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Reference counting is a garbage-collection technique that maintains a per-

object count of the number of pointers to that object. When the count reaches zero,

the object must be dead and can be collected. Although it is not an exact method, it

is well suited for real-time systems and is widely implemented, sometimes in conjunc-

tion with other methods to increase the overall precision. A disadvantage of reference

counting is the extra storage traffic that is introduced. In this paper, we describe

a new cache write-back policy that can substantially decrease the reference-counting

traffic to RAM. We propose a new cache design that remembers the first-fetched

value of a cache subblock, so that the subblock need not be written back to RAM

unless a different value is present. We present results from experiments that show

the effectiveness of this approach, particularly in mitigating the storage traffic due to

reference counting.
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Chapter 1

Introduction

The relative cost of a RAM access is worsening; that is, the speed of on-board opera-

tions and cache memory is increasing faster than the speed of the memory bus and the

memory itself. As Hennessy and Patterson point out, memory access speed has gained

7% per-year performance improvement in latency since 1980, and microprocessor per-

formance has improved between 35% and 55% per year since 1980. This discrepancy

is inconvenient for programmers and engineers who desire fast performance, not to

mention real-time programmers who require predictable, consistent software perfor-

mance. Hennessey and Patterson agree that “clearly, there is a processor-memory

performance gap that computer architects must try to close” [5].

The above suggests that we should perform our operations on-chip as often as

possible, opposed to climbing the “memory wall” [15] and succumbing to the lower

speeds of buses and memory. Historically, the most common remedies to this problem

are adding (more) levels of blazing-fast on-chip cache memory and optimizing cache

behavior to absorb more of the main memory traffic.

In this thesis, we examine the effectiveness of a “dusty” write-back cache pol-

icy that suppresses unnecessary writes to memory. One scenario in which this design

can prevail is reference counting, a garbage-collection technique that is widely imple-

mented and well-suited for real-time systems. Reference counting maintains a count

of pointers that reference every object; these pointer-values change rapidly in scenar-

ios of complex pointer arithmetic. In many cases, a reference count changes from its

value v, but then quickly returns to v. Normal write-back cache policy marks this

reference count dirty upon any value change, marking it for eventual copy back to

RAM. When the value returns to v, it is still considered dirty, and when it is evicted

from cache, it will be unnecessarily written back to memory. We introduce a new
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method of determining how “soiled” a value is, and recognize that a value is indeed

dusty when it is altered in cache, but only dirty when it differs from the value in

memory. We examine reference counting with this dusty write-back policy in this

thesis.

Implementing a new cache policy is a microarchitecture optimization; such op-

timizations are traditionally costly to implement in hardware, and are time-consuming

to simulate in software. Traditionally, to test our new cache policy, we would have to

first spend a long time in software simulation, then make an Application-Specific

Integrated Circuit (ASIC) that uses our cache design, costing millions of dollars.

However, the Liquid Architecture [8] system, developed at Washington University un-

der grant ITR–0313203, allows us to reify and analyze our proposed microarchitecture

rapidly and with no additional monetary overhead.

In the body of this thesis, we first discuss background details that are necessary

to understand the following experiments. We then propose the new write-back cache

policy, statistically examine its effectiveness with reference counting and Java SPEC

Benchmarks, and use the Liquid Architecture platform to implement and quantita-

tively analyze the microarchitecture optimization at clock-cycle resolution. Finally,

we propose several avenues of related future work, and review the experimental find-

ings of this thesis.
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Chapter 2

Background

In this chapter, we review microarchitecture optimization, cache organization, and

cache write policy to help develop the foundation for our further investigation. We

also discuss reference counting and some common trends of Object-Oriented Pro-

gramming (OOP), both of which are utilized in the included experiments.

2.1 Architecture vs. Microarchitecture

This thesis proposes a cache microarchitecture optimization, so we must make the

distinction between software, architecture, and microarchitecture optimizations. We

will take an outside-in approach, shown in Figure 2.1.

• Programmers often optimize their code to make it more efficient. They depend

on compilers to accurately translate their code into architecture-specific machine

Microarchitecture

ISA

Compiler

Program

Figure 2.1: The tiered relationship of program, architecture, and microarchitecture
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instructions. In many cases, an understanding of microarchitecture concepts

such as cache locality and branching behavior can help a programmer with such

optimization.

• Compiler developers must provide this translation, but make optimizations of

their own to produce a more efficient list of machine instructions, counting on

the computer architecture to interpret these instructions as expected.

• Computer architecture developers provide an instruction set architecture (ISA),

or an interface for the compiled program to interface with the microarchitecture

beneath.

• The microarchitecture, or chip, must realize the ISA above it and govern the

primary elements of computation. As is proposed in this thesis, we can bias the

microarchitecture to take advantage of common programming idioms to make

programs run more efficiently. Optimizations at this level must not change

computational behavior with respect to the architecture.

Cache memory itself is a microarchitecture optimization, and it lends itself to

further behavioral optimization, as we conclude later in Subsection 2.2.1.

2.2 Cache

On-chip cache memory is the first and most effective safeguard against unnecessary

memory accesses. It provides a quick buffer layer for intercepting temporally local

memory accesses. Cache memory is often on the processor itself, so due to its prox-

imity and access speed, it saves us the long trip to RAM.

Cache Organization

We can first classify cache memory by the nature of the data it buffers. Instruction

cache (I-cache) contains instructions for processor execution, and for the purposes

of this thesis, is read-only. Data cache (D-cache) buffers the data-values from our

software execution, including reference counts. These caches are often separated on

the processor, but may be combined to form a unified cache.

Cache memory is composed of blocks, also known as lines, which are fixed-sized

data collections. Often times, multiple values such as integers and characters share
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a single block, and blocks are often decomposed into subblocks. When a block of

main memory is accessed, it is immediately copied to cache, so that any subsequent

memory accesses will use the cached copy and avoid the trip to main memory.

For each block, the cache maintains the block addresses and offsets, as well as

a valid bit for each subblock to monitor whether the subblock contains a valid value.

This improves the cache search speed, and will help prevent valid subblocks from

being overwritten when invalid subblocks can be written instead.

When the CPU requests to read a value from memory, we first search the cache.

If the value is cached, we experience a read-hit, and the value is accessed in cache.

If, however, the value is absent in cache, we incur a read-miss penalty of returning

the value from RAM and storing it back in the cache. When the value is stored back

in cache, we may have to evict a valid subblock from our crowded cache. Several

eviction strategies are utilized, such as completely random eviction, last recently used

(LRU), and first in, first out eviction, where the oldest block is evicted. Reads

compose roughly 79% of all data cache traffic [5], and the eviction rate depends on

read locality. The penalty of a miss depends on the latency and bandwith of the

memory and bus, but as discussed in the previous chapter, the relative penalty is

worsening.

Writes compose 21% of overall memory traffic [5]. Just as with reads, the cache

experiences write-hits and write-misses, but the behavior of each differs depending

on which write-policy the cache employs. Historically, there are two basic strategies;

we explore these below.

Write-Through Cache

The most primative accepted cache policy is write-through. In this cache configura-

tion, whenever we write to a memory address, it writes directly to main memory. This

results in a memory write every time, and the CPU waits for the write to complete in

what is called a write stall. To help avoid this stall, the processor can instead write to

a write buffer and continue its processing, while the write buffer executes the write to

memory in parallel. The processor may then quickly write the same value into cache

(known as write allocate) or not write it into cache, and modify the value in RAM

alone via the write buffer (no-write allocate).
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B
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Dirty Bit
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Figure 2.2: Write-back cache organization

Write-Back Cache

A widely accepted alternative to the simple write-through cache policy is write-back

cache, pictured in Figure 2.2. This configuration has the same benefits as write-

through cache for reads, but it can save on write-hits. It achieves this by reflecting all

writes directly into cache memory. Unlike write-through, it does not write to main

memory at this point. Instead, it keeps a dirty bit per subblock in addition to the

valid bit that signifies whether the value in cache has been altered since it was read

in from the memory. When the value is evicted from cache, it is written back to

memory if the dirty bit is set.

2.2.1 Further Cache Optimization

We shall show that a standard write-back cache policy lends itself to some unnecessary

memory writes. If a value is altered and promptly returns to the same value in a

following write, it is still marked dirty and is written back to main memory even

though the value in main memory is identical. Moreover, if we have a value k in

memory and we write the very same value k to the same address, the write will cause

us to mark the subblock dirty, and k will be unnecessarily written back to memory

upon eviction. We can conclude that the dirty bit is sufficient but not necessary to

judge whether a value needs to be written back to memory.
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We investigate a more effective cache design that writes to memory only if the

value it writes back is indeed different. This can save memory accesses, especially for

software operations and idioms that involve changing a variable and then promptly

returning it to its former value.

2.3 Reference Counting

Reference counting [14] is an efficient albeit inexact means of automatic memory

management, otherwise known as garbage-collection [14]. Garbage-collection entails

automatically reclaiming heap-allocated objects from memory once they are no longer

needed by a program, and is utilized in languages such as Java and C#. Refer-

ence counting is one avenue to garbage-collection functionality; it works by counting

the pointers that reference each object. When the count reaches zero, the object

is “garbage” and may be collected. Reference counting is well suited for real-time

systems and is widely accepted and implemented [1].

Though the implementation is straightforward, reference counting can impose

considerable overhead due to increased memory traffic. Examples of said traffic are

found in common OOP patterns that have one object point to another for a short

time, before pointing away. The Iterator pattern [4] is a very simple and frequently

deployed example of this thumbing-through behavior.

2.3.1 The Thumb Idiom

This widely used thumb object programming idiom entails a pointer referencing an

object, performing a short set of operations then pointing away, often to another

object. We observe this behavior often when iterating through any data structure

such as a linked list, tree, vector, or hashtable. This behavior is also common in

sorting algorithms. We observe the thumb object nature of the Iterator pattern with

respect to reference counting.

Iteration with Reference Counting

A common use of the Iterator pattern is shown below, where we traverse an entire

list and process each item in the collection. It seems simple in nature, but it causes

a lot of reference counting traffic.
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LinkedList list;

...

Iterator iter = list.Iterator();

while (iter.hasNext()) {

Object item = iter.next();

foo(item);

}

As we iterate over the list, the Iterator’s internal place-keeping pointer switches

from node ni−1 to ni, and onward to ni+1, until the end of the list. The reference

count of node ni increments from k to k + 1 once the iterator touches it, remains at

k + 1 for a short while, then decrements back to k as the iterator moves onward to

node ni+1. It thumbs through every node in such, until termination.

Each node in the list will have a similar reference count “hiccup” due to this

common thumb object idiom. We next discuss how the cache behavior differs with

respect to the write-policies we designated above.

Cache Response to Iteration & Reference Counting

With a write-through cache policy, both the increment and the decrement will be

written directly to memory when we point to and away from the object, respectively.

With a write-back policy, the reference count is marked dirty after the incre-

ment, and remains dirty after the decrement. Though the reference count is the same

before and after the short hiccup, the write-back cache believes it to be dirty. There-

fore, upon eviction from cache, the value is unnecessarily written to memory. This

will occur every time a thumb-pointer (or any pointer) points to an object, then away

again.

With our dusty cache policy, we would experience no writes to memory for such

hiccups; just a single read from memory to get the reference count into cache. Upon

the value’s eviction from cache, the microarchitecture finds it to be identical to its

former value and does not write it back to memory. We will discuss this configuration

more in Chapter 4.
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Chapter 3

The Liquid Architecture System

The Liquid Architecture system takes advantage of reconfigurable logic to permit

timely design, prototyping, and analysis of new hardware modules. Without such

a tool, the dusty cache idea could not as easily have been prototyped, tested, and

analyzed in ample time for me to write this and graduate. Moreover, to synthesize a

microarchitecture without reconfigurable logic requires millions of dollars.

Our Liquid Architecture research team recognized these obstacles in the hard-

ware design and software profiling processes, and developed an interactive system to

remedy them [11].

3.1 The Profiling Problem

Programmers often want to know how their software utilizes the underlying microar-

chitecture. With an accurate view of what happens on-chip during a program run, a

programmer may optimize his or her software to take better advantage of the hard-

ware beneath. Such software-microarchitecture interaction feedback is surely useful,

but very difficult to gather. Unfortunately, many methods of gathering accurate

software performance data have fundamental flaws in accuracy and timeliness.

Profiling software performance with other instrumented software can yield

skewed results. In some instances, the profiling software will add extra overhead

and we’re left with a faulty report of processor activity. Other times, software pro-

filing will not provide sufficient resolution of results, and the results are too vague

to draw conclusions. Simulation suites, however, yield extremely fine resolution but

take an extremely long time to profile the simplest of programs. Moreover, many
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Figure 3.1: Photograph of the FPX

software profilers and simulation suites do not account for (or cannot adequately pre-

dict) some of the extremely improbable events that occur during normal execution

such as pipeline stalls and store buffers.

3.2 The Liquid Architecture Solution

The Liquid Architecture solution combines reconfigurable logic, microarchitecture

support for monitoring on-chip events, and a web-based configuration and analysis

interface. This offers a solution to the above profiling problems and permits rapid

design and testing of hardware and software structures, making this thesis plausible

and conclusive.

3.2.1 The Liquid Processor

The Liquid Architecture processor began as LEON2 [3], a softcore processor for em-

bedded systems, developed by the ESA (European Space Agency). The LEON core

provides sophisticated architecture features such as instruction and data caches, the

entire SPARC V8 instruction set [7], and buses for high-speed memory access and

low-speed peripheral control.
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The Statistics Module

The group modified the core to add the Statistics Module [6], a performance-measure-

ment functionality for obtaining cycle-accurate timing results, cache-behavior statis-

tics, and method-specific output for each. Such statistics are typically unavailable

in generic processors, and are incredibly monotonous and time-consimuing to attain

through simulation - the Liquid Architecture processor runs programs at full (FPGA)

speed.

This module is really a collection of smaller counter modules, each of which

has the following:

• One specific instruction or event to track

• One counter to track how many times this instruction or event has fired

• Two memory addresses (a low and a high, to constitute an address range)

• A connection to the address bus

• A connection to the event bus

• A connection to an output data bus

With this information, each counter can listen on the buses, and if the event

occurs within the designated memory range, the counter is incremented. This is all

done in parallel, so the tracking mechanisms do not add extra clock overhead to the

execution of the program.

The entire module is customizable; that is, we can instantiate varying numbers

of these tracking modules within the statistics module with a simple change to the

VHSIC Hardware Description Language (VHDL) specification. Once instanti-

ated, we can send packets to the microarchitecture to program the instructions and

addresses for each counter module of the Statistics Module.

One precaution the Statistics Module takes is overflow prevention. When a

user-designated amount of clock cycles expire, the entire module evicts the data from

its counters and passes the statistical data to the packetization module to be sent

back to the user. It then resets the counters and continues monitoring execution

without skipping an event.
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Figure 3.2: Modular diagram of the FPX and Liquid Processor Module

3.2.2 The Liquid Processor Module

The Liquid Architecture system is an extensible hardware module on a Field-pro-

grammable Port Extender (FPX) [2]. This platform is surrounded by Layered Pro-

tocol Wrappers, which parse input and formats output as User Datagram Proto-

col (UDP) network packets. Once packets are parsed, they are routed by a Control

Packet Processor (CPP) which delivers certain packets with command codes to the

LEON controller. The LEON controller reads these commands and directs the LEON

processor accordingly, or it communicates with the memory controller to read the

contents of external memory. Also present is a Message Generator which formats

messages that contain command packet acknowledgements and profiling data.

3.3 Interfacing with the Hardware

The Liquid Architecture group agreed upon a web interface for access to the recon-

figurable system. We designed and implemented a user-friendly interface that makes

much of the system’s functionality available to the web-user as well as the transparent,

analyzable, profiling output.
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The challenge in creating such an interface lies in toolchain support for convert-

ing a normal C-program to a Liquid Architecture-compatible binary format, commu-

nicating the user’s configuration specifics to the hardware, and reporting the results

back to the user for analysis.

3.3.1 Toolchain and Language Support

One of the advantages of the Liquid Architecture system is that we can execute

software programmed in the C programming language. At current, our system has

several restrictions on program behavior and compatibility. None of our benchmarks

came into conflict with these restrictions, but nonetheless, we plan to increase the

compatibility and resolve these issues in the near future:

• No file or terminal I/O. The Liquid Architecture system does not have a terminal

for printf(...) or getchar() commands, so all of our programs and benchmarks

reroute their trace debugging and output to SRAM memory. This memory may

be read after program execution.

• No operating system calls. Our current profiling interface does not run software

on top of our customized Linux kernel; this is future work for the group.

• No floating point computation. We plan to incorporate a Floating Point Unit

(FPU) into the microarchitecture soon, but at current we do not offer this

functionality.

Once we have a candidate .c file, we must compile, assemble, link, convert it

to binary for upload onto the hardware, and create a memory map of the binary file.

We use LEOX 1.0.18, an open source toolkit for cross-compiling from linux to the

target LEON (SPARC V8) Instruction Set Architecture (ISA). We combine this

toolkit with a number of other operations and use the following commands as the

base of our toolchain functionality:

sparc-elf-gcc foo.c -s

sparc-elf-as foo.s -o foo.o

sparc-elf-ld <libraries> foo.o -o foo.out -Map foo.map

sparc-elf-objcopy foo.out -v -O binary foo.bin
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Our customized compilation suite performs several intermediate and latter

steps to produce a data file for software simulation. However, the above steps alone

are sufficient to ready a C program for execution on the Liquid Architecture system

via the web interface.

3.3.2 The User Interface

The web-based user interface provides the vehicle from the creation of the binary

input file to the profiling results. The work of the interface can be divided into several

tasks: accepting custom user programs, gathering configuration input, manipulating

the hardware, and reporting the results.

Accepting C Programs

We provide two avenues to running cross-compiled programs on the Liquid Archi-

tecture system. We provide several pre-compiled regression tests and benchmarks

that may be selected from a drop-down list on the first Hypertext Mark-up Lan-

guage (HTML) configuration form (see Figure 3.3).

In the case that the user wishes to run a custom program, two file-input fields

are available on the same page. The user may browse his or her local computer for

the compiled binary file and its appropriate linker map file (provided by the cross-

compiler toolchain, as mentioned in Subsection 3.3.1), and upload it for configuration

and execution.

The screenshot in Figure 3.3 displays a text input for specifying the memory

address at which to load the selected binary file. At this address, the .text segment

will be loaded, followed by the .data and .bss segments. Further, the hardware will

begin its execution at this address.

Gathering User Input

The interface permits further configuration of the execution after the binary and linker

map files have been selected (see Figure 3.4). We parse the linker map file submitted

by the user, then generate a web form with a grid for selecting specific memory ranges

and processor events. These ranges and events will govern the initialization of the

statistics module, as discussed above in Subsection 3.3.2. This permits method-wise

profiling for a variety of statistics.
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Figure 3.3: Configuration page 1 of Liquid Architecture interface

Because the Liquid Architecture system does not have a terminal or print-

stream interface, our programs write to memory for output and debugging. On the

second configuration page, we allow the user to specify a memory address to read

after execution, making such program data available to the user.

Manipulating the Hardware

Once the configuration is complete, the user choices are posted to a Perl [13] control

center script that communicates with the hardware using custom opcodes within

UDP packets.

The server uses a Java program handle this correspondence; this program wraps

the input opcodes and waits for the acknowledgements or responses. This interface
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Figure 3.4: Configuration page 2 of Liquid Architecture interface
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is highly extensible; as our system grows in functionality and control packet sophisti-

cation, this Java program can continue to act as a communication layer between the

user and the liquid processor.

The Perl control script dictates the opcodes to Java program according to the

configuration specifics of the above steps. This provides a layer of abstraction between

the user and the raw opcodes, requiring the user only to make the above configuration

decisions and the rest executed automatically.

Each trial of the liquid architecture system shares some common functionality

and opcodes for initializing and executing a given program. These steps are shown

in the upper half of Figure 3.5:

• We load the bitfile with ncharge. This transmits the specifics of our recon-

figurable microarchitecture over to the hardware.

• We reset the LEON processor by sending an opcode via our Java commu-

nication program. This wipes the memory clean and initializes the hardware to

a ready state.

• After resetting, and throughout initialization, we check processor status by

sending an opcode and receiving a status code via our Java program.

• We upload the binary program via our Java program, and transmit the

binary data to the liquid hardware’s SRAM, to a location designated by the

user in Figure 3.3.

• Configuring the statistics module requires a series of opcode transmissions

from the Perl script to the hardware. For each counter, as selected in the

configuration stage shown in Figure 3.4, we have to make two transmissions

to the hardware: the high and low memory addresses and the event or signal

to monitor. After each counter is configured, we send an opcode to tell the

statistics module how often to flush its counters and send statistics packets

back, as discussed in Subsection .

• Finally, we send an opcode to start the program.

At this point, the program is running on the reconfigurable hardware which

is configured according to the uploaded bitfile. Our control script keeps listening for

processor performance feedback and program results.



18

Figure 3.5: Control script for Liquid Architecture execution
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Gathering and Reporting the Results

As results return from the hardware, a Java listener program pipes them out to a file.

Once the hardware finishes executing the program, it sends a final packet to signify

either graceful termination or an error result. In either case, the server now has a file

with the statistics of the program’s execution on the hardware.

Our same Perl script parses this file and displays the results in a table for the

user, shown in the bottom of Figure 3.5. If the user requested to read a memory

address (from the screen shown on Figure 3.4), the server sends a UDP packet to

the hardware requesting the values in memory at the prescribed address range. We

display this data in hexadecimal, decimal, and ASCII to facilitate checking program

results.

In its entirety, the automated configuration and result output of the liquid

architecture takes roughly one minute. The program execution time in between

configuration and output depends on the behavior of said program on our 25MHz

processor.
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Chapter 4

Dusty Cache

In this chapter we present our dusty data cache microarchitecture optimization and

discuss its design and interaction with the machine architecture. We classify this

policy as an enhancement to the write-back cache policy that is reviewed in Sec-

tion 2.2. This dusty cache specification is implemented in the Liquid Architecture

system (Chapter 3) as a data cache, and is analyzed in Chapter 6.

4.1 Dusty Cache Design

The dusty cache specification employs the same lines (blocks), subblocks, and valid

bits as both the write-through and write-back policies. As discussed in Section 2.2,

the write-back cache policy uses a dirty bit to decide when to write a value back. Our

proposed dusty cache uses a dusty check to decide when to write the value back to

memory.

The Dusty Check

The dusty check is not an actual bit as in write-back policy, but we still provide a

mechanism for checking whether to write the value back to memory without checking

main memory itself. Like the write-back policy, the dusty cache has a dirty bit to

decide whether the value has changed since entering cache. In addition, the dusty

cache has a second cache bank that acts as an image of main memory, labeled DImage

in Figure 4.1. This bank is readily accessible without incurring the time delay of

reading main memory, discussed in Chapter 1.
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Figure 4.1: Dusty cache structural design

Dusty Cache Structures

The dusty cache policy has a single Tag RAM and a set of data lines DData like

write-through and write-back, but it also has an extra set of data lines, discussed

above. We maintain that for each entry in the Tag table Tagi the corresponding

line in the DData cache bank, Datai, is the cached value pertaining to the address in

Tagi. The corresponding value Imagei in the DImage cache bank is an image of the

value in memory at the address specified in Tagi. We discuss the interaction of these

corresponding elements in Section 4.2.

Both cache banks have valid bits for each subblock, but only the subblocks in

DData have dirty bits. We will see why as we discuss the behavior.
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Figure 4.2: Dusty cache with reference to the CPU and main memory

4.2 Dusty Cache Behavior

Because the DImage cache bank is an image of main memory, it is not written directly

by the CPU in the event of a memory store; instead, only DData is written. Whenever

we read from memory, however, both cache banks are written. We write to DImage

to retain an accurate reference of memory, and we write to DData because the CPU

uses it as its data cache. This writing behavior is shown in Figure 4.2.

As we argued in Subsection 2.2.1, our proposed cache policy prevents the un-

necessary memory writes incurred by write-back policy. We examine the dusty cache’s

behavior in several different scenarios:

• Upon a read hit the value is in DData, so the value is returned to the CPU.

• Upon a read miss the value is not in DData, so we read the value from main

memory and write it to both DData and DImage. Potential cache eviction.

• Upon a write hit the address maps to DData, so we alter the value in DData

and set the dirty bit.

• Upon a write miss the address is not mapped to DData, so we allocate and

write it to DData. Potential cache eviction.
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• Upon a cache eviction, if the subblock’s dirty bit is set, we examine the

value in DData against the corresponding value in DImage. If they are identical,

nothing is written. Else, we write the value back to main memory.

4.3 Dusty Cache Cost

Because processor real estate is somewhat limited, we must justify our intentions of

placing a memory image on a microprocessor. The addition of the memory image

roughly doubles the size of our effective cache, since each subblock in our cache has

a corresponding subblock in our on-chip memory image. We can imagine several

objections:

• With the space that dusty cache takes on chip, it may be the case that we can

better improve performance by simply doubling the size of our write-back cache,

thus improving our miss rate.

• Aside from reducing the miss rate, doubling our write-back cache could poten-

tially keep lines in our cache twice as long, and therefore reduce the rate of

evictions and write-backs, both necessary and unnecessary.

Regarding the first objection, we would expect to lower our cache miss rate by

doubling the size of our cache, but we see in Figure 4.3 [5] that the returns quickly

diminish if we keep doubling our cache. For a cache size of 4KBytes, we could argue

that doubling our cache could provide a sufficient return; with a 1MByte cache,

however, we may be able to more wisely utilize our processor space.

In addition, the effectiveness of a data cache directly corresponds to the breadth

of the data that the executing program tends to use. For a program that uses a

small breadth of addresses, a smaller cache will suffice; if our program accesses many

addresses within a wide range, a larger cache will improve performance.

Regarding the second objection, doubling the size of our write-back cache would

indeed prolong a value’s lifetime in cache, but for a long program run we would still

eventually suffer the unnecessary write-back of evicted cache values. Regardless of its

size, if we utilize a write-back cache we cannot escape these unnecessary write-backs

that a program may cause. Further, just like the above, this depends directly on the

set of applications we intend to run on our cache. We make a distinction of the type

of programs that best utilize dusty cache opposed to write-back cache in Chapter 6.
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Figure 4.3: The effect of doubling our cache on cache miss rate

In further experiments, we compare these two cache policies over various benchmark

executions.

In Chapter 5 we qualify the benefits of this cache design for reference counting

software systems. In Chapter 6 we implement this microarchitecture and discuss the

behavior of dusty cache when implemented in hardware.
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Chapter 5

Software Cache Simulation

5.1 Analysis of JVM Cache Behavior

Before implementing the hardware solution to the dusty cache principle, we first

profiled some common idioms of Object-Oriented Programming (OOP), embodied

in some common benchmarks from the SPEC JVM ’98 suite [12] to make an initial

quantification of the benefits of this cache policy over write-through and write-back.

As discussed above, we expect reference counting to exhibit the efficiency of

dusty cache over write-back cache, so we designed this experiment to track reference

counts in Java and examine how many times the reference counts are written back to

memory for different cache configurations.

JVM Instrumentation & Output

The benchmark results are gathered from an instrumented version of Sun’s Java

Virtual Machine 1.1.8 [9] in Solaris that implemented Reference Counting Garbage

Collection [14]. To get a more transparent view of the reference counting behav-

ior and the JVM’s useage of the architecture beneath it, the JVM uses customized

trace functions to signal events, such as reference count increments and decrements,

putfields, getfields, and a variety of other events, complete with a dynamic count

of JVM instructions at each point of execution.

The JVM outputs this data during the execution of the program, allowing us

to capture runtime statistics. We ran and captured several benchmark programs,

each of which is discussed in Subsection 5.1.1.
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We parsed the JVM output with a trace analysis tool that constructs a graph

of per-object reference count behavior. This allows us to observe the following, for

every object instantiated in the benchmark:

• Its reference count at any point in execution

• The number of total JVM instructions between changes in its reference count

• The number of cache-altering instructions, such as putfields, getfields,

aastores, and aaloads, that occur between changes in its reference count

It is important to note that this reference counting implementation uses a stack

optimization [1]; that is, references from the stack are not tallied in an object’s refer-

ence count. Instead, a single reference is made from each stack frame that contains

a pointer to the object. Once this stack frame is popped, the stack reference disap-

pears, and the object may be collected if it has has no stack frame references or object

references. For this reason, we only track heap-based references in this experiment

(see Chapter 6 for a stack-based reference counting traffic approximation).

Quantifying Memory Savings With JVM Output

The next task is to simulate cache memory and evaluate the cache performance for

several different cache configurations. We intend to measure the efficiency of the

cache in preventing writes to memory, so the metric of success in this experiment is

“memory writes saved”. We crafted a software solution that emulates cache behavior

to gather this data.

To represent cache effectiveness, we must have a way of expressing what is

currently stored in cache memory; otherwise, we cannot know which reads and writes

escape the cache. We employ a probabilistic, worst-case approach here.

Whenever something is written to cache, we take the worst-case approach and

assume that it will evict some value from cache. In other words, we assume that there

is no locality in cache writes; every getfield and putfield instruction writes one

value to cache and evicts another. From a probabilistic approach, we assume these

instructions are equally likely to evict any cached value. In our implementation, this

is realized as a lifetime, or “window” of cache time for each reference count value.

That is, for a window of k cache writes, if value v is written to cache on write i, v

will be evicted on write i + k.
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We evaluate both unified and data (non-unified) cache configurations, and with

each, we simulate write-through, write-back, and dusty policies.

• To represent the effects of unified cache (discussed in Section 2.2), we designate

every JVM instruction as a cache write - this means that if reference count value

v is written to cache on instruction i, it will be evicted on instruction i + k.

• To represent the effects of non-unified (data) cache, we monitor only events that

will potentially evict a value from data cache. This includes JVM instructions

getfield, putfield, aaload, and aastore, as well as reference count increments and

decrements. If reference count value v is written to data cache, it will be evicted

after k of these special events.

On top of the unified and data cache configurations, we simulate several cache

policies: write-through, write-back, and the new dusty policy. This entails recording

the number of writes to memory for each policy.

• For write-through policy, each reference count increment and decrement will be

written back to memory. We use this as the frame of reference for the results

of the write-back and dusty cache trials.

• For write-back policy, we adapt the above notion of the window. If a reference

count enters cache memory, it is evicted after the window expires. If it has

changed within the window due to an increment or decrement, it must be written

back to memory (even if the value is equivalent to what it was upon entering

cache). These are the only writes to memory in the write-back simulation.

• For dusty cache, we monitor savings the same way as write-back cache, save

one difference: when it comes time to evict a reference count from cache, we

compare its current value to its value upon entering cache. If the values are

identical, it does not get written back to main memory, and this is recorded as

a saving over write-back cache.

Experimental Questions

The performance of the different cache configurations will change with the behaviors of

the benchmark we analyze, so we want to evaluate the performance across different

types of programs. As discussed above, we expect to incur more reference count
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Benchmark Objects Created

db 8,088
javac 26,127
jess 46,129
jack 410,479

Figure 5.1: Objects created per benchmark simulated

memory traffic with programs that allocate more objects and perform fast-paced

pointer changes.

In addition to investigating the performance across benchmarks, we must ob-

serve the performance across cache write policies. Specifically, within each cache

write policy we want to discover which cache configuration (unified or data) is more

effective.

5.1.1 Exerimental Results

We evaluated four Java benchmarks over a number of window sizes to observe memory-

write savings as a function of cache sizes. In addition, we examine some statistics of

each program to understand why we observed these trends.

Memory Savings per Benchmark

Each of the graphs shown above in Figure 5.2 through Figure 5.5 measure the memory

writes due to reference counting that we save over write-through cache. The two

dotted lines represent the percent of reference counting memory writes that write-

back cache can save, and the two solid lines represent the same characteristic for our

dusty cache. On all graphs, the distance between the write-back and the dusty cache

measurements is the amount of unnecessary writes to memory we expect to save with

dusty cache.

In Figure 5.2, we see that we can save roughly a third of all reference-counting

overhead in the 209 db benchmark with a cache eviction window of size 50 if we

incorporate a dusty data cache. This is roughly a 5% saving over a write-back data

cache of the same size. The memory writes that the dusty policy saves over write-back

policy are the “hiccups” discussed in Subsection 2.3.1.

We do not expect a great deal of savings for 209 db; this benchmark reads a

1MB data file that contains personnel records, then reads a 19KB file that contains

operations to perform on the records of the data file, then performs these operations
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Figure 5.2: Cache simulation results for SPEC benchmark 209 DB
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Figure 5.3: Cache simulation results for SPEC benchmark 213 Javac
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Figure 5.4: Cache simulation results for SPEC benchmark 202 Jess
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Figure 5.5: Cache simulation results for SPEC benchmark 228 Jack
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[12]. In addition, we see that it only allocates 8,088 objects in total, in comparison

to the other benchmarks as shown in Figure 5.1.

The Javac benchmark, shown in Figure 5.3, is the Java compiler from the JDK

1.0.2 [12]. We can see from the results that the dusty data cache implementation saves

5% of the reference counting traffic due to “hiccups.” Though the benchmark itself

allocates more objects than 209 db, it does not show use of quick pointer arithmetic

and consequentially does not suffer heavy reference counting traffic.

The Java Expert System Shell (JESS) benchmark, a clone of the NASA

CLIPS expert system shell shown in Figure 5.4, processes a set of rules, or logical

“if” statements, and solves a set of puzzles [12]. The numbers for this benchmark

are more interesting from a reference counting aspect. We save 25% of all reference

counting traffic with a write-back cache policy in a window of 50 data cache evictions,

suggesting rapid pointer manipulation. The memory-access savings from dusty data

cache are more noticeable here; this may be a result of high object allocation as shown

in Figure 5.1. Rougly 25% of the memory traffic savings at any window size can be

attributed to preventing unnecessary write-back of reference count “hiccups.”

The Jack benchmark is an early version of JavaCC, a Java parser generator

with lexical analyzers. Figure 5.5 shows us a very steep slope of memory savings in

the beginning, for small cache-write windows. This data and the number of objects

allocated in the benchmark (as shown in Figure 5.1) suggests high-traffic object ma-

nipulation in some portion of the benchmark, and consequentially, a lot of reference

counting overhead.

Results Across Benchmarks

We can easily see the difference in reference counting overhead if we examine the

savings across benchmarks.

Due to the results of Figure 5.6 and the processing nature of the benchmarks,

we can conclude that 213 javac and 209 db represent software that does not make

use of the thumb idiom and therefore does not incur major overhead from reference

counting. The benchmarks 202 jess and 228 jack suggest considerable benefit from

a dusty cache implementation, and justify further investigation in hardware.
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Chapter 6

Liquid Architecture

Experimentation

After simulating dusty cache with reference counting in software, we concluded that

we will save the most traffic if we implement the dusty policy in our data cache alone.

After considering the simulation results of Subsection 5.1.1, we expect to contain from

30% to 50% of a program’s reference counting memory traffic in cache, depending on

the program’s behavior.

The experiments in this chapter were conducted on the Liquid Architecture

platform. The current configuration of our platform is as follows:

• We use 4 Kbytes of on-chip cache memory. For our write-back cache, this means

a 4KByte data cache. For our dusty cache, this means a 4 KByte data cache

and its according 4 KByte memory image.

• Our off-chip memory is SRAM and offers 4 MBytes, and we expect to have an

additional 12 MBytes of SDRAM operational soon.

Because our system uses only SRAM, the ratio of cycles spent accessing cache

to cycles spent accessing off-chip memory is not representative of ordinary systems.

Our instrumented LEON processor can monitor read- and write-access to main mem-

ory, and report the total access of each, as discussed in Chapter 3. Counting the

memory accesses will help us determine which cache policy causes more traffic to

memory.
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6.1 Monte Carlo Experimentation

We designed this set of trials to quantify the performance of a reference counting

system with the Liquid Architecture platform. Due to the memory storage ineffi-

ciencies discussed above, we cannot yet deploy a Java Virtual Machine on the Liquid

Architecture system. We therefore employ a probabilistic approach to create a bench-

mark that elicits microarchitecture behavior similar to that of the JVM profiled in

the previous chapter.

This experiment is a Monte Carlo simulation [10]: it randomly triggers a set

of events based on their probabilities to simulate a model. Such experiments are em-

ployed when a scenario is too difficult or expensive to evaluate analytically. Because

our target benchmarks have elements that do not comply with the current Liquid

Architecture platform (as discussed in Subsection 3.3.1), and because we are only

interested in the cache behavior these benchmarks elicit, a Monte Carlo simulation

best suits our needs.

To execute this experiment, we supply the set of events, the probabilities of

each, and a framework to elicit the microarchitecture behavior of each event.

6.1.1 Determining the Set of Events

As discussed in Section 5.1, we are interested in evaluating the performance of the

cache; this depends on the values resident in cache. Therefore, we are interested in

monitoring only certain events that will alter the cache performance. In reference to

our JVM with reference counting garbage-collection, this pertains to the following:

• Reads: getfield and aaload instructions.

• Writes: putfield and aastore instructions.

• Heap-based RefCount++/−−: heap-based reference points to or away from an

object.

• Stack-based Refcount++/−−: stack-based reference points to or away from an

object (approximated with astore instructions as discussed in Subsection 6.1.2).

From the above events, we can infer reference count increments and decrements.

We next develop a mechanism to determine the relative probability of each event.



35

Event Occurrences

Reads 1,182,870
Writes 209,491
AStores 197,794
Heap-Based RefCount++ 67,691
Heap-Based RefCount−− 54,706

Figure 6.1: Occurrences of Cache-Altering Events

6.1.2 Determining Event Probability

We discovered in Subsection 5.1.1 that the dusty policy is a reasonable cache write

policy to adopt on the data cache, most noticeably for programs with high refer-

ence counting traffic. The results in Figure 5.6 encourage us to examine the JESS

benchmark to examine the probabilities of each event.

We gather the results by running the benchmark on the same instrumented

JVM from our software simulation experiments. We added event-counting function-

ality to our trace analysis tool discussed in Section 5.1 and analyzed the JVM output.

These results are shown in Figure 6.1.

It is important to note that the write and read occurrences do not include the

actual read and increment of the reference count value. Rather, these counts pertain

to JVM instructions that can alter the data cache.

As discussed in Section 5.1, our particular JVM reference-counting implemen-

tation [1] does not increment or decrement an object’s reference count when a stack-

based pointer points to or away from it. For this reason, we approximate stack-based

reference-counting traffic by observing the occurrences of the astore instruction. We

know that an astore will increase a reference count, but we must estimate how often

the instruction overwrites a non-null value and decrements a reference count.

For a lower bound, we look at the ratio of heap-based decrements to heap-

based increments (found in Figure 6.1) and multiply the value by the total number of

astores. For our upper bound of stack-based decrements, we use the total number

of astores. We see the results in Figure 6.2.

A similar approach to approximating reference-counting traffic on the stack is

to track the aload instruction in addition to the astore instruction. For a stack-

based machine, we could argue that an object’s reference count would increase upon

an aload, increase again upon the astore, then decrease once the operation is over.

This behavior would result in even more unnecessary reference counting traffic to
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Event Occurrences

Stack-Based RefCount++ 197,794
Stack-Based RefCount−− 159,851 - 197,794
Heap-Based RefCount++ 67,691
Heap-Based RefCount−− 54,706

Figure 6.2: Occurrences of Reference Counting Events

Event Probability

Read .5727
Write .1263
RefCount++ .1601
RefCount−− .1409

Figure 6.3: Probability of Cache-Altering Events

memory because it exhibits the thumb idiom described in Subsection 2.3.1. Since we

use a register-based architecture, we do not account for this aload phenomena.

After gathering the occurrences of each event, we then convert these values

to relative probability format, as shown in Figure 6.3. For our immediate purposes,

we will assume the stack-based reference count decrement is the median value in the

range.

Now that we have the events and their relative probabilities, we construct a

framework to fire these events with their respective probabilities.

6.1.3 A Framework to Model JVM Behavior

As we discussed earlier in the chapter, we cannot load our instrumented JVM onto the

Liquid Architecture platform for execution due to the current platform restrictions.

However, as discussed in Section 2.1, we can elicit the same microarchitecture behavior

with different programs. Therefore, our objective is to develop a framework to fire

actions that provide machine instructions that are similar to that of the JVM for each

event discussed above. We can identify these actions for each individual event.

• A read is an access to a memory address whose value may or may not be cached.

For this reason, we allocate an array of 1024 integers to represent the memory

used by our program. Upon a memory read, we randomly access an array index

and read the value at that memory address into a register.
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• We execute a write by generating another random index into the same memory

array. Instead of saving this value to a register, we simply write over it with

another value.

• In the event of a reference count increment, we access an array of 64 integers that

represent our reference count table. We generate a random index to determine

which reference count to increment, read the corresponding value into a register,

increment it, and write it back to its position in the array.

• A reference count decrement is the same as the above, except the value we write

is one less than the one we read in.

The majority of the program branches off a main loop that generates a random

number and selects an event based on the probabilities listed in Figure 6.3.

6.1.4 Ensuring Valid Experimental Results

The foremost challenge of this Monte Carlo approach is keeping the simulation pro-

gram from contaminating the results that we wish to monitor. This can present itself

as skewed results from the statistics module, or as a memory system whose contents

does not reflect the data from our simulation.

As discussed above, Monte Carlo simulations require random numbers. Be-

cause we want to refrain from disturbing the simulation results, our random number

generator must disrupt the memory system state as little as possible. However, our

random number generation method necessarily reads and writes a single value in

memory upon each new value generated. This will alter the cache, but we can take

further precautions to lessen its effect on our experimental results.

The Liquid Architecture system allows us to take other measures to ensure

valid results. As discussed in Subsection 3.3.2, we can perform method-wise profiling.

This allows us to isolate our random number computation to a single method and

refrain from explicitly tracking it in our statistics module. Therefore, though the

random number computation will alter the state of the cache, the actual cache hit or

cache miss event will not be tracked.

6.1.5 Monte Carlo Experimental Results

We gathered the results by following the protocol described in Section 3.3 and navi-

gating through the configuration interface, shown in Figure 3.3 and Figure 3.4. Our
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Figure 6.4: Monte Carlo benchmark results for write-back and dusty policies

primary goal is to quantify the reference-counting memory traffic that occurs in dusty

and write-back caches.

For both cache policies, we observe three results: total memory writes, memory

writes without reference-counting, and memory writes due to reference counting. We

obtain these results by executing the benchmark twice: once with reference-counting

enabled, and once with the same sequence of events but omitting the reference-

counting instrumentation. We then compute the reference-counting memory writes

from these two execution results as so:

MemoryWritesRefCount = MemoryWritesTotal − MemoryWritesNoRefCount

In the results shown in Figure 6.4, we find that the non-reference-counting

instrumentation and read/write simulation occupies over two-thirds of the program’s

memory writes. Once we separate the reference-counting traffic from the rest, we find

that we save roughly half of our memory writes. It follows from the data and from

the design of our cache in Chapter cpt:cache that half of the memory-write traffic of

write-back cache was unnecessary.

The dusty cache savings on non-reference-counting traffic is unremarkable here.

The write event of our Monte Carlo simulation consisted of writing a random number

to memory, so we find very few occurrences of value change-and-return.
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In our JVM experiment analysis, we categorized dusty cache as more effective

for data cache than for unified cache. In analyzing this experiment, we can conclude

that when put into practice, dusty cache is more effective for some classes of data

than others. We can identify a distinctive class of momentary data such as reference

counting that operates better under dusty write policy than under write-back.

6.2 Dusty Cache Performance Across Benchmarks

After seeing the memory traffic savings of the dusty cache policy with a reference

counting simulation, another research question arises. How much memory traffic, if

any, will the dusty cache policy save for other, non-reference-counting programs?

We gathered some C benchmarks, compiled them with our cross-compilation

suite, then executed them on the platform with write-back and dusty cache implemen-

tations. These benchmarks elicit a variety of memory useage patterns, as discussed

below.

• Towers of Hanoi is a popular recursive computation puzzle. It uses no global

variables or arrays; rather, it exclusively uses register computation and recur-

sion. For this experiment, we use ten “discs” in the puzzle.

• Numeric sort is a heap-sort benchmark that generates an array of random

integers and sorts it. We use an array of size 1,000.

• BLASTN (Basic Local Alignment Search Tool / Nucleotide) is a widely em-

ployed software solution for comparing genetic material. We analyze stage 1 of

BLASTN in this benchmark: open-addressed, double-hashing of bases (A, C,

T, G). We generate these bases randomly.

We executed these benchmarks with the same cache configurations as the

Monte Carlo simulation above: 4Kbytes of cache for our write-back configuration, and

4Kbytes of cache paired with a 4Kbyte memory image for our dusty configuration.

The results of the trials and the computed percent savings are shown in Figure 6.5.

We can better understand these results by further examining the behavior of these

programs.

Because Towers of Hanoi is almost entirely stack-based in its computational

phase, it uses little RAM storage. For this reason, we see no evictions from cache
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Write-Back Dusty Percent
Benchmark Writes Writes Saved

Numeric Heapsort 233 220 5.5%
BLASTN 185,548 180,203 3.0%
Towers of Hanoi 0 0 0.0%

Figure 6.5: Memory writes per benchmark for write-back and dusty caches

and no writes to memory. Further, this means that dusty cache cannot improve this

benchmark’s performance over write-back.

As mentioned above, the numeric heapsort benchmark generates an array and

sorts it. This involves swapping values from one array index to another, where some

of the array values may be equivalent. Because this array is not stack-based, we see

more memory writes than Towers of Hanoi. The five percent savings with dusty cache

suggests that heapsort occasionally swaps a value away and then back to a location

prior to an eviction.

BLASTN uses an open-addressed, double-hashed hashtable to organize nu-

cleotides, so change-and-return behavior is possible in this stage. We can imagine

an enhanced statistics module that tracks the method that tracks the instruction

memory address that last wrote a cached value. This data would help us identify the

method in which a saving occurred upon an eviction from dusty cache. At current,

this module is in development. Without it, we are still able to quantify the mem-

ory access savings for these benchmarks and answer the question at the beginning of

Section 6.2.

6.3 Extrapolating Dusty Cache Performance

We measure and report the results of our Liquid Architecture experiments in both

memory writes and percent memory writes saved. This metric is more portable than

nanoseconds saved or clock cycles saved because the ratio of the Liquid Architecture

system’s processor and memory speeds are far different than that of a modern desktop

computer. Moreover, clock cycles measure cache speed and average performance

rather than the behavior of the cache policy.

By reporting our results in memory writes, we can project clock cycle savings

for different memory and processor speeds. In Figure 6.6 we demonstrate the effect

of increasing the processor speed from its current speed of 25MHz up to 2.5GHz. We
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Figure 6.6: Monte Carlo (reference counting portion) cost in processor clock cycles as
processor speed increases

estimate this by changing the clock cycle cost of a memory write such that if our

processor were 50MHz, twice as many clock cycles would pass during a write stall.

We computed Figure 6.6 using the “Reference Counting Only” data set from

our Monte Carlo simulation, shown on the far right of Figure 6.4. This permits us

to see how many clock cycles the processor dedicated to incrementing, decrementing,

reading, and writing reference counts. From the figure, we see that if our processor

were one hundred times faster, we would expect to save roughly one-third of the clock

cycles spent on total reference counting overhead with dusty cache.

We expect to save even more clock cycles with faster systems, due to the

“memory wall” notion discussed in Chapter 1.
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Chapter 7

Conclusion

In this chapter we review the progression of this thesis and the experimental results.

From this, we illustrate some contributions and future work that may follow from

these results.

7.1 Thesis in Review

We designed and implemented the dusty cache write policy, and we present experi-

mental results that show its effectiveness in executing the garbage-collection technique

of reference counting.

We first approximated the memory savings with an instrumented JVM and a

cache approximation program. From these results, we discovered that the dusty cache

policy saves the more memory writes as a data cache than as a unified cache, and is

more effective for programs of greater object traffic. We further discovered that we

can save 50% to 70% of the total reference counting traffic to memory with our dusty

cache.

We implemented the dusty cache policy in VHDL and realized it with the

Liquid Architecture platform. We then created a Monte Carlo simulation in C to

run on this platform. We tailored this experiment to elicit similar microarchitecture

behavior to a JVM that uses reference counting garbage-collection.

Due to the reconfigurability of the Liquid processor, we were able to attain

cycle-accurate performance measurements of the dusty cache performance as well as

write-back cache performance. We measured the writes to memory with both caches

in a Monte Carlo simulation. Our results show that dusty cache saves unnecessary
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memory traffic due to reference counting in addition to other value-change-and-return

behavior in normal program flow.

Through our experiments, we have qualified the efficiency of dusty cache in

practice: it is an effective data cache for momentary change-and-return data values.

Though we primarily explore reference counting as our example of this type of data, we

make the case that this cache write policy effectively prevents said writes to memory

in any instance where a cached value changes and returns to its former value prior to

eviction.

7.2 Future Work

This thesis has quantified the memory traffic savings of dusty cache and illustrated its

effectiveness for different types of data and cache configurations. This opens several

avenues of further dusty cache research.

• Dusty cache may work best as an exclusive data cache, explicity for momentary

change-and-return data such as reference counts. In this respect, the compiler

may route normal data traffic through a general write-back cache, but defer

reference counting instrumentation to a block of memory buffered solely by a

dusty cache. The research would entail finding an optimal compromise of caches

to conserve chip space as well as prevent unncessary writes to memory.

• Similar to the above, we could segregate the dusty cache and optimize a compiler

to track all possible change-and-return values and route them to the dusty-

buffered memory space.

• In general reference counting implementations, we see only increments and

decrements; we never see a reference count overwritten by an identical value.

The dusty cache will prevent the ensuing unnecessary write to memory, yet this

identical overwrite gesture was not measured in this thesis. This gesture may

be common in other scenarios and merits investigation.
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