 

the substance schema. 

After the system explains Scenario B, it uses MAC/FAC to retrieve a similar, previously-

explained scenario.  If the SME normalized similarity score42 between the probe and the previous 

scenario is above a threshold value (we use 0.95 in our simulation), then inter-scenario analysis 

proceeds between the two scenarios.  Suppose that Scenario A is retrieved, and that the SME 

mapping between Scenarios A and B exceeds the similarity threshold. 

Inter-scenario analysis between Scenarios A and B involves explaining why corresponding 

quantities changed differently in Scenario A than they did in Scenario B, if applicable.  For 

                                                 
42 See section 3.4.1 for a description of how this is computed. 

Scenario A Scenario B 

  
Figure 52:  Comic graph scenarios A and B are sufficiently similar 

for inter-scenario analysis. 
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instance, the ball in Scenario B travels a greater distance along the x-axis than the ball in 

Scenario A.  These quantity change variations are detected by analyzing correspondences in the 

SME mapping between Scenarios A and B, several of which are shown in Figure 53.  From these 

correspondences, the system can compute two inequalities, shown in the right column of Figure 

53:  

 

(Area ball-a) > (Area ball-b) 
(Δx[left] ball-a) < (Δx[left] ball-b) 

 

The inequality between quantity changes (Δx[left] ball-a) < (Δx[left] ball-b) 

must be explained.  As above, heuristics are used to revise knowledge to aid in explanation. 

The first task in explaining the quantity change inequality is to derive other inequalities 

between corresponding quantities.  As mentioned above, the movements of ball-a and ball-b 

were explained using model m3 in Figure 51(right).  Since the m3 model fragment instances mfi-

Scenario A formula Scenario B formula Inequality (if applicable) 
foot-a foot-b n/a 
ground-a ground-b n/a 
ball-a ball-b n/a 
mfi-a mfi-b n/a 
(isa mfi-a m3) (isa mfi-b m3) n/a 
(Area ball-a) (Area ball-b) (Area ball-a) > (Area ball-b) 

(Δx[left] ball-a) (Δx[left] ball-b) (Δx[left] ball-a) < (Δx[left] ball-b) 

(q[left] ball-a) (q[left] ball-b) (q[left] ball-a) ? (q[left] ball-b) 

(Rate mfi-a) (Rate mfi-b) (Rate mfi-a) ? (Rate mfi-b) 

(i+ (x-pos[left] ball-a) 
    (Rate mfi-a)) 

(i+ (x-pos[left] ball-b) 
    (Rate mfi-b)) 

n/a 

(> (q[left] ball-a) 0) (> (q[left] ball-b) 0) n/a 
… … … 

Figure 53: Selected analogical correspondences between Scenarios A and B (Figure 52). 
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a and mfi-b of Scenarios A and B correspond (see Figure 53), so do their respective rates, 

(Rate mfi-a) and (Rate mfi-b), and their respective conditions (> (q[left] ball-a) 

0) and (> (q[left] ball-b) 0).  The corresponding conditions are especially important, 

since (1) conditions must hold for the processes mfi-a and mfi-b to be active and (2) assuming 

a closed world, these processes are the only influences of Δx[left] for both balls.  If we 

assume the rates of the processes are the same,43 the variation in Δx[left] between ball-a 

and ball-b is a factor of the (q[left] ball-a) and (q[left] ball-b), which varied the 

duration of these process instances.  This produces the following ordinal relation to describe the 

relative q values in the transition to last frame of the comic graphs: 

 

(q[left] ball-a) < (q[left] ball-b) 

 

The variation in Δx[left] has been explained with an inequality in q[left] values in this 

state, but now the inequality between q[left] values in this state requires an explanation.  This 

will require that the system revises its beliefs about q.  Since q is a conceptual quantity created 

by the system, there are many ways to explain this inequality.  We use the substance schema of 

Reiner et al. (2000) to constrain the system’s explanation.  The following inferences are plausible 

with respect to the substance schema: 

 

1. ball-b has more total q than ball-a in the movement states, but this is consumed 

before the resting state is reached. 

                                                 
43 The system’s explanation of this quantity variation relies on the assumptions the system makes about time.  For 
instance, if we assume the transitions between corresponding frames in Scenarios A and B take equal time, then the 
variation in leftward movement can only be explained by varying rates of change.  If we do not make this 
assumption, we can explain variation of leftward movement with equal rates of change and one process being active 
longer than the other, corresponding process. 
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2. ball-b has more q[left] than ball-a in the movement states, but this transitions 

to q[zero] before the resting state. 

  

Inference (1) is not plausible in our example, since the simulation does not have a model of how 

a greater total amount of the conceptual quantity q is initially acquired by the ball.  In simulation 

trials where the system constructs a model of q transfer prior to this analysis, this is the path 

chosen by the system.  Inference (2) obeys the stability constraint of the substance schema as 

well as the present properties of the conceptual quantity.  As a result, the system must explain 

why ball-b has greater q[left] and less q[zero] in the movement state.  This is done by 

asserting a new qualitative proportionality to another varying quantity.  In this case, the 

inequality (Area ball-a) > (Area ball-b) is used, since it is the only other varying 

quantity.  The system asserts the following statements for entities ?ent and directions ?dir: 

 

if ?dir ≠ zero: 

 (qprop- (q[?dir] ?ent) (Area ?ent)) 

 

(qprop (q[zero] ?ent) (Area ?ent)) 

 

This states that all else being equal, smaller objects have more directional (e.g., left or right) 

q, which propels them further than larger objects.  Larger objects have greater q in the zero 

direction.  If a second quantity, such as the size of the foot, varied in addition to the size of the 

balls, neither would be isolated.  Consequently, either or both might explain the variation in 

Δx[left], and inter-scenario analysis terminates without revising the quantity.  This makes the 
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simulation more conservative when hypothesizing qualitative proportionalities, since it requires 

pairwise quantity variations in isolation. 

After this conceptual quantity is revised by adding the above qualitative proportionality, 

inter-scenario analysis is complete.  When the simulation uses the revised quantity q and the 

associated model fragments to answer the questionnaire, it will assert that entities have exactly 

one q property, and its magnitude is a function of its size.  These answers are consistent with the 

“Internal” meaning of force according to the coding scheme of Ioannides and Vosniadou (2002). 

8.2.5 Retrospective explanation propagates revisions 

We have described how the simulation revises its knowledge when it fails to explain 

observations or when it fails to explain variations between similar observations.  Instead of 

revising a construct (i.e., model fragment or quantity) directly, the system copies it and then 

revises the copy so that the prior construct remains.  The agent then encodes an epistemic 

preference for the new construct over the prior one.  Figure 50 illustrates this copy-revise-prefer 

behavior.  After the revision, quantity changes that were explained with the prior construct retain 

their present explanations, despite the fact that these explanations rely on outdated domain 

knowledge. 

The process of retrospective explanation, described in section 4.7, constructs new 

explanations to replace these outdated explanations.  Retrospective explanation is achieved 

through the following steps in this simulation: 
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1. Find an outdated explanandum (i.e., quantity change) m.  An explanandum is outdated if 

and only if (1) there is a concept-level preference b <c b’ and (2) the preferred 

explanation for m is x, and x uses b and not b’. 

2. Attempt to explain the explanandum with preferred knowledge, using the same 

explanation construction algorithms as above. 

3. Compute preferences over new explanations and previous explanations, using the same 

explanation evaluation algorithms as above. 

4. Map the explanandum to a new, preferred explanation, if applicable. 

5. If the outdated explanandum m still retains its previously preferred explanation, store the 

triple ⟨m, b, b’⟩ so that this process is not later repeated for the same purpose. 

 

Retrospective explanation is an incremental transition from one causal description to another.  

This models the students’ incremental transition to a new understanding of the world.44 

In this simulation, retrospective explanation occurs to completion after each new training 

datum is given to the system.  This means that every local revision to domain knowledge is 

immediately used to explain previous observations. 

8.3 Simulation results 

Here we describe the setup and results of our simulation.  The psychological assumptions and 

justification of our match with student data is addressed in section after this. 

                                                 
44 Following McDermott (1976), this is not to suggest that the simulation is itself “understanding” the phenomena. 
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Figure 54: Changes in the simulation’s meaning of force, using 
Ioannides and Vosniadou’s (2002) student meanings of force. 

We used ten comic graphs as training data, for a total of 58 comic graph frames and 22 

instances of movement.  These were sketched in CogSketch.  The system was also given starting 

knowledge about agency, such that people and their respective body-parts cause their own 

translation.  The system uses this knowledge to explain how a person or body-part (1) starts or 

stops translating or (2) imparts or consumes a conceptual quantity (e.g., q, in the above 

examples) if that quantity causes movement.  Modeling how agency and intentional movement is 

learned is a nontrivial and interesting research problem, but is beyond the scope of this 

simulation. 

For each comic graph used as a training datum, the system: (1) explains all quantity changes 

within the comic graph; (2) retrieves a similar previous comic graph using MAC/FAC, using the 

present one as a probe; (3) performs inter-scenario analysis if the present and previous comic 

graphs have a SME normalized similarity score above 0.95; and (3) performs complete 

retroactive explanation if model fragments or quantities were revised. 

After a comic graph is processed in this manner, the system completes the entire 

questionnaire, half of which is shown in Figure 47.  From the system’s answers, we determine 

(1) the conditions under which a force-like quantity exists, and (2) the effect of factors such as 
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size, height, and other agents on the force-like quantity.  We use the same coding strategy as 

Ioannides & Vosniadou (2002) to determine which meaning of force the system has learned, 

given its answers on the questionnaire.  No knowledge revision occurs during the system’s 

completion of the questionnaire. 

Figure 54 illustrates the transitions in the concept of force across 10 independent trials with 

different comic graph order.  The simulation starts without any process models or quantities to 

represent force, and transitions to the “Internal Force” concept 2/10 times, and a size indifferent 

“Internal Force” model 8/10 times, which was not reported by Ioannides & Vosniadou (2002).  

In these cases, the force-like quantity (e.g., q) was not qualitatively proportional to size.  The rest 

of the transitions follow a similar trajectory to the student data in Figure 46.  Each trial of the 

simulation completes an average of six model fragment revisions and four category revisions of a 

placeholder force-like quantity during its learning. 

8.4 Discussion 

We have simulated the incremental revision of a force-like category over a sequence of 

observations.  As it incorporates new observations, the system occasionally fails to explain (1) 

quantity changes within the observation and (2) why quantity changes vary between similar 

observations.  In response to these anomalous situations, the system minimally and incrementally 

revises its domain knowledge using declarative heuristics.  It then propagates these local 

revisions to other contexts via retrospective explanation. 

Human conceptual change in the domain of force dynamics occurs over a span of years for 

the students in Ioannides and Vosniadou (2002).  This can be inferred from Figure 46, though the 

data at each age group were gathered from different students.  Over these years, students are 
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exposed to a multitude of observations, formal instruction, and physical interaction.  Providing 

this amount of input and a similarly varied workload is beyond the state of the art in cognitive 

simulation.  Consequently, this simulation learns via sketched observations alone, so the set of 

stimuli is smaller and much more refined.  Since the knowledge encoded from CogSketch is not 

as rich as human perception, our simulation relies upon the psychological assumptions stated in 

the CogSketch discussion in Chapter 3.  Before revisiting the hypotheses of this simulation, we 

discuss factors that enabled the simulation to transform its domain knowledge so rapidly.  These 

factors involve the training data and the computational model itself. 

Since comic graphs are already segmented into qualitative states, the system does not have 

to find the often-fuzzy boundaries between physical behaviors.  Furthermore, the sketches 

convey relative changes in position, but not relative changes in velocity, so the system needs not 

differentiate velocity from acceleration, which is difficult for novice students (Dykstra et al., 

1992).  Finally, the comic graphs are sparse, which simplifies the detection of anomalies. Some 

are also highly analogous (see Figure 52), which facilitates inter-scenario analysis. 

Aside from the comic graph stimuli, aspects of the computational model itself accelerate 

learning beyond human performance.  People have many strategies they can use to discredit 

anomalous data (Feltovich et al., 2001), and other tactics to avoid conceptual change, such as 

explaining away, excluding anomalous data from theories, reinterpreting anomalous data to fit 

within a theory, holding data in abeyance, and making partial or incomplete changes (e.g., Chinn 

& Brewer, 1998).  In fact, complete conceptual change is actually a last-resort for children 

(Chinn & Brewer, 1998).  Our system’s sole response to any explanation failure is the revision of 

domain knowledge, followed by exhaustive retrospective explanation.  Our intent in this 

simulation is to model a trajectory of minimal – yet successful – conceptual changes.  While 
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modeling these conceptual change avoidance strategies is beyond the scope of the present 

simulation, it is an interesting opportunity for future work, and we revisit this idea in Chapter 9. 

A final possible cause for the simulation’s accelerated learning is the heuristics used by the 

simulation.  The mechanisms by which students spontaneously revise their domain knowledge 

are unknown.  As discussed in Chapter 2, there is considerable debate regarding how such 

knowledge is even represented and organized.  The heuristics used in this simulation may skip 

intermediate steps, and thereby make larger changes than people spontaneously make to their 

mental models and categories.  Alternatively, the heuristics used in this simulation may revise 

domain knowledge in altogether different fashions than children do upon explanation failure.  

For example, conceiving of force as an interaction between objects (e.g., “Push/Pull” and 

“Acquired & Push/Pull” meanings) may be the result of social interaction and reading (e.g., the 

familiar sentence “A force is push or a pull”) and not of error-based revision. 

The three trajectories (i.e., unique paths through the graph) illustrated in Figure 54 describe 

plausible paths through the human data in Figure 46, supporting the hypothesis that our 

explanation-based framework can simulate human category revision.  The most popular – but 

still incorrect – category of force “Gravity & Other” is not reached by the simulation.  This 

category requires the mention of gravity, which is not learned by the simulation, and is almost 

certainly learned by students through formal instruction and social interaction. 

This simulation supports the hypothesis that compositional model fragments can simulate 

the mental models of the students in this domain.  Compositional models are used here to infer 

the presence of unobservable, force-like quantities within scenarios.  The system infers the 

presence and relative magnitudes of these quantities in a fashion comparable with students, and 
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is able to simulate multiple student misconceptions on the same questionnaire.  This supports the 

knowledge representation hypothesis.  
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Chapter 9: Conclusion 

“Nothing endures but change”  

– Heraclitus 

 

We have described a computational model of conceptual change and used it to simulate results 

from the literature on conceptual change in students in different domains.  Chapter 1 presented 

the claims of the dissertation, an outline of our model, and its psychological assumptions.  

Chapter 2 discussed four existing theories of conceptual change and areas of disagreement 

between them to identify where our model could shed some light.  Chapter 3 reviewed the AI 

techniques used in the computational model, and Chapter 4 presented the computational model 

itself.  The computational model was used to perform four simulations, described in Chapters 5-

8, providing empirical evidence to support the claims of this dissertation. 

This chapter revisits our claims in light of the evidence provided by the simulations.  We 

then discuss related AI systems and compare our computational model to the other theories of 

conceptual change described in Chapter 2.  We close with a discussion of general limitations and 

opportunities for future work. 

9.1 Revisiting the claims 

Here we discuss each claim of this dissertation.  The first claim is about knowledge 

representation: 

 

Claim 1: Compositional qualitative models provide a psychologically plausible 

computational account of human mental models. 
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Claim 1 is not a new idea, since simulating human mental models was an early motivation 

for qualitative modeling in AI (Forbus & Gentner, 1997).   However, the simulations described 

in Chapters 5-8 offer novel evidence in support of this claim.  Since this is a knowledge 

representation claim, it we supported it by (1) observing how people construct explanations and 

solve problems with their mental models from the cognitive science literature and (2) using 

compositional qualitative models to construct the same explanations and solve the same 

problems.  We used qualitative models in all four simulations, to simulate student problem-

solving in three domains: 

 

1. Force dynamics (Chapters 5 and 8) 

2. Astronomy (Chapter 6) 

3. Biology (Chapter 7) 

 

In addition, our system used the qualitative models that it learned to perform different 

problem-solving tasks, with results similar to students: 

 

1. Explaining causal models of a dynamic system (Chapters 6 and 7) 

2. Predicting the next state of a scenario (Chapter 5) 

3. Explaining abstract events in sketched scenarios (Chapter 5) 

4. Explaining hidden mechanisms in sketched scenarios (Chapter 8) 

 

The second claim involves learning by induction: 
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Claim 2: Analogical generalization, as modeled by SAGE, is capable of inducing qualitative 

models that satisfy Claim 1. 

 

Claim 2 is a novel claim, since AI systems have not previously induced qualitative models 

using SAGE.  Chapter 5 supports this claim with empirical evidence by using sketched 

observations as training data, inducing qualitative models from these training data, and then 

using the resulting qualitative models to perform two problem-solving tasks in a fashion 

consistent with human students. 

As we describe in Chapter 5, SAGE does not produce qualitative models directly; rather, 

SAGE produces probabilistic generalizations of the input observations.  The simulation 

transforms these into qualitative models by (1) filtering out low-probability statements and (2) 

creating a qualitative model using the temporal data within the remaining high-probability 

statements.  The resulting model describes the participants, preconditions, causes, and effects of 

events. 

The third claim involves modeling two types of conceptual change: 

 

Claim 3: Human mental model transformation and category revision can both be modeled 

by iteratively (1) constructing explanations and (2) using meta-level reasoning to select 

among competing explanations and revise domain knowledge. 

 

Chapter 4 described how explanations are constructed and how meta-level reasoning decides 

which explanation is preferred, when multiple explanations apply.  When the model replaces its 
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preferred explanation for a phenomenon (e.g., how blood flows from the heart to the body) with 

a new explanation, it will use the beliefs within the new explanation to solve similar problems 

and answer related questions in the future.  This means that replacing a preferred explanation is a 

context-sensitive revision of beliefs.  The simulations in Chapters 6, 7, and 8 exemplify this 

behavior.  In these three simulations, a sequence of these revisions simulate the adoption of new 

causal mechanisms (Chapter 6), the integration of new components into an existing mental 

model (Chapter 7), and the transformation of a category (Chapter 8). 

The third claim also mentions meta-level revision.  In Chapter 8, the system copies and 

revises its domain knowledge when it fails to consistently explain a phenomenon.  By using 

declarative heuristics, the model can estimate the amount of change a heuristic will incur to 

domain knowledge and then choose the one that incurs the least estimated change.  This revision 

operation frees the system from a failure mode, so the system then resumes the above 

explanation construction and explanation evaluation methods. 

The simulation results presented here provide evidence that my model is a plausible account 

of human conceptual change. 

9.2 Related work in AI 

Here we discuss other AI systems that learn about new quantities, causal mechanisms, and causal 

relationships between phenomena.  Only two of the systems we review, INTHELEX and 

ToRQUE2, have been used to simulate human conceptual change.  Since the rest of these 

systems are not cognitive models, we compare them to our model in terms of the knowledge 

representations and algorithms used, since there are relevant overlaps. 
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The Qualitative Learner of Action and Perception (QLAP) (Mugan & Kuipers, 2011) learns 

hierarchical actions from continuous quantities in an environment.  QLAP uses qualitative 

reasoning to discretize continuous quantities into intervals, using the quantities’ landmark values.  

Dynamic Bayesian networks (DBNs) are then used over open intervals and values in each 

quantity space to track contingencies between qualitative values and events in the world.  This is 

useful for learning preconditions for events in a continuous world.  This could provide an 

account for how preconceptions might be learned from experience, but does not account for how 

they are revised by instruction or explanation failures. 

Automated Mathematician (AM) (Lenat & Brown, 1984) was an automated discovery 

system that used heuristics to apply and revise domain knowledge.  AM operated within the 

domain of mathematics, with its concepts represented as small Lisp programs.  The control 

structure involved selecting a mathematical task from the agenda and carrying it out with the 

help of heuristics that activate, extend, and revise AM’s mathematical concepts.  The 

mathematical concepts were then used for solving problems on AM’s agenda.  EURISKO 

(Lenat, 1983) improved upon AM by using a more constrained frame-based representation and 

allowing heuristics to modify other heuristics.  This provided a more sophisticated meta-level, 

where components influenced each other in addition to the mathematical concepts.  Both AM 

and EURISKO contained structures designed to control and mutate the object-level concepts that 

did the primary domain-level reasoning.  Also, both systems relied on humans to evaluate the 

intermediate products of reasoning, where our model learns autonomously from instruction and 

observation.  Additionally, our model incorporates other types of reasoning such as analogy, 

abduction, and qualitative reasoning to learn in scientific domains. 
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Meta-AQUA (Ram & Cox, 1994; Cox & Ram, 1999) is a story understanding system that 

learns from expectation failures.  The system monitors its progress in explaining events within 

stories.  When explanation fails, it triggers meta-level control to set knowledge goals such as 

reorganizing hierarchies and acquiring new information.  It does this using two general 

representations for metareasoning: (1) Meta-XPs, which describe the system’s goal-directed 

reasoning, and (2) Introspective Meta-XPs, which describe a failure in reasoning, rationale for 

the failure, the knowledge goals to solve the failure, and algorithms for satisfying the knowledge 

goals.  Like our category revision simulation in Chapter 8, Meta-AQUA uses metareasoning in 

reaction to failure by identifying deficits in knowledge and proposing repairs. 

ECHO (Thagard, 2000) is a connectionist model that uses constraint satisfaction to judge 

hypotheses by their explanatory coherence.  This is designed to model how people might revise 

their beliefs, given the propositions and justification structure in their working memory.  ECHO 

operates at the level of propositions, creating excitatory and inhibitory links between consistent 

and inconsistent propositions, respectively.  ECHO uses a winner-take-all network, which, while 

computationally powerful, means that it cannot distinguish between absence evidence for 

competing propositions versus balanced conflicting evidence for them.  ECHO does not generate 

its own theories or justification structure, as our system does. 

ACCEPTER (Leake, 1992; Schank et al., 1994) is a case-based reasoning system that 

detects anomalies within a situation and resolves them by constructing explanations.  After 

detecting an anomaly, ACCEPTER encodes an anomaly characterization that sets knowledge 

goals and helps retrieve relevant explanation patterns (Schank, 1986) from a library thereof.  It 

then evaluates candidate explanation patterns with respect to whether it explains the anomaly, 

and whether it is plausible. For instance, explaining the Challenger explosion as a Russian 
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sabotage is implausible because Russia would not risk a dangerous confrontation with the United 

States.  As in our model, constructing and evaluating explanations is central to ACCEPTER; 

however, our system also replaces explanations with preferred ones to perform belief revision. 

One problem of case-based explanation systems such as ACCEPTER is that retrieved cases 

and explanation patterns may not apply to the present context.  When TWEAKER (Schank et al., 

1994) retrieves an explanation that is a close – but not perfect – match to the current problem, it 

uses adaptation strategies to build variations of the explanation.  These adaptations include 

replacing an agent, generalizing or specifying slot-fillers, and so-forth.  TWEAKER can also use 

strategy selection to choose between possible strategies, which helps guide search through a 

large explanation search space.  Our category revision simulation in Chapter 8 is similar to 

TWEAKER in that it uses revision heuristics as its adaptation strategies, and it scores and sorts 

heuristics as its strategy selection. 

INTHELEX (Esposito et al., 2000) is an incremental theory revision program that has 

modeled conceptual change as supervised learning.  It implements belief revision as theory 

refinement, so it minimally revises its logical theories whenever it encounters an inconsistency.  

INTHELEX is capable of learning several intuitive theories of force from observations, but it has 

not simulated the transition from one intuitive theory to another.  The transition between intuitive 

theories (e.g., in Chapter 8) is a central principle for simulating conceptual change, so while 

INTHELEX may simulate how intuitive theories are acquired, it does not simulate conceptual 

change at the scale proposed in this dissertation. 

The ToRQUE and ToRQUE2 systems (Griffith, Nersessian, & Goel, 1996; 2000) solve 

problems using structure-behavior-function (SBF) models.  To solve a new target problem, 

ToRQUE2 retrieves analogs to the present problem, and then applies transformations to the 
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analog or target problems to reduce their differences.  This generates additional SBF models and 

generates a solution to the target problem using transformed domain knowledge.  ToRQUE2 has 

simulated how scientists solve problems during think-aloud protocols, where the scientists 

change their understanding throughout the problem-solving session.  For instance, a scientist 

initially believes that the stretch of a spring is due to its flexibility, and then realizes that a spring 

maintains constant slope when stretched through torsion in the spring’s wire.  The authors 

conclude that this spring example is “an instance of highly creative problem solving leading to 

conceptual change” (p. 1).  Since ToRQUE2 revises domain knowledge to overcome failures in 

problem-solving, and the new spring model conflicts with the previous one, this is a type of 

mental model transformation.  By comparison, conceptual change is triggered differently in our 

cognitive model, and our model searches for consistent, low-complexity models that fit multiple 

observations (e.g., Chicago’s and Australia’s seasons, in Chapter 6). 

Explanation-Based Learning (EBL) systems (DeJong, 1993) learn by creating explanations 

from existing knowledge.  Many EBL systems learn by chunking explanation structure into a 

single rule (e.g., Laird et al., 1987).  Chunking speeds up future reasoning by avoiding extra 

instantiations when a macro-level rule exists, but it does not change the deductive closure of the 

knowledge base, and therefore cannot model the repair of incorrect knowledge.  Other systems 

use explanations to repair knowledge.  For example (Winston and Rao, 1990) uses explanations 

to repair error-prone classification criteria, where explanations are trees of if-then rules over 

concept features.  Upon misclassification, the system analyzes its explanations and creates censor 

rules to prevent future misclassification.  Similarly, our model detects inconsistencies within and 

across explanations in its analysis, but it encodes epistemic preferences (rather than censor rules) 

to resolve these issues. 
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Other systems construct explanations using abduction to extend or revise their domain 

knowledge.  Molineaux et al. (2011) describes a system that determines the causes of plan 

failures through abduction.  Abduction increases the agent’s knowledge of hidden variables and 

consequently improves the performance of planning in partially-observable environments.  

Similarly, ACCEL (Ng & Mooney, 1992) creates multiple explanations via abduction, and it 

uses simplicity and set-coverage metrics to determine which is best.  When performing diagnosis 

of dynamic systems, ACCEL makes assumptions about the state of components (e.g., a 

component is abnormal or in a known fault mode), and minimizes the number of assumptions 

used.  By contrast, when our system evaluates explanations, some assumptions (e.g., quantity 

changes) are more expensive than others, and other artifacts (e.g., contradictions, model 

fragments, and model fragment instances) incur costs. 

Other systems reason with abduction under uncertainty while still using structured relational 

knowledge.  Bayesian Abductive Logic Programs (Raghavan & Mooney, 2010) and Markov 

Logic Networks (Richardson & Domingos, 2006; Singla & Mooney, 2011) have been used for 

these purposes.  Uncertainty is an important consideration for reasoning about psychological 

causality (e.g., recognizing an agent’s intent) and for reasoning about physical phenomena in the 

absence of mechanism-based knowledge.  In this thesis we are specifically concerned with 

abduction using mechanism-based knowledge, so probability distributions are not as central as 

for other tasks and domains.  That said, probabilities might represent the agent’s purported 

likelihood of a given belief or model fragment in one of the domains simulated here, which could 

direct the search for explanations.  We revisit this idea below.   

Previous research in AI has produced postulates for belief revision in response to 

observations.  The AGM postulates (Alchourròn et al., 1985) describe properties of rational 
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revision operations for expansion, revision, and contraction of propositional beliefs within a 

deductively-closed knowledge base.  Katsuno and Mendelzon’s (1991) theorem shows that these 

postulates can be satisfied by a revision mechanism based on total pre-orders over prospective 

KB interpretations.  Like these approaches, our conceptual change model computes total pre-

orders over belief sets, but our system is concerned with consistency within and across preferred 

explanations rather than within the entire KB.  Further, since our model has an explanatory basis, 

it uses truth maintenance methods (Forbus & de Kleer, 1993) to track the justification structure 

and assumptions supporting its beliefs. 

9.3 Comparison to other theories of conceptual change 

Our computational model shares some psychological assumptions with individual theories of 

conceptual change discussed in Chapter 2.  We review important overlaps and disagreements 

with each theory, citing examples from our simulations to illustrate. 

9.3.1 Knowledge in pieces 

Like the knowledge in pieces perspective (diSessa, 1988; 1993; diSessa et al., 2004), our 

computational model assumes that domain knowledge is – at some level – stored as individual 

elements.  These elements are combined into larger aggregates to predict and explain 

phenomena, and can then be recombined into new constructs to accommodate new information.  

Additionally, when new information is encountered via observation or formal instruction, the 

new information coexists with the previous elements, even when they are mutually incoherent or 

inconsistent. 
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Our theory diverges from knowledge in pieces regarding the structures that organize these 

domain knowledge elements and the representation of the elements themselves.  In our model, 

explanations are persistent structures that aggregate domain knowledge elements.  The 

knowledge in preferred explanations is reused to explain new observations and solve new 

problems.  Belief revision is performed by revising which explanations are preferred, which 

thereby affects future reuse of knowledge.  By contrast, knowledge in pieces assumes a set of 

structured cueing priorities that activate these elements in working memory, based on how these 

elements were previously coordinated (diSessa, 1993).  Belief revision is achieved by altering 

these priorities.  Additionally, knowledge in pieces assumes several types of domain knowledge, 

including p-prims, propositional beliefs, causal nets, and coordination classes.  By contrast, our 

model uses only propositional beliefs and model fragments. 

9.3.2 Carey’s theory 

Like Carey’s (2009) theory of conceptual change, our computational model assumes that a single 

category such as force can have multiple, incommensurable meanings.  The student has 

simultaneous access to both of these meanings, but they are contextualized.  In both Carey’s 

theory and our model, conceptual change is driven by these category-level conflicts, but in our 

model, conceptual change is also driven other explanatory inconsistencies and preferences.  Also 

like Carey’s theory, our computational model relies on the processes of analogy, abduction, and 

model-based reasoning to achieve conceptual change.   

Our model differs from Carey’s theory on how knowledge is contextualized.  Carey (2009) 

assumes that new conceptual systems are established to store incommensurable categories, and 

that analogy, abduction, and model-based thought experiments add causal structure to these new 
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conceptual systems.  Our model’s knowledge is contextualized at the explanation level, so that 

two phenomena may be explained using mutually incoherent or inconsistent explanations.  When 

our model finds contradictions across preferred explanations, these are resolved locally, to 

increase the coherence between these explanations.  Thus, our model adopts new information 

and revises its explanations to improve coherence (e.g., by reducing cost, in Chapter 6), but it 

does not strongly enforce coherence in a discrete conceptual system. 

9.3.3 Chi’s categorical shift 

Like Chi’s (2008; 2000) theory of conceptual change and mental model transformation, our 

computational model relies on self-directed explanation to integrate new information.  Chi’s 

(2008) account of mental model transformation involves a series of belief-level refutations, 

which cause belief revision and the adoption of instructional material.  These belief revisions 

change the structure, assumptions, and predictions of a mental model.  In our system, the model 

of a system such as the human circulatory system is comprised of model fragments and 

propositional beliefs.  As in Chi’s theory, revising propositional beliefs can change the structure 

of this model. 

Our model differs from Chi’s theory in how it revises information.  Chi (2008) assumes that 

categories are directly shifted across ontological categories, e.g., the category “force” is shifted 

from a “substance” to a “constraint-based interaction.”  The category is only shifted once the 

target category (i.e., “constraint-based interaction”) is understood.  The number of resulting 

changes to ontological properties and the unfamiliarity of the target category both increase the 

difficulty of the change.  By contrast, the simulation in Chapter 8 uses heuristics to revise the 

properties of a category, and the new and old categories coexist, albeit in different explanations.  
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The system incrementally transitions to the new category by a process of retrospective 

explanation. 

9.3.4 Vosniadou’s framework theory 

Vosniadou’s (1994; 2002; 2007) theory of conceptual change assumes that students have a 

generally coherent framework theory.  The framework theory consists of specific theories about 

phenomena, mental models of systems and objects, and presupposition beliefs that constrain the 

theories and mental models within the framework.  Our model has similar interdependencies 

between constructs, but these are soft constraints.  For example, in Chapter 6, the system was 

given the credible information that Australia and Chicago experience opposite seasons at the 

same time.  This information in adopted domain knowledge constrained the explanations of 

Australia’s and Chicago’s seasons.  In this manner, credible beliefs in adopted domain 

knowledge are analogous to presuppositions, and specific theories are analogous to explanations. 

One important difference between Vosniadou’s theory and our model is that Vosniadou’s 

theory assumes a generally coherent framework theory, where our model utilizes local 

explanatory structures.  In our model, coherence and consistency are secondary, macro-level 

phenomena; they are not hard requirements on the system of beliefs.  Our model holds internally-

consistent, globally-inconsistent explanations in memory simultaneously and then increases 

global coherence using cost-based belief revision (e.g., in the seasons simulation in Chapter 6) 

and retrospective explanation (e.g., in the simulations in Chapters 7 and 8). 

Like Vosniadou’s theory, our model makes the minimal change to categories such as force 

(e.g., in Chapter 8) to resolve contradictions.  Importantly, the prior category of force ceases to 

exist in Vosniadou’s framework theory because it is inconsistent with the new version of the 
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category.  Conversely, our model retains the prior category and encodes a preference for the 

revised version.  It then incrementally transitions to it via retrospective explanation, when 

possible (e.g., in Chapter 8).  This means that in our model, the agent’s knowledge is not globally 

coherent or even globally consistent.  The processes of cost-based belief revision (Chapter 6) and 

preference-based retrospective explanation (Chapters 7 and 8) make local, incremental repairs to 

improve adopt preferred knowledge and reduce complexity. 

9.3.5 Novel aspects of our model as a theory of conceptual change 

As a theory of human conceptual change, our model relies more heavily on the processes of 

explanation (e.g., Chapters 6-8) and comparison (e.g., Chapters 5 and 8) than these other theories 

of conceptual change.  As discussed in Chapter 1, our model assumes that explanations are 

persistent structures that organize domain knowledge.  Further, it assumes that phenomena are 

associated with their preferred explanation in memory, so that people can retrieve a previously-

explained observation and use its explanation – or the knowledge therein – to explain a new 

observation using first principles reasoning.  The assumption that people retain the complete 

structure of explanations is probably too strong, and we discuss opportunities for relaxing this 

assumption below. 

In the theories of Chi, Carey and Vosniadou, we can point to a “completed” state of 

conceptual change.  Consider the following examples of completing conceptual change: 

 

• In Chi’s theory, consider a student who conceives of “force” as a type of “substance.”  

She learns a target category such as “constraint-based interaction” (Chi et al., 1994a; 
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Chi, 2008), and then shifts the concept of “force” to become a subordinate of this target 

category.   

• In Carey’s theory, consider a student who has mistaken knowledge of “force” and 

“mass” concepts.  During formal instruction, a new conceptual system is established to 

store new categories of “force” and “mass” that are incommensurable with existing 

categories of the same name.  Instruction provides the relational structure between these 

new symbols, and modeling processes provides and causal structure for the new 

conceptual system. 

• In Vosniadou’s theory, consider that a student believes the earth is flat, like a pancake.  

She revises set of presuppositions are about the earth, and now conceives of it as an 

astronomical object.  This means that objects on the “sides” and “bottom” of the earth do 

not fall off.  This alters the constraints on her mental models of the earth, so she revises 

her mental model of the earth to be a sphere, with people living on the “sides” and 

“bottom” as well. 

 

Is there a similar absolutely “completed” narrative for our model?  It seems unlikely.  To 

illustrate, suppose that our model has learned and used a category of force similar to the 

“Internal” meaning of force (see Chapter 8) to explain many, diverse, phenomena.  If it copies 

and revises this category of force, it can quickly use the revised version to retrospectively explain 

a very small but salient subset of her experiences.  If these experiences are the ones most 

frequently retrieved for future learning and question answering, the new category and model 

fragments will be propagated.  However, a completed conceptual change would require that 

every observation explained with the prior category is retrospectively explained with the new 
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category. This seems unlikely. However, it does capture an important property of human mental 

model reasoning, that people do indeed have multiple, inconsistent models for the same 

phenomena in different circumstances (Collins & Gentner, 1987). 

The absence of a “completed” state in our model means that it does not simulate a strong 

“gestalt switch” (Kuhn, 1962) between representations.  While we have modeled revolutionary 

local changes to sets of explanations (Chapter 6) or representations (Chapter 8), the propagation 

and belief revision across contexts is an incremental, evolutionary process.  This propagation 

process is more amenable to Toulmin’s (1972) model of conceptual change in science, which 

abandons a discrete notion of “before and after.”  

9.4 Future work and limitations 

Conceptual change is vast.  In terms of time, psychological conceptual change in a domain such 

as force dynamics can take place over at least a decade (e.g., Ioannides and Vosniadou, 2002) 

and misconceptions are often retained despite years of formal instruction (Clement, 1982).  In 

terms of information, human conceptual change is promoted by specialized curricula (e.g., 

Brown, 1994) and hindered by years of using productive misconceptions (Smith, diSessa, and 

Roschelle, 1993).  In terms of cognitive processes, conceptual change is driven by model-based 

reasoning (Nersessian, 2007; Griffith et al., 2000), analogy (Brown & Clement, 1989; Gentner et 

al., 1997; Carey, 2009), anomaly (Chinn & Brewer, 1998; Posner et al., 1982), explanation 

construction (Chi et al., 1994a; Sherin et al., 2012), social factors (Pintrich, Marx, & Boyle, 

1993), and belief refutation (Chi, 2000; 2008).  There is much to be done to model the full range 

of this phenomenon. 



265 
 

 
 

Our model may be extended to capture more aspects of psychological conceptual change 

along all of these dimensions.  Each opportunity for extension represents a current limitation in 

our model, so we discuss these in tandem.  We also discuss how a model of conceptual change 

might be practically applied in other software systems. 

9.4.1 Simulating over larger timescales 

While the simulations presented here capture the qualitative characteristics and trajectories of 

psychological conceptual change, the changes occur over many orders of magnitude fewer 

stimuli than students.  To capture a humanlike timescale of conceptual change, we need to adjust 

(1) the system’s response to explanation failure and (2) the number and nature of training data. 

Our model is more proactive than students in terms of changing its knowledge.  One reason 

for this is that people have many responses to anomalous data besides revising their domain 

knowledge.  Several anomaly-response actions have been identified in Chinn & Brewer (1993; 

1998), such as ignoring anomalous data, holding the data in abeyance, exempting the data from a 

theory’s applicability, and re-explaining the data to fit within a theory.  Feltovich et al. (2001) 

identifies additional tactics people employ to prevent making changes to domain knowledge.  

Implementing additional strategies for explanation failure will slow the rate of conceptual change 

in simulation.  Making these decisions requires access to metaknowledge about the to-be-

changed beliefs, much of which is already available in the explanation-based network. 45  

Modeling conservatism in revising domain knowledge can help us understand the factors that 

                                                 
45 Some relevant metaknowledge already included in the model: (1) the number of (preferred) explanations 
supported by a belief; (2) the ratio of preferred explanations to non-preferred explanations supported by a belief; (3) 
the alternate explanations for explanandums; (4) concept-level preferences between beliefs and model fragments; 
and (5) the conditional probability of using some belief in an explanation given another belief is also used. 
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make misconceptions resilient, and it might have a practical benefit of helping cognitive systems 

avoid unnecessary computation.  

Another reason why conceptual change takes much longer in people is that people must sift 

the relevant from the irrelevant, and deal with incomplete and noisy information. The training 

data in Chapters 5 and 8 are automatically encoded from comic graphs, which we believe is an 

important first step in simulating conceptual change over larger timescales; even so, the stimuli 

are sparser than observations in the real world.  All else being equal, adding extraneous entities 

and relations to the training data will make analogical retrieval less effective and delay the 

discovery of qualitative proportionalities via analogy (e.g., in Chapter 8), which will slow the 

rate of learning.  Additionally, the comic graphs segment each observation into meaningful 

qualitative states, where the real world is continuous.  Since the system derives quantity changes 

from these states rather than observing them directly, it does not have to differentiate quantities 

such as speed, velocity, and acceleration, which is difficult for novice students (Dykstra et al., 

1992).  Using a 3D physics engine as a learning environment (e.g., Mugan and Kuipers, 2010) is 

a promising direction for providing more realistic stimuli, though sparseness is still an issue. 

Memory retrieval might also contribute to the duration of human conceptual change.  In our 

model, changes are propagated by (1) encountering a new scenario that needs explaining, (2) 

retrieving previous, similar scenarios from memory and then (3) using the models and categories 

from the previous explanations to solve a new problem.  Since people are most often reminded of 

literally similar phenomena (Forbus, Gentner, and Law, 1995), they might fail to reuse models 

and categories to explain entire classes of relevant – but not literally similar – a phenomena.  

This would produce tightly-contextualized mental models, as is evident in Collins and Gentner’s 

(1987) study of novice mental models of evaporation and diSessa et al.’s (2004) study of novice 
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mental models of force.  As a result, when there are more analogs in memory, mental models 

could become more tightly contextualized, and conceptual change might become more difficult. 

A final consideration for the timescale of conceptual change is that presently, our 

simulations perform conceptual change in isolation.  If the agent had other operations and 

incoming observations to attend to, then it could not dedicate as much time to retrospective 

explanation operations.  This means that a greater share of its observations would be explained 

using outdated knowledge, all else being equal.  This would ultimately increase the likelihood 

that outdated knowledge gets reused and propagated, delaying the rate of change. 

9.4.2 Improving explanation construction 

Our model considers more possibilities than people seem to consider when it constructs 

explanations.  For instance, in one of the simulation trials in Chapter 7, the system constructs 16 

distinct explanations for why Chicago’s seasons change.  It then evaluates each explanation and 

chooses the explanation that the student gives in the interview transcript.  However, the 

corresponding student in the study seems to incrementally generate a single explanation for 

Chicago’s seasons over several minutes.   

One solution to this problem is to turn our abductive model formulation algorithm into an 

incremental beam search.  This would mean that as it back-chains and instantiates model 

fragments, the algorithm only considers the lowest cost (i.e., simplest or most probable) 

alternative that it has not yet considered.  This would construct a single explanation, but the 

problem of estimating which path is lowest cost is difficult without looking ahead.  Another idea 

for focusing search is to use other explanations to guide the search for a new explanation: if 

other, preferred explanations tend to chain from model fragment A to model fragment B over 
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other alternatives, do the same in this case.  Alternatively, the system could apply the old 

explanation via analogical mapping and inference.  Since analogical inference is not necessarily 

sound, the system could perform focused abductive reasoning to fill in gaps in justification 

structure that are not inferred. 

Another solution is to keep the same model formulation algorithm and implement a greedy 

walk through the resulting justification structure to only reify a single well-founded explanation 

at a time.  This back-loads the work, since when the system needs to perform belief revision, it 

will have to consider alternative paths through justification structure. 

9.4.3 Improving explanation evaluation 

We have described two means of computing preferences between explanations: cost functions 

and rules.  However, these are only as effective as the cost bases and the contents of the rules, 

respectively.  At present, we do not believe that either of these is complete.  One gap in our cost 

function is that it only penalizes for inclusion of artifacts such as contradictions and assumptions, 

but it does not penalize for omission of beliefs within an explanation.  For example, a student 

might be confident that the tilt of the earth is related to the changing of the seasons, but unsure of 

the specific mechanics (e.g., Sherin et al., 2012).  Consequently, any explanation the student 

constructs that omits the earth’s tilt should be penalized.  This might be simulated by encoding a 

metaknowledge relation to conceptually associate the belief that the earth has a tilted axis with 

the belief that the seasons change. 

Rules and cost functions might also be extended to capture other psychological explanatory 

virtues (Lombrozo, 2011).  For instance, we can compute the conditional probability of multiple 

inferences to determine an explanation’s perceived probability.  Other explanatory virtues 
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include the diversity of knowledge within an explanation, scope, fruitfulness, goal appeal, and fit 

within a narrative structure.  Some of these may be computable based on the metaknowledge in 

the network structure, while others, such as narrative structure, might require comparison to 

other explanations and generalizations. 

9.4.4 Other types of agency 

Right now, our system explains quantity changing using knowledge of physical mechanisms, but 

physical mechanisms are only type of causality.  Dennett (1987) and Keil & Lockhart (1999) 

identify three main types of causality: (1) mechanical, which we address here; (2) intentional; 

and (3) teleology/design/function.  Most adults explain why a boat floats via mechanical 

causality, using knowledge of density and buoyancy.   Piaget (1930) found that children 

frequently ascribe intentions (e.g., the boat doesn’t want to sink) or teleology (e.g., it floats so we 

can ride on top of the water) to physical situations.  This results in anthropocentric finalism, 

where natural phenomena are explained relative to their function for humans, or animism, where 

nonliving things are assigned lives and intentions.  Having the system learn when to use which 

agency, e.g., by contextualizing and reusing them by similarity or by using modeling 

assumptions (discussed below), is an interesting opportunity to model these aspects of cognitive 

development as conceptual changes.  

For example, it is possible that the two students in Chapter 7 who were not modeled by our 

simulation arrived at their final model using teleological explanation.  Recall that the two 

students who were not simulated in Chapter 7 were in the “prompted” condition, where students 

explained to themselves while reading.  Both used the incorrect “single loop (lung)” model of the 

circulatory system at the posttest, where blood flows from the heart, through the lungs, to the 
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body, and back.  These students generated erroneous components within their mental models 

through self-explanation.  More specifically, they might have (1) understood that the function of 

the lungs is to oxygenate the blood for eventual delivery to the body and (2) inferred the 

structure of the circulatory system by attending to this lung function. 

9.4.5 Taking analogy further 

In Chi et al. (1994), students made spontaneous analogies such as “the septum [of the heart] is 

like a wall that divides the two parts” when explaining textbook material.  While our system uses 

analogy to retrieve similar examples and infer qualitative proportionalities (Chapter 8), it does 

not make spontaneous analogies to transfer knowledge across domains.  Analogical inference is a 

powerful strategy worth incorporating into our model of explanation construction.  We can 

sketch this idea very generally.  As new information (e.g., about the septum dividing the sides of 

the heart) is incorporated via reading, it can be used as a probe to MAC/FAC, which can retrieve 

similar concepts (e.g., a wall dividing two spaces).  The SME mapping between the new and 

existing concepts produces candidate inferences, which can elaborate the new material with 

respect to surface characteristics, function, and causal structure.  As mentioned in Chapter 3, 

analogical inferences might not be deductively valid, so this might produce additional 

misconceptions (Spiro et al 1989). 

When analogies are communicated through instruction or text, they have the capability to 

foster conceptual change (Brown, 1994; Gentner et al., 1997; Vosniadou et al., 2007).  These are 

important considerations for extending the system further.  For example, bridging analogies 

(Brown & Clement, 1989) can be used to facilitate the transfer of knowledge from a correct base 

scenario (e.g., an outstretched hand exerts an upward force on a book at rest on its surface) to a 
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flawed target scenario (e.g., a table does not exert an upward force on a book at rest on its 

surface).  Through a sequence of bridging analogies, such as a book on a spring, a book on a 

mattress, and a book on a pliable board, beliefs are imported into the target scenario.  This 

permits the construction of new explanations that can replace the old, flawed explanations.  Since 

analogical mapping and transfer are built into Companions cognitive architecture, this is a 

reasonable next step. 

9.4.6 Accruing domain knowledge 

The simulations in Chapters 5 and 8 acquire model fragments by induction and heuristics, 

respectively.  By contrast, the simulations in Chapters 6 and 7 start with hand-coded model 

fragments, based on pretests, posttests, and interview transcripts with students.  In these 

simulations, we did not model how the initial qualitative models of contained fluid, fluid flow, 

fluid enrichment, astronomical heating, astronomical orbit, and so-forth, are acquired by the 

students.  Presumably, people learn about these processes and relationships by some combination 

of interaction, reading, and observation, and hand-coding these representations is not good 

practice for cognitive modeling in the long term.  A more ideal solution is to automatically 

encode the initial knowledge of a student using a natural language understanding (NLU) system 

with deep semantic interpretation (e.g., Tomai & Forbus, 2009) to analyze an interview transcript 

in order to automatically construct the initial set of model fragments.  

Acquiring new qualitative model fragments from text is an unsolved problem, but there have 

been advances in deriving QP theory interpretations from natural language (Kuehne, 2004), 

which is an important component of learning reusable models.  
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Figure 55: Using SAGE to cluster explanandums so that one explanation can 

justify multiple observations that are close analogs of one another.  

9.4.7 Storing explanations 

Preferred explanations are central organizing structures in our model, so they persist over time.  

Explanations that are not preferred also persist over time in our model because they might 

eventually become preferred through a belief revision process, as in Chapter 7.  Explanations are 

very compact46 in our system, but the justification structure requires considerably more storage.  

We did not encounter a performance degradation or storage bottleneck due to the algorithms and 

explanation-based knowledge organization described here, but problems could arise if we 

imagine a lifetime of experience and learning.  These are important considerations for cognitive 

modeling as well as for performance over time. 

Storing the justification structure for all of the explanations in our system saves 

computation, but it creates a potential storage bottleneck.  We could feasibly store each 

explanation as ⟨B, M⟩, and re-derive the justification structure when necessary using the 

explanation construction algorithm over the beliefs and model fragments in B alone. This would 

constrain the search for explanations to only the beliefs and model fragments within the previous 
                                                 

46 Each explanation ⟨J, B, M⟩ is lightweight because the set of beliefs B and explanandums M are determinable based 
on the set of justifications J.  Consequently, the storage requirement for each explanation includes a symbol for itself 
and a set of symbols indicating its justifications. 
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explanation.  This relaxes the psychological assumption that people retain all of the justifications 

for their beliefs, but it still assumes that people retain their preferred explanations. 

9.4.8 Clustering explanandums 

In addition to retaining its preferred explanations, the system retains its preferred explanation for 

each explanandum.  This means that whenever a new phenomenon is explained, a preferred 

explanation is associated with that exact phenomenon in memory. As explanandums are 

encountered and explained, this may become intractable, so this it might be an unrealistic 

psychological assumption.  One way to relax this assumption is to (1) use analogical 

generalization to cluster explanandums using unsupervised learning and then (2) explain each 

generalization.  This is illustrated in Figure 55. 

This saves space as well as computation.  For instance, consider that the agent must explain 

why a ball rolls to the left after being kicked, and it has a SAGE generalization describing 

examples of this very phenomenon.  If the generalization has already been explained by some 

explanation x, then no first-principles reasoning has to occur to explain the ball rolling to the left 

– the agent merely has to construct an analogical mapping to the generalization and ensure that 

the generalization’s explanation x holds on the new explanandum.  This means that the system 

would only generate new explanations if it encounters an explanandum that is not structurally 

similar to a previous generalization or explanandum. 

This idea of generalized explanandums is similar to the idea of storing prototype histories 

(Forbus & Gentner, 1986) which describe generalizations of phenomena occurring over time.  

We have demonstrated in (Friedman and Forbus, 2008) that SAGE can learn these from 

examples, so it is a reasonable optimization. 
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9.4.9 Proactivity 

These simulations perform conceptual change as a result of observing the world and receiving 

instructional material.  This does not capture the more active aspects of human learning, such as 

asking questions, planning, experimenting, and teaching others.  User interaction and user 

modeling are central goals of the Companions cognitive architecture (Forbus et al., 2009) within 

which this model is implemented, so progress is being made on several of these social interaction 

fronts.  In terms of experimentation, the present model provides some support for active learning.  

For example, provided the hypothesis the distance a box slides is inversely proportional to its 

size, the system might test this hypothesis by retrieving previous example, increasing the size of 

the object, and requesting a training datum of the modified observation.  Provided this new, 

solicited observation, the system could detect and resolve explanation failures as already 

described in Chapter 8. 

9.4.10 Applying the model of conceptual change 

The model of conceptual change presented here might be practically applied within intelligent 

tutoring systems (ITS; e.g. Koedinger et al., 1997).  ITSs automatically deliver customized 

feedback to a student based on the student’s performance.  They often include a task model to 

represent expert knowledge and a student model to track student knowledge.  Both are crucial for 

diagnosing student misconceptions, tracking progress, and selecting new problems to maximize 

learning.  Our computational model of conceptual change uses a single knowledge representation 

strategy to represent student misconceptions and correct scientific concepts in several scientific 

domains, including dynamics, biology, and astronomy.  Consequently, the model might 

ultimately be integrated into ITSs to (1) represent an extendable library of student knowledge, 
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(2) discover a student’s mental models using active learning in a tutoring session, (3) find 

inconsistencies in a student’s mental models via abduction and qualitative simulation, and (4) 

guide the student through a curriculum to confront and remedy the inconsistencies according to a 

simulation of conceptual change using his or her mental models.  This requires substantial 

additional work, but progress in using compositional modeling for tutoring systems has been 

made by de Koning et al. (2000) and others. It could lead to Socratic tutors that have human-like 

flexibility (e.g., Stevens & Collins, 1977).  
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Appendix 

 

Definitions 

We define several terms in the below table for ease of reference and clarity.  Since we are 

concerned with learning over time, we use the term “memory” to refer to long-term memory, 

unless otherwise specified. 

 

Term/Symbol Definition 

belief A proposition represented as a relation reln and at least one 

arguments {a0, …, an}, written as (reln a0 … an).   

model fragment belief A belief referring to the existence of a model fragment m, of the 

form (isa m ModelFragment) 

scenario microtheory A microtheory that includes beliefs and model fragments.  Each 

scenario microtheory represents information gathered via 

observation, instruction, or other type of interaction. 

� = {��, … , ��} The domain knowledge microtheory, which contains beliefs that 

can be believed regardless of whether they are used in an 

explanation.  This includes explanandums, model fragment 

beliefs, and other beliefs from observation and instruction.  
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Inherits all beliefs from all scenario microtheories. 

�� = {��, … , ��} ⊆ � The adopted domain knowledge microtheory is the subset of the 

domain knowledge microtheory that is presently believed by the 

agent.  For example, the agent may have the propositional belief 

“the heart oxygenates the blood” in � and not in ��.  This 

permits the agent to reason about a belief’s consequences without 

believing it. 

explanandum A phenomenon that requires an explanation,47 represented as a set 

m of one or more beliefs {��, … , ��}.  In our simulations, these 

range from sets of multiple beliefs (e.g., describing flood flowing 

from the heart to the body in Chapter 7) or sets of single beliefs 

(e.g., describing quantity changes in Chapter 8).  Each 

explanandum is believed in �. 

� = {��, … , ��} The set of all explanandums in the agent’s memory. 

� = {��, … , ��} The provisional belief microtheory, containing beliefs that are 

either assumed or inferred from other knowledge.   Beliefs in this 

microtheory are only believed if they are in an explanation that is 

adopted by the agent. 

justification Rationale for belief.  Includes rule-based inferences, model 

                                                 
47 The term “explanandum” has been used to describe a phenomenon requiring an explanation.  The explanandum is 
typically the subject of a why question rather than a what question (Hempel & Oppenheim, 1948). 
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fragment instantiations, model fragment activations, and other 

rationale.  Each justification j has a set of antecedent beliefs 

�����(�) and a set of consequence beliefs �������(�), such that 

the conjunction of �����(�) is sufficient to believe �������(�). 

explanation Uniquely defined as 〈�, �, �〉.  Represents a well-founded 

explanation � ⊆ � for some explanandum(s) � ⊆ �.  B is a set of 

beliefs comprised of (1) beliefs supporting M through J and (2) 

metaknowledge48 Bm about the explanation.  More formally: 

 � = �� ∪ � �����(�) ∪ �������(�)
�∈�

 

explanation microtheory A single explanation microtheory exists for each explanation 

〈�, �, �〉.  Contains all beliefs B in the explanation, and is a 

proper subset of one or more beliefs in � and �. 

assumption An unjustified belief b ∈ � that is not part of the domain 

theory �.  More formally, b is assumed in an explanation 

〈�, �, �〉 if and only if it is part of the well-founded explanation 

but it is not itself justified. 

explanation competition Occurs between two different explanations ⟨J, B, M⟩ and ⟨J’, B’, 

M’⟩ for explanandum m if and only if m ∈ (M ∩ M’). 

                                                 
48 In our simulations, metaknowledge about an explanation include the beliefs about the structure of an explanation, 
such as the presence of an asymmetric quantity change in a cyclic state space (e.g., Chapter 6).  These beliefs affect 
how preferences are computed between explanations, but they do not affect the justification structure. 
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preferred explanation For an explanandum m, the agent’s preferred explanation. 

� = {〈��, ��〉, … , 〈��, ��〉} The explanandum mapping over every explanandum m ∈ � to its 

respective best explanation xi.  Exhaustive over all explanandums 

�, but not necessarily over all explanations.  

 

Transcript of an interview about the seasons from Chapter 6 

Below is a transcript of the student “Angela,” courtesy of Sherin et al. (2012).  We have removed 

symbols that indicate gestures, emphasis, and pauses, but we have kept some nonverbal 

annotations where helpful for understanding the conversation.  A = Student, B = Interviewer. 

 

 Who Transcript 

1 B I want to know why it's warmer in the summer and colder in the winter 

2 A That's because like the sun is in the center and the Earth moves around the sun 

and the Earth is at one point like in the winter it’s like farther away from the sun- 

3 B uh huh- 

4 A and towards the summer it's closer it's near towards the sun. 

5 B I think I get it.  Can you just draw a picture so I'm completely sure? 

6 A Okay.  The sun's in the middle and uh- 

7 B Mmhm. Nice sun. 
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8 A and then the uh the Earth kind of orbits around it  

9 B uh huh 

10 A And um like say at one it’s probably more of an ovally type thing - 

11 B Mmhm 

12 A In the winter, and uh er probably this will be winter ((moves pen tip to the 

opposite side of the orbit and draws a new Earth)) since it's further away  

13 B Mmhm 

14 A See, that's, winter would be like, the Earth orbits around the sun.  Like summer is 

the closest to the sun. Spring is kind of a little further away, and then like fall  is 

further away than spring, but like not as far as winter 

15 B Mm hmm 

16 A and then winter is the furthest. 

17 B   mm hmm 

18 A  So the sun doesn't, it like the flashlight and the bulb ((hand opening gesture over 

the sun, as if her fingers were the sun’s rays spreading out), it hits summer,  

19 B Mm hmm 

20 A the lines like fade in ((draws fading lines from sun to summer)), and get there 

closer, like quicker 

21 B  mm hmm 

22 A  And by the time they get there [winter], they kinda fade and it's gets a lot colder 

for winter 
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23 B mm hmm 

24 A And spring it's uh kinda ((gesturing between the sun and the earth labeled 

spring)) between the two [between winter and summer] and same for fall 

25 B Mm hmm.  Mm hmm. Um, Is this something - have you done this already for 

your class – is that you know this from? 

26 A  Uh, kind of, like from first and second grade I remember the time that the Earth 

orbiting and whatnot. 

27 B mm hmm, mm hmm. Okay.  So that makes a lot of sense.  Um. One thing I 

wanted to ask you though about though was one thing that you might have heard 

is that at the same time - and you can tell me if you've heard this - when it's 

summer here ((B taps the table top)), it's actually winter in Australia. 

28 A   mm hmm 

29 B  Have you heard that before?   

30 A Yeah. 

31 B So I was wondering if your picture the way you drew it can explain that or if 

that's a problem for your picture. 

32 A Uhhhh. Idea. I need another picture. 

33 B  Okay. So is that a problem for your picture? 

34 A Yeah, that is.  Um, ok. ((A draws in a new sun, with smiley face, on her new piece 

of paper.))  There is like the sun.  And okay. Yeah. ((A drawing a new elliptical 

orbit around the sun.))  I remember that now cause, um, it's like, as the world is 
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rotating, or as it's orbiting 

35 B Mm hmm 

36 A it's rotating too. So uh, I don’t really – I guess I don't really understand it. Um.  

37 B Well, you're saying as the Earth is going around here ((B sweeps once around the 

orbit A has drawn.)) it's doing what? 

38 A It's like spinning. ((A again makes the quick “rotating” gesture between her 

thumb and first finger and she traces out the drawn orbit.)) Because it's.  That's 

how it's day and night too. 

39 B I see. It’s spinning like a top. ((B makes a “spinning” gesture above A’s 

diagram.)) 

40 A Yeah. 

41 B Okay. 

42 A So, I guess I really don't understand it, that much. But. Uum. Yeah, I have heard 

that [that when it is summer in Chicago, it is winter in Australia], cause I was 

supposed to go to Australia this summer 

43 B Uh huh. 

44 A but it was going to be winter 

45 B Uh huh. 

46 A when I was going, but uh, their winters are really warm. So, 

47 B Mm hmm. So you're thinking that somehow the spinning, you thought that 

somehow if you take into account the fact that the Earth is also spinning, that 
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might help to explain why it's summer and winter at different times 

48 A Uh - yeah. 

49 B That’s what you were thinking? 

50 A Uh, kinda. Yeah. 

51 B Just to be clear, what was – What was the problem with this picture for the- 

52 A Because, yeah I rethought that and it looks really stupid to me because um 

summer is really close but then how could it be like winter on the other side. 

Well. How could it be winter on the other side if it's really close here ((pointing 

to summer earth), and how could it be really warm if this ((pointing to winter 

earth)) is this far away.  I don't know.  That looks really dumb to me now. So. 

53 B It doesn't look really dumb to me. A lot of people explain it this way.  Um. Okay, 

I'm not going to give away answers yet. You can find this out – you can find this 

out in your class. 

Rules for detecting contradictions 

The system uses the following pairs of statement patterns to detect contradictions.  We do not 

believe this list is complete for all tasks, but it is complete for the tasks involved in the 

simulations in Chapters 5-8.  Each symbol beginning with a question mark (?) is a variable. 

 

Statement 1 Statement 2 

?x (not ?x) 

(greaterThan ?x ?y) (lessThanOrEqualTo ?x ?y) 
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(lessThan ?x ?y) (greaterThanOrEqualTo ?x ?y) 

(greaterThan ?x ?y) (greaterThan ?y ?x) 

(lessThan ?x ?y) (lessThan ?y ?x) 

 

Note that there are rules for inferring lessThanOrEqualTo from lessThan and equalTo, and 

likewise for greaterThanOrEqualTo.  Also, contradictory quantity changes are covered by 

the above ordinal relation pairs, since a quantity q’s continuous change in value is represented as 

an ordinal relation describing its derivative.  For example, if q is increasing, we represent this as 

(greaterThan (DerivativeFn q) 0).  This means that if the system infers that a quantity 

is increasing and decreasing in the same time interval (e.g., in the seasons simulation in Chapter 

6), it can detect the contradiction with the above rules. 

Sentences from a textbook passage about the circulatory system 

These sentences were used to generate the instructional knowledge for the simulation in Chapter 

7.  Sentence numbers correspond to the sentence numbers in Chi et al. (2001).  These sentences 

comprise the “structure” portion of the passage (Chi et al., 1994a). 

 

1. The septum divides the heart lengthwise into two sides. 

2. The right side pumps blood to the lungs, and the left side pumps blood to the other parts 

of the body. 

3. Each side of the heart is divided into an upper and a lower chamber. 

4. Each lower chamber is called a ventricle. 

5. In each side of the heart blood flows from the atrium to the ventricle. 
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6. One-way valves separate these chambers and prevent blood from moving in the wrong 

direction. 

7. The atrioventricular valves (a-v) separate the atria from the ventricles. 

8. The a-v valve on the right side is the tricuspid valve, and the a-v valve on the left is the 

bicuspid valve. 

9. Blood also flows out of the ventricles. 

10. Two semilunar (s-l) valves separate the ventricles from the large vessels through which 

blood flows out of the heart. 

11. Each of the valves consists of flaps of tissue that open as blood is pumped out of the 

ventricles. 

12. Blood returning to the heart, which has a high concentration, or density, of carbon 

dioxide and a low concentration of oxygen, enters the right atrium. 

13. The atrium pumps it through the tricuspid valve into the right ventricle. 

14. The muscles of the right ventricle contract and force the blood through the right 

semilunar valve and into vessels leading to the lungs. 

15. Each upper chamber is called an atrium. 

16. In the lungs, carbon dioxide leaves the circulating blood and oxygen enters it. 

17. The oxygenated blood returns to the left atrium of the heart. 

18. The oxygenated blood is then pumped through the bicuspid valve into the left ventricle. 

19. Strong contractions of the muscles of the left ventricle force the blood through the 

semilunar valve, into a large blood vessel, and then throughout the body. 


