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Memory profiling captures programs’ dynamic memory behavior, assisting programmers in debugging, tuning,
and enabling advanced compiler optimizations like speculation-based automatic parallelization. As each
use case demands its unique program trace summary, various memory profiler types have been developed.
Yet, designing practical memory profilers often requires extensive compiler expertise, adeptness in program
optimization, and significant implementation efforts. This often results in a void where aspirations for fast and
robust profilers remain unfulfilled. To bridge this gap, this paper presents PROMPT, a pioneering framework
for streamlined development of fast memory profilers. With it, developers only need to specify profiling events
and define the core profiling logic, bypassing the complexities of custom instrumentation and intricate memory
profiling components and optimizations. Two state-of-the-art memory profilers were ported with PROMPT
while all features preserved. By focusing on the core profiling logic, the code was reduced by more than 65%
and the profiling speed was improved by 5.3× and 7.1× respectively. To further underscore PROMPT’s impact,
a tailored memory profiling workflow was constructed for a sophisticated compiler optimization client. In just
570 lines of code, this redesigned workflow satisfies the client’s memory profiling needs while achieving more
than 90% reduction in profiling time and improved robustness compared to the original profilers.

1 INTRODUCTION
Profiling techniques summarize runtime information of a specific run of the program. Examples
of profile information include a summary of the hot regions of the program, edge weights on the
control flow, and the frequency of manifested memory dependences. Programmers use profiles to
guide debugging and tuning of programs. Compilers use profiles to guide sophisticated program
optimizations [Chen et al. 2016; g++ 2023; intelc++ 2023; Panchenko et al. 2019; pogo 2022].
Memory profiling is a type of profiling concerned with memory-related program behavior and is
particularly useful in overcoming the limitations of compiler memory analysis to unlock speculative
transformations that can dramatically improve program performance [Bridges et al. 2007; Connors
1997; Johnson et al. 2012a; Liu et al. 2006; Peng Wu and Cascaval 2008; Steffan et al. 2000; Thies
et al. 2007]. These speculative transformations optimistically assume memory behaviors observed
in profiling runs scale to production workloads. They can also preserve correctness at runtime by
executing recovery code when a specific dynamic instance of an assumption is detected to be false.
Since trends in profiled behavior tend to hold regardless of program input, the cost of recovery code
is low compared to the gains obtained by the unlocked transformations. Performance is shown to
improve by orders of magnitude for many programs [Bridges et al. 2007; Liu et al. 2006; Peng Wu
and Cascaval 2008; Steffan et al. 2000].

Authors’ addresses: Ziyang XuPrinceton University, USA; Yebin ChonPrinceton University, USA; Yian SuNorthwestern
University, USA; Zujun TanPrinceton University, USA; Sotiris ApostolakisPrinceton University, USA; Simone Campanoni-
Northwestern University, USA; David I. AugustPrinceton University, USA.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

ar
X

iv
:2

31
1.

03
26

3v
1 

 [
cs

.P
F]

  6
 N

ov
 2

02
3

https://doi.org/


1:2 Ziyang Xu, Yebin Chon, Yian Su, Zujun Tan, Sotiris Apostolakis, Simone Campanoni, and David I. August

Many types of memory profiling have been proposed to address various needs, including memory
dependence profiling [Chen et al. 2004; Larus 1993; Zhang et al. 2009], value pattern profiling [Gab-
bay and Mendelson 1997], object lifetime profiling [Wu et al. 2004], and points-to profiling [Johnson
et al. 2012b]. A memory profiler first tracks program events related to program’s memory behavior,
like memory accesses, loop invocations, and function calls. Then, it uses the events to summarize
the memory behavior in some way. Both tracking and summarizing are usually expensive. Thus,
memory profilers must be heavily optimized to be practical. As a result, memory profiler developers
must master a range of skills, from methods of instrumenting programs to program optimizations.
To make memory profiling faster, researchers have proposed lossy techniques to reduce profiling
overheads [Chen et al. 2004; Vanka and Tuck 2012]. However, such techniques are often of limited
utility due to the imprecision introduced by them. As one paper puts it, “the difference in accuracy
has a considerable impact on the effectiveness of the speculative optimizations performed” [Vanka
and Tuck 2012]. Thus, this work focuses on precise memory profiling. Prior work also proposes
optimizations without sacrificing precision, such as parallelizing the profiler to reduce the cost [Kim
et al. 2010], but these optimizations are often specific to a particular memory profiler.
Without practical memory profilers, memory profiling and its clients like speculative opti-

mizations are less likely to be adopted. For example, Perspective is a state-of-the-art speculative
automatic parallelization system that requires memory profiling [Apostolakis et al. 2020a]. To
collect the memory profiles, it uses two off-the-shelf memory profilers, LAMP and the Privateer
profiler [Johnson et al. 2012b; Mason et al. 2009]. Both are state-of-the-art for the memory profiles
they produce. LAMP is a loop-aware memory dependence profiler that tracks memory dependences
and their loop distances. The Privateer profiler (referred to as “Privateer” for short in this paper)
gathers multiple types of memory profiles, including points-to information, object lifetime, and
value predictions. Both profilers are based on LLVM, making them easy to integrate into modern
compiler optimizations. However, their implementation is quite complex, making them hard to
adapt. They also have significant runtime overhead and fail on some complex benchmarks. These
problems significantly limit the applicability of Perspective.

This paper introduces a novel factorization of memory profiling to simplify the process, enabling
developers to focus solely on the core profiling logic. This approach first separates memory profiling
into two main phases: the frontend and the backend. The frontend is responsible for generating
memory profiling events. The backend processes these events to produce profiles. Generalization
is then applied to both phases. The frontend standardizes the instrumentation of common events
in memory profiling while the backend generalizes and provides commonly used memory profiling
components, such as data structures, algorithms, and optimizations.
Building on this factorization, we present PROMPT, the first memory profiling framework for

streamlined development of fast memory profilers. PROMPT systematizes memory profiling events
and provides generalized implementations of both typical profiling components and optimizations.
Using PROMPT, developers can design and implement memory profilers more efficiently without
delving into compiler internals, parallel programming, or repeated implementation. Profilers devel-
oped with PROMPT are robust and performant. This can shift the perspective on memory profiling
adoption. Rather than settling for off-the-shelf memory profilers with subpar performance or facing
the daunting task of building a profiler, developers can now craft tailored memory profilers with
low profiling overhead easily.

This paper offers the following main contributions:

• proposes a novel factorization of memory profiling to simplify the development of memory
profilers through separating the profiling frontend and backend and generalizing components
and optimizations (§3);
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• introduces PROMPT, an open-source, fast, and extensible memory profiling framework, and
discusses its design and implementation (§4, §5);

• demonstrates the extensibility and performance of PROMPT by porting two state-of-the-
art memory profilers, LAMP and the Privater profiler, and achieving 65% reduction of the
codebase and 5.3× and 7.1× faster profiling speed respectively (§6.2, §6.3);

• highlights PROMPT’s impact on memory profiling with a redesigned memory profiling
workflow for a sophisticated compiler optimization client, Perspective, which is succinct at
570 lines of code and reduces client profiling time by more than 90% (§6.4).

2 BACKGROUND
To build an understanding of the functionality and the overhead of memory profilers from the
ground up, we first analyze a typical memory dependence profiler and discuss the causes of the
slowdown. Then we discuss the workflow of using memory profiling with existing systems and
the difficulties in each option and show how PROMPT changes the situation of adopting memory
profiling.

2.1 A Typical Memory Profiler
The memory dependence profiler is the most common type of memory profiler. This section
introduces the design of a typical memory profiler and shows sources of slowdown.

Design. Consider a vanilla memory dependence profiler that records the set of manifestedmemory
flow dependences. A memory flow (i.e., read-after-write) dependence occurs when a memory load
depends on the result of a memory store. The profiler first instruments the memory instruction
and its accessed memory location for all the memory accesses. Subsequently, it identifies whether
a new memory access creates a memory dependence. To do so, the profiler remembers for each
memory address the store instruction that last touches it. When a load instruction is executed, a
dependence is found from the latest store to the same memory location as the load instruction.
Dependences, as pairs of load and store instructions, are then recorded in a data structure.

Slowdown. The three steps, namely instrumentation, tracking the latest writes, and recording
dependences in a data structure, all add additional instructions to each execution of a memory
instruction in the original program. Depending on the instrumentation method, the added cycles
may have various sources, such as function calls and dynamic translation. A hash map can be used
to track the latest write to each memory address and a hash set for recording the profiling results;
each comes with additional overhead. Depending on the implementation, an additional tens to
thousands of CPU cycles can be added to each memory access, causing an overall slowdown of
several to hundreds of times.

2.2 Different Ways to Use Memory Profiling
Figure 1 illustrates the workflow differences when using memory profiling with and without
PROMPT, based on the systems listed in Table 1.
Before PROMPT, when users wish to use memory profiling, the first step is to check if there

are existing profilers matching their requirements. SD3, LAMP, and Privateer are examples of
such existing memory profilers[Johnson et al. 2012b; Kim et al. 2010; Mason et al. 2009]. If the
requirements diverge even slightly, adapting the tool for a new purpose becomes challenging
due to its legacy codebase and monolithic design. Furthermore, existing memory profilers often
have a high overhead, rendering them impractical. If no suitable profiler exists, users must create
a memory profiler. Instrumentation or memory tracing systems can aid in the development of
memory profilers. While specific compiler knowledge isn’t mandatory, significant implementation
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Category Systems

Compiler LLVM [Lattner and Adve 2004]
GCC [GCC Team 2023]

Instrumen-
tation
System

Pin [Wallace and Hazelwood 2007]
DynamoRio [Bruening et al. 2012]
Valgrind [Nethercote and Seward 2007b]

Memory
Tracing

drcachesim [DynamoRio Team 2023]
adept [Zhao et al. 2006]
mTrace [mTrace Team 2013]

Memory
Profilers

SD3 [Kim et al. 2010]
LAMP [Mason et al. 2009]
Privateer [Johnson et al. 2012b]

Memory
Profiling

Framework
PROMPT (this work)

Table 1. Different systems for
memory profiling.

Found matching
memory profilers?

Exact match?

Yes

Implement
from scratch?

No

Directly use
profilers

Yes

Adapt existing
profilers

No No

Yes

Unsatisfactory
Performance

Implementation 
Effort

Optimization 
Skills

Compiler 
knowledge

Found matching
PROMPT modules?

Exact match?

Yes

Implement with
PROMPT

No

Yes

Adapt existing
modules

No

Satisfactory
Performance

In a few
lines

Core profiling
logic only

Without PROMPT With PROMPT

Implement with 
compilers

Implement with
frameworks

Directly use
modules

Fig. 1. The workflow of using memory profiling with and without
PROMPT.

effort and optimization skills remain essential. Instrumentation systems typically operate at the
binary level, such as Pin, DynamoRio, and Valgrind [Bruening et al. 2012; Luk et al. 2005; Nethercote
and Seward 2007b]. Dynamic injection of instrumentation code by binary instrumentation systems
leads to an overhead of around 1-10x, irrespective of the profiling logic’s complexity [Luk et al.
2005; Nethercote and Seward 2007b]. Tracing systems, on the other hand, create and store execution
traces, processing them through online or offline analytical algorithms. For instance, drcachesim,
adept, and mTrace are memory tracing systems built atop DynamoRio or Pin [DynamoRio Team
2023; mTrace Team 2013; Zhao et al. 2006]. While these systems mitigate some implementation
efforts, merely gathering the trace incurs a 10–100× overhead. This does not account for processing
the acquired trace to derive profile information. An alternative approach to building a memory
profiler from the ground up is to leverage a compiler directly, instrumenting at the intermediate
representation (IR) level, as seen with LLVM and GCC [GCC Team 2023; Lattner and Adve 2004].
Efficient memory profiling can be achieved this way, as other instrumentation-based systems
have shown [Serebryany et al. 2012; Stepanov and Serebryany 2015]. However, users should be
well-acquainted with the compiler and adept at optimizing intricate systems.

The memory profiling workflow is simplified with PROMPT. The initial step involves searching
for appropriate modules within the PROMPT repository. If suitable modules are identified, they can
be used directly. If adaptation is necessary, it typically requires minimal code adjustments, thanks
to PROMPT’s modular design. If there is no match and a new implementation is needed, users can
concentrate solely on the profiling logic and delegate the rest to PROMPT. PROMPT optimizes the
workflow and diminishes the challenges associated with adopting memory profiling.

3 OVERVIEW: THE PROMPT APPROACH
As discussed in §2.1, a memory profiling pipeline can be broken down into three steps — instrument-
ing profiling events, the profiler-specific logic that generates profiling results, and recording and
storing profiling results. Thus, crafting a memory profiler necessitates an intricate understanding
and considerable effort in areas such as instrumentation, the formulation of profiling logic, and
storing the profiling results in certain data structures—all while ensuring expedient performance,
as illustrated on the left side of Figure 2. However, it is really the core profiling logic a profiler
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PROMPT ComponentsTasks for Developing
a Memory Profiler

Generalized
Instrumentation

for Memory Profiling

Event
Queue

Profiling Logic

Profiling Events
Specification

Profiling Frontend Profiling Backend

Program
Instrumentation

Profiling Logic

Profiling Results
Generation

Generalized Components
& Optimizations

for Memory Profiling

Performance 
Optimization

Without PROMPT With PROMPT

Fig. 2. The process of building a memory profiler, with and without PROMPT.

developer is interested in. To allow developers to focus only on the core profiling logic, this paper
presents a novel factorization of memory profiling pipeline, termed as the PROMPT approach.

Separation. Inspired by the implementation of some existing profilers [Deiana et al. 2023; Johnson
et al. 2012b; Ketterlin and Clauss 2012], the PROMPT approach first decouples the profiling into
two parts: the event generation (‘frontend’) and the profile formulation (‘backend’). The profiling
frontend instruments the program and tracks profiling events and corresponding values. The
profiling backend consumes the events, runs the profiling logic, and generates the profiles. The
frontend and the backend are connected through an event queue. This clear separation has three
main benefits. First, it allows the profiler writer to separate the concerns of instrumentation from
the core profiling logic. Second, it reduces the interference of profiling logic with the program
under profile. Moreover, it makes it easier to have multiple profiling backends to enjoy parallelism
without rerunning the program. While the design of separated frontend and backend has been
used in existing profilers, PROMPT is the first to generalize it as a unified framework that applies
to all existing memory profilers. The enforcement of decoupled frontend and backend while easing
the connection between them is the key to PROMPT’s extensibility and performance.

Generalization. Separation alone doesn’t guarantee extensibility and performance. Another
observation is that existingmemory profilers havemany overlapping components and optimizations.
By generalizing these components and optimizations, a memory profiler can be built much more
easily and efficiently. More precisely, the generalization process involves identifying common
components with similar functionalities and developing them with a flexible interface. The interface
should be easily specialized by the profiler developers for their specific needs. For the profiling
frontend, the profiling events need to be generalized. The profiler developers should be able to choose
from a set of categorized and standardized events, and only the events and values the profiler requires
will be instrumented. Meanwhile, in the profiling backend, shared data structures, algorithms, and
optimizations should be made generic, serving as foundational elements for developers when
implementing their profiling logic.
With the PROMPT approach, the profiler developers only need to specify the profiling events

and implement the core profiling logic, as shown on the right side of Figure 2.

4 DESIGN
Figure 3 shows the design of PROMPT and the workflow of a memory profiler implemented on
top of it. PROMPT instruments the program with profiling events in the profiling frontend and
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Instrumented
Program
Bitcode

Profiling
Inputs

Program
LLVM

Bitcode
Shadow Memory

Context Manager

Insert Event Calls

LTO-enabled
Linker

Instrumentation
LLVM Pass

Profiles

Input/OutputsPROMPT Components Tasks for Developing a Memory Profiler

Profiling Event
Generation

Frontend
Library

Frontend
Binary

High-throughput Containers
with Insertion Logic

Event
Queue

Data Parallelism Wrapper

Compiler

Backend Driver

Backend
Binary

Memory Profiling Module

Core Profiling LogicProfiling Event
Specification

Profiling Frontend Profiling Backend

Backend Library

Fig. 3. The design of PROMPT.

generates the frontend binary. To implement a memory profiler, one implements a profiling module
in the profiling backend with the help of PROMPT’s backend library, and compiles it to a backend
binary. A profiling process happens when we run the frontend and backend binary with profiling
inputs. The profiling process and the backend process communicate through the event queue. The
backend process will generate the profile.

4.1 Generalizing Memory Profiling Components
The profiler writer still needs to implement many functionalities to build a memory profiler, many
of which are common across different memory profilers. For example, many profilers need to keep
a map from the memory address to the metadata. PROMPT recognizes this and provides a set of
common components to ease the implementation of the logic of a memory profiler.

Profiling Frontend. PROMPT introduces a generic frontend designed to instrument the program,
thereby facilitating the generation of memory profiling events. A categorization and standard-
ization of profiling events, prevalent in existing memory profilers, is performed. Moreover, each
event encompasses a set of arguments. Section §5.1 discusses the event types and their respective
arguments in detail. Additionally, PROMPT instruments the source code with callback functions,
which sequentially push the profiling events to the queue.

Profiling Backend. PROMPT provides an array of generic backend components to streamline
the development of memory profilers. Shadow memory profiling, previously employed in various
dynamic program analysis tools [Nethercote and Seward 2007a; Zhao et al. 2010], operates by storing
metadata in a distinct shadow memory location. PROMPT includes a versatile shadow memory
that can be tailored to accommodate specific metadata requirements. Often, memory profilers
necessitate tracking context, such as the call stack and loop nest, with the context information of a
particular event potentially being encoded in the shadow memory for future retrieval. PROMPT
provides a generic context manager adept at encoding and decoding such contexts. Furthermore,
memory profilers frequently utilize containers, such as sets and maps, coupled with a certain
insertion logic to document profiling results — for instance, generating a new entry or incrementing
a count in a map from dependence. PROMPT offers various containers equipped with predefined
insertion logic to facilitate this process.
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4.2 Generalizing Memory Profiling Optimizations
Optimizations are imperative for memory profilers to ensure viable performance and practical utility.
While numerous optimizations are prevalent across existing memory profilers, their instantiation in
disparate forms renders generalization a nontrivial task. PROMPT facilitates a generalized approach
to two main optimizations, specialization and parallelism, thereby enabling most memory profilers
to use them with minimal developmental effort.

Removing unnecessary instrumentation. Memory profilers may only care about a subset of events.
We use the specialization technique to remove unnecessary events and reduce overhead [Reps and
Turnidge 1996]. A way to do specialization can be at the instrumentation time. We can configure
the LLVM pass to only instrument the necessary calls and arguments. However, this requires a
complicated way to communicate with the LLVM pass. Instead, PROMPT does the specialization
at link-time. As shown in Figure 3, PROMPT gets the profile event specification from the module
implemented by each profiler. PROMPT then automatically specializes the frontend library that
generates profiling events to the queue based on the specification. For any irrelevant event, an
empty function body will be generated. For any information not required for an event, the argument
will not be pushed to the queue. At link time, we enable link-time optimization. The compiler
will automatically optimize any dead instructions, empty functions, unused arguments, and all
instrumented code to produce them (see profiling frontend in Figure 2). In this way, PROMPT
removes the cost introduced by generic events without configuring the LLVM pass. We have verified
the validity of this approach by examining the generated binaries to confirm that the generic event
handling was removed. This link-time specialization makes the instrumentation LLVM pass easy
to implement and easy to maintain.

Data Parallelism. Another common optimization among memory profilers is the parallelism.
PROMPT makes it easier to leverage parallelism. One form is the address-based parallelism that
state-of-the-art memory profilers implement for their specific task [Kim et al. 2010]. Multiple
profiling backends can run in parallel to process profiling events to decoupled chunks of address
space, as shown in the profiling thread of Figure 2. PROMPT generalizes this to other types of data
parallelism, such as parallelism of tasks on different originating instructions instead of different
addresses. It also provides a wrapper to adopt data parallelism easily. A memory profiler built with
PROMPT only needs to mark that an operation is decoupled based on the address of other values
and provide a method for merging results. PROMPT will manage the parallelism at runtime.

4.3 Trading Latency for Throughput
PROMPT uses a pivotal insight to enhance performance markedly: trading latency for throughput.
Here, throughput is defined as the number of events processed within a given time unit, while
latency represents the time interval between a memory event’s generation at the frontend and its
processing at the backend. Given that memory profilers only supply aggregated summaries—or
profiles—upon completion and do not necessitate real-time feedback, latency does not emerge as a
critical aspect for memory profilers. However, due to the typically immense data volumes generated
in memory profiling, a system with high throughput becomes imperative to expediently process
the memory events. Any bottleneck in the queue, profiling logic, or result-storing containers will
hamper the entire process. Consequently, numerous components within PROMPT are intentionally
crafted to prioritize throughput over latency.
This optimization is primarily realized by incorporating buffers into bottleneck-inducing com-

ponents, thereby redistributing the load to other components which can harness parallelism or
alternative optimizations to boost throughput. One example is the queue situated between the
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frontend and backend. We identified the main throughput bottleneck as the overhead of writing
events to the frontend queue. PROMPT counteracts this by employing a blend of ping-pong buffer
design and streaming writes, ensuring the frontend can inscribe to the queue with minimal latency
(refer to §5.2 for further details). Another illustration involves the containers responsible for storing
profiling results. It is customary for these containers to experience a deluge of stores within a brief
window, interspersed with periods devoid of reads. Thus, PROMPT utilizes a buffer to aggregate
the stores, performing the reduction (typically in parallel) only when the buffer reaches capacity or
when a read is initiated (see §5.3 for additional details).

5 IMPLEMENTATION
PROMPT’s frontend, backend, and profilingmodules are developed in C++, while its instrumentation
is built upon the LLVM compiler infrastructure. PROMPT’s instrumentation pass is currently built
on LLVM 9.0.1 in order to align with the latest versions of LAMP, Privateer, and Perspective [Liberty
Research Group 2022]. The frontend has around 3400 lines of code, with 2600 for the instrumentation
pass and 800 for the frontend library. The backend has around 3000 lines of code, with 900 for
the backend driver, 400 for the context manager, 200 for the shadow memory, 100 for the data
parallelism wrapper, 1000 for the high-throughput data structures, and some other utilities. The
queue has around 500 lines of code. Note that PROMPT is still under active development, so the
code size may change in the future. PROMPT is open-source [PROMPT Team 2023].

5.1 Profiling Events

Event Category Events Information

Memory Access
Load Instruction ID, address, value, size
Store Instruction ID, address, value, size

Pointer Creation Instruction ID, address, type

Allocation

Heap Allocation Instruction ID, address, size
Heap Deallocation Instruction ID, address
Stack Allocation Instruction ID, address, size
Stack Deallocation Instruction ID, address
Global Initialization Object ID, address, size

Context

Function Entry Function ID
Function Exit Function ID

Loop Invocation Loop ID
Loop Iteration Loop ID
Loop Exit Loop ID

Program Starts Process ID
Program Terminates Process ID

Table 2. The profiling events provided by PROMPT.

PROMPT provides three categories of profiling events — memory access, allocation, and context
events, as listed in Table 2. Most events are instrumented at the LLVM IR level by adding callback
functions right after the corresponding event with all the information through function arguments.
For example, a load event will be followed by an onLoad(instrId, address, value, size).
Heap allocation and deallocation events are tracked using library interposition, so allocations in
external functions can be tracked to provide a complete view of the memory space [GNU C Library
Team 2023].

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



PROMPT: A Fast and Extensible Memory Profiling Framework 1:9

5.1.1 Adding Profiling Events. PROMPT provides a comprehensive set of profiling events, ade-
quately addressing the requirements of many existing memory profilers, yet the necessity for
additional events in future developments is acknowledged. Although the addition of new events
presents its own challenges, the decoupled design of PROMPT facilitates a clearer and more straight-
forward implementation process compared to current memory profilers. The procedure involves
initially specifying the event and its potential values, followed by crafting the instrumentation
in the LLVM pass, and finally integrating the corresponding callback function into the frontend
library. It is noteworthy that designing the instrumentation is the most complex part of this process,
requiring a solid understanding of the LLVM IR.

5.2 EventQueue

...

Unconsumed
Profiling Event

ready_to_read: 
ready_to_write:

last element
pointer

... ready_to_read: 
ready_to_write:

Profiling
Frontend

last element
pointer

Consumed
Profiling Event

Produce Profiling Event

Consume Profiling Event

1

2

3

1

2
3

Profiling
Backend 

check if
full/end

Fig. 4. High-throughput SPMCQueue

The queue helps PROMPT break up the frontend and backend. PROMPT needs an SPMC (single-
producer-multiple-consumer) queue, where the producer is the profiling frontend, and the con-
sumers are multiple workers in the profiling backend. We observe that memory profilers do not
have latency requirements for the queue. The additional cycles introduced by the instructions
instrumented rather than the memory throughput bounds the queue performance [Jablin et al.
2010]. We implement a high-throughput SPMC queue specialized for the memory profiling task.
The queue uses a ping-pong buffer design [Swaminathan et al. 2012] as shown in Figure 4. The
advantage of a ping-pong buffer design lies in the fact that producers and consumers do not need
to communicate until one buffer reaches its capacity. Thus, the producer can keep writing to one
buffer, without communication, until that one is full. Then, it checks whether the other buffer is
ready. The vice versa is true for the consumer. This greatly reduces the communication overhead
between the producer and the consumer.
To reduce the wait time of the writes and reduce interfering with the program under profiling,

the queue uses streaming writes[Krishnaiyer et al. 2013]. Streaming write is a feature of the X86
architecture. It bypasses the cache hierarchy and improves the frontend code performance by
avoiding “contaminating” the cache. The writes are very efficient by using a relatively large buffer
(more than 1MB).
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The SPMC queue is bounded, thus the producer and consumers must communicate at the end
of one buffer by checking whether the other buffer is ready. We can reduce the frequency of
checking by making the buffer bigger, leveraging the latency-insensitive insight. A bigger buffer
also makes parallelism at the backend more efficient by amortizing the cost of parallel workers.
With streaming writes, the buffer already bypasses the cache hierarchy, so a bigger buffer size has
minimal performance drawbacks. The large buffer size also smooths out spikes in the producer.

5.3 Backend Components
Backend Driver. The backend driver consumes the events from the queue and calls the corre-

sponding call of the profiling modules. It manages profiling threads if data parallelism is used
(§4.2).

A Generic Shadow Memory. PROMPT provides a generic shadow memory that can be configured
to fit metadata of different sizes. It takes care of allocation and deallocation automatically. PROMPT
applies a direct mapping scheme that applies a shift and mask to all memory addresses to translate
from program to shadow addresses. It is an efficient implementation of the map from the memory
address to the metadata.

A Generic Context Manager. The context manager in PROMPT provides a generic way to manage
the context. It interacts with a profiler to transform, encode, and decode a context. It keeps track of
the current context through transform APIs (e.g., pushContext(type, ID), popContext(type,
ID)). It provides multiple ways to encode and decode a context. One way is through a map
of manifested context to a counter. Caching optimizations are used to reduce the lookup cost of
decoding the context. If the context is simple enough, the context manager will use the concatenation
of the context as the encoding. Note that due to synchronization, sharing one context manager can
be problematic, so PROMPT maintains a separate context manager for each backend thread.

Profiling Logic

Insert

2

3

5 Synchronize 

Append to the buffer

Run insertion logic

Partial Map 1 Partial Map N

Complete Map

Reducer
Thread 1

Reducer
Thread N

... ...

...

1 Non-insert queries4

Fig. 5. A high-throughput hash map in action.

Data Structures with Insertion Logic. To help memory profilers simplify the logic, PROMPT
provides data structures with built-in insertion logic, including checking for constant, counting,
summing, or finding the minimum and maximum. htmap_constant is a map from a key to the
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value if it is constant. htmap_count is a map from a key to its count. htmap_sum/min/max is a map
from a key to the sum, minimum, or maximum of all values corresponding to a key. htmap_set is
a map from a value to a set with an optional size limit. One thing in common with all these data
structures is that the insert operation is reducible. For example, for Map_Sum, which provides a
map from keys to the sum of values, inserting to this map translates to summing up values to each
key, which is a reducible operation. A reducible operation can be executed in any order in parallel.
With this observation, we provide parallelism as a part of these maps. As shown in Figure 5, all
the insertion to the map is buffered to a vector with a fixed reserved size, and once the buffer is
full, many workers will do the reduction in parallel. Each takes a chunk of the buffer and reduces
it to its local map. Only when any API other than insertion is called will the workers merge the
local map into the global one. This design works well with a memory profiler, where insertion is
almost always the only operation to the profiling data structure during profile time. To improve
efficiency, PROMPT adopts a thread pool, where the reduction thread will stay in the background
waiting for the tasks. In addition to the maps, PROMPT also provides drop-in replacements for set
and unordered_set(hash set) that provide the same optimization. These replacements do not
offer complete C++ STL support; however, they handle common APIs that adequately meet the
requirements of a memory profiling module.

5.4 Implementing a Memory Profiler with PROMPT
To implement a new memory profiler with PROMPT, one only needs to declare the subset of
relevant events listed in Table 2 and implement core profiling logic in the callback functions of
events. The components defined in §4.1 and §4.2 are available to ease the implementation and
provide good performance out of the box. Listing 1 shows how a value pattern profiler works. It
tracks all loads and records those that have constant loaded values.
Here are several example memory profilers implemented with PROMPT and the core logic.

A Memory Dependence Profiler tracks the source and destination of a memory dependence,
optionally the related loops, contexts, and counts. A profiler can use shadowmemory to track the last
load/store instruction and additional information to each memory address, the record dependence
if discovered. Figure 2 shows a memory-dependence profiler. A Value Pattern Profiler tracks
whether the value of a memory access follow some patterns, such as always a constant. A profiler
can use PROMPT’s components to automatically check for the constant pattern. The module in
Listing 1 shows such a profiler. A Points-to Profilermaps each pointer to the set of memory objects
that it points to. A profiler can first uniquely identify memory objects at allocation time using the
instruction ID and the context tracked by the context manager, track the object information in the
shadow memory, and record the object associated with the specific address at pointer creation time.
An Object-Lifetime Profiler tracks the lifetime of each object and checks if it is dynamically local
to a scope such as a loop. A profiler can track the uniquely identified memory objects similar to the
points-to profiler, check the shared context of allocation and deallocation, and record the object
and the shared context.

6 EVALUATION
PROMPT is designed for extensive extensibility, seamlessly supporting a wide array of applications.
As §6.2 illustrates, porting LAMP and Perspective, two state-of-the-art LLVM-based profilers, to
PROMPT reduces more than half of the code size and makes the code easier to understand. Many
variants of memory dependence profilers can also be adapted from a basic profiling module with a
few lines of code.
In terms of speed, evaluations in §6.3 compare it against LAMP and the Privateer profiler on

SPEC CPU 2017 benchmarks, showing that PROMPT is 5× faster than LAMP and 6× faster than
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# Profiling events specified in YAML
module: ValuePatternConstantLoadModule
events: # and the corresponding values

load: [instruction_id, value]
finished: []

// Core profiling logic
class ValuePatternConstantLoadModule : public DataParallelismModule,

public ProfilingModule {
private:

// High throughput map provided by PROMPT that checks if the value is constant
HTMap_Constant<InstrId, LoadedValue> constmap_value;

public:
// The `num_threads` and thread id (`tid`) are used to control the data parallelism.
// They are automatically set by the driver on initialization.
LoadedValueModule(uint32_t num_threads, uint32_t tid) :

DataParallelismModule(num_threads, tid) {}
// On every Load event, the instruction ID and value are passed in.
void load(uint32_t instrId, uint64_t value) override {

// A wrapper by DataParallelismModule:
// This will only execute if the worker is in charge of the instruction ID.
execute_if_mine(instrId, [&]() {

// insert the ID and value to the map
constmap_value.insert({instrId, value});

});
}

void finish(string filename) override {
// Dump the constmap_value in a format required by the client

}

// When using data parallelism, need to implement how modules are merged.
void merge(LoadedValueModule &other) override {

// merge the map from instruction ID to value
constmap_value.merge(other.constmap_value);

}
};

Listing 1. The implementation of a value pattern profiler that checks for constant loaded values.

Privateer profiler on average. Moreover, across a myriad of memory dependence profilers with
diverse goals and technologies, PROMPT’s speed is consistently equivalent or superior (§6.3.2).
§6.4 underscores the impact of PROMPT by redesigning the memory profiling workflow for

Perspective [Apostolakis et al. 2020a]. In 570 lines of code, the new workflow satisfies Perspective’s
memory profiling needs while reducing profiling overhead by 95%. The new workflow is also more
applicable to more complex applications. The design elements of PROMPT are evaluated separately
to understand how they drive PROMPT’s performance in §6.5, where PROMPT’s memory and
binary size overheads are also discussed.
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6.1 Experiment Setups
All performance experiments are run on a machine with two Intel Xeon E52697 v3 processors with
252 GB of memory. The operating system is 64-bit Ubuntu 20.04 LTS.

PROMPT is evaluated against SPEC CPU 2017 suite when comparing against LAMP and Privateer.
Each benchmark is first compiled and linked into one LLVM bitcode file, which is the same
preprocessing workflow as LAMP and Privateer, and required by Perspective. Due to the limitation
of this pipeline, FORTRAN benchmarks (lack of flang for the LLVMversion) and 502.gcc (muldefs
not supported with llvm-link) from SPEC 2017 are excluded. The evaluation contains 15 C/C++
benchmarks from the SPEC CPU 2017 suite with 3.6 million lines of code combined [Bucek et al.
2018], In the case study (§6.4), benchmarks from the Perspective paper are also used to do the
performance comparison [Apostolakis et al. 2020a]. All evaluation use the training inputs since
reference inputs would be more appropriate for evaluating the clients’ performance with the
profiling information.

6.2 PROMPT’s Extensibility
§5.4 shows concretely how easily the memory profilers are implemented. Memory profilers can
be implemented with PROMPT by expressing only the core logic. Adaptation of existing memory
profilers is also much easier with PROMPT.

Components LOC

Original LAMP Ported with PROMPT

Instrumentation 713 N/A (provided by PROMPT)
Event Generation 803 N/A ∗ (provided by PROMPT)
Event Specification N/A 13
Core Profiling Logic 668 898∗

Memory Map (Shadow Memory) 691 N/A (provided by PROMPT)

Total LOC 2875 911

Table 3. The comparison of lines of code (LOC) of LAMP and the ported version with PROMPT. ∗Original
LAMP does not use the frontend-backend design, so the event generation directly calls other functions in the
core profiler logic. Thus, the core profiling logic in the ported LAMP subsumes part of the event generation.

Components LOC

Privateer Profiler Ported with PROMPT

Instrumentation 3161 N/A (provided by PROMPT)
Event Generation 464 N/A (provided by PROMPT)
Event Specification N/A 19

Queue 227 N/A (provied by PROMPT)
Core Profiling Logic 1401 1486 ∗

Total LOC 5253 1505

Table 4. The comparison of lines of code (LOC) of the Privateer Profiler and the ported version with PROMPT.
∗The core profiling logic in the ported version includes some additional interfacing with the backend driver.
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PROMPT allows developers focus on core profiling logic only. Two existing memory profilers, LAMP
and the Privateer profiler are ported to PROMPT. Table 3 and Table 4 show the LOC of the original
and the ported version of them. cloc tool is used to count the lines of code (LOC) Blank lines and
comments are excluded [Danial 2021]. For both profilers, porting to PROMPT reduces around 70%
of the LOC by focusing on the core profiling logic. The instrumentation with LLVM alone requires
thousands of lines. Other shared components like the event generation, shadow memory, and the
queue are also provided by PROMPT to reduce the implementation effort.

Extensions (incremental) LOC Delta

+ Dependence count [Ketterlin and Clauss 2012; Mason et al. 2009] 1
+ All dependence types [Morew et al. 2020] 10

+ Dependence distance [Kim et al. 2010; Yu and Li 2012a] 7
+ Context-aware [Chen et al. 2004; Kim et al. 2017; Sato et al. 2012] 16

Table 5. The comparison of different variants of the memory dependence profilers. We incrementally extend
the memory dependence profiler built with PROMPT and present the LOC delta between every two variants.

PROMPT is easy to adapt. The memory dependence profiler is the most well-studied memory
profiler. A memory dependence profiler can track the sources and sinks of memory dependences,
the frequencies, loop-carried or loop-independent, distances, and contexts, for all types of memory
dependences (flow, anti, and output) [Chen et al. 2004; Kim et al. 2010]. In Table 5, we start from a
basic memory flow-dependence profiler and incrementally adapt it to other variants of memory-
dependence profilers by changing a few lines.

6.3 PROMPT’s Speed
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Fig. 6. The performance comparison of the original profilers and the versions ported with PROMPT.
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6.3.1 Comparing Against LAMP and Privateer Profiler. To ensure a direct and meaningful compari-
son, LAMP and Privateer, both of which target LLVM IR—precisely where PROMPT operates, are
evaluated. PROMPT is set to generate equivalent profiling information as the original profilers
and is evaluated on the same set of benchmarks. We ran each benchmark for original LAMP and
Privateer profiler once due to the long profiling time (more than 10 hours for a few benchmarks).
For all ported version, the data represents the average (mean) of five runs. The error bars indicate
the 99% confidence interval. Given that the error bars for all other versions are visually negligible,
we only display the error bars for the ported LAMP with 16 backend threads. As Figure 6 shown,
for LAMP, the ported version running with 16 threads on the backend runs 5.3× on average. The
performance improvement first comes from the pipeline parallelism from the decoupled design.
As shown with the ported LAMP with one backend thread, the performance almost doubles. The
second source of performance improvement is the parallelism wrapper added in a few lines of code
(§4.2). In this experiment, we used up to 16 backend threads to consume the profiling events which
brings an additional three times speedup.

Due to the design limitations, the Privateer profiler fails to run or times out after 24 hours on ten
out of the 15 SPEC 2017 benchmarks. Thus, we compare the performance on rest five benchmarks in
Figure 6. The ported version is 7.1× faster on average. This improvement was above our expectation.
Due to the complex design of the Privateer profiler, we did not apply data-level parallelism to it.
Moreover, because the original profiler also has a frontend-backend design, the algorithms for
the original and the ported Privateer profiler are essentially the same. Upon close inspection, we
found that the performance improvement comes from the optimizations in PROMPT’s event queue.
The original Privateer profiler’s bottleneck is in the frontend, during generating events to the
queue. PROMPT significantly reduces the overhead of generating events to the queue using the
high-throughput queue (§5.2).
Note that for both ported profilers, we did not alter the core logic or the profiling needs to

achieve the performance improvement. The performance improvement comes from the generalized
optimizations in PROMPT. In §6.4, we show how to further improve the performance by redesigning
the memory profilers with PROMPT, where we tailor the memory profiling workflow to the client’s
needs.

Extensions
(incremental)

PROMPT’s Geomean Slowdown
Running on SPEC 2017 Benchmarks

Prior Reported
Slowdowns

Dependence count 7.5× 88–118×

All dependence types 10.2× 28–36×

Dependence distance 10.8× 5–29×

Context-aware 13.1× 39–132×
Table 6. Comparison of PROMPT’s slowdowns against different memory-dependence profilers. PROMPT’s
slowdowns are the geomean of SPEC CPU 2017 benchmarks. Prior work slowdowns are taken from the
original papers.

6.3.2 Comparing Against Other Memory-Dependence Profilers. Table 6 shows the slowdown of
PROMPT running on SPEC 2017 benchmarks and the slowdown of prior work reported in the paper.
All other work focusing on memory dependence profiling, listed in Table 5, is implemented with
different technologies and evaluated on different benchmarks on different machines. Comparing
the performance of PROMPT against all these memory profilers is challenging. Thus, the goal
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here is to show that the performance of PROMPT is consistent with existing memory-dependence
profilers.

6.4 Redesigned Memory Profiling for Perspective
In the current implementation, Perspective uses LAMP and Privateer Profiler. In §6.3.1, PROMPT is
evaluated against LAMP and the Privateer profiler while reproducing their profiling output. How-
ever, not all profiling functionalities and configurations are necessary to fulfill the profiling needs
of Perspective. With PROMPT, we redesigned the memory profilers to exactly match Perspective’s
needs with first principles and show the benefits of PROMPT in this case study.

Profiling Needs PROMPT Profiling Module LOC

Memory Flow Dependence Speculation Memory Dependence 136
Value Speculation Value Pattern 69

Short-lived Object Speculation Object Lifetime 117
Points-to Speculation Points-to 248

Total LOC 570

Table 7. The lines of code (LOC) of the PROMPT profilers for each profiling need of Perspective.

Streamlined Development. We first identify the four memory profiling needs of Perspective as
shown in Table 7. Because Perspective works on a loop basis, the memory profilers are only
needed for the hottest loop identified by the compiler. We implement four memory profiling
modules, memory-dependence profiler, value-pattern, object-lifetime, and points-to profiling to
cover Perspective’s needs. The four memory profilers with PROMPT only require 570 lines of code,
a dramatic reduction of the required implementation effort.
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Fig. 7. The profiling slowdowns of the existing memory profilers and the PROMPT ones on benchmarks from
the Perspective paper.

Faster Profiling. We compare the profiling time overhead with PROMPT and the existing profilers
used in Perspective. The critical path of the profiling workflow is the longest-running profiler
because independent profilers can be executed in parallel with the same input. We show the critical
path of both workflows and also the sum of all profilers in each workflow in Figure 7. PROMPT
reduces the critical path slowdown from 217.2× to only 5.9× and the sum of profiling time from
201.2× to 15.3×. All results are the average (mean) of five runs. In our experiments, the maximum
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coefficient of variation (the ratio of the standard deviation to the mean) over all benchmarks and all
runs is 0.13, thus the error bar is omitted from the visualization due to the little variance compared
to the performance difference shown. Regardless of the metric, PROMPT reduces the profiling
time by more than 90%. One source of the slowdowns in LAMP and Privateer is from building
multiple functionalities in one monolithic profiler. This introduces unnecessary functionality and
the corresponding overhead. PROMPT breaks down the profiling tasks into modules each focusing
on a single task. Note that targeting the hottest loop, as PROMPT’s profilers use, is another way of
reducing the unnecessary overhead. PROMPT further optimizes the performance using parallelism
in both the address-based and the one built in the data structures like hash maps.

Improved Applicability to Complex Benchmarks. As mentioned in §6.3, the Privateer profiler fails
or times out on ten out of the 15 SPEC 2017 benchmarks. This is not a coincidence. In fact, the
clients using these memory profilers are constrained by them, so they cannot evaluate on bigger
benchmarks. SCAF, a system that shares the same memory profilers as Perspective, identifies that
the memory profilers are “implemented in-house, lacking industrial-level robustness in implementa-
tion” [Apostolakis et al. 2020b]. Thus, it was limited to only three SPEC 2017 benchmarks due to
poor memory profiler robustness or performance. Even for LAMP, which works for all SPEC 2017
benchmarks, or the Privateer, when it works, the overhead is still significant as shown in §6.3. The
robustness and the performance of the memory profilers are critical to the applicability of memory
profiling to more complex benchmarks. The four memory profiling modules redesigned for Perspec-
tive exhibit greater robustness and performance than their original counterparts. Three modules
(memory dependence, value pattern, and object lifetime) can run on all SPEC 2017 benchmarks.
The points-to profiling module, which follows the same logic of the parts of the original Privateer
profiler which have design limitations, fails on eight benchmarks. Two additional benchmarks
work compared to Privateer due to the memory allocation event hook in PROMPT which allow
external calls with memory allocation to be captured. With the much-isolated codebase, we can
also identify the root causes of the failed benchmarks. The primary constraints include a lack of
support for longjump/setjump and the handling of non-null pointers to memory that should not
be dereferenced. We are working on addressing these issues in a future version of the module.

Performance-wise, themaximum slowdown for all modules is less than 35×, andmost benchmarks
are either below or around 10×, a huge improvement over the original profilers discussed in §6.3.
These overheads, which translate to less than an hour of profiling time for benchmarks that typically
run for a few minutes, are sufficiently practical for users to test clients using them. By enhancing
the memory profiling workflow for more complex benchmarks, PROMPT simplifies the adoption
of systems like Perspective that rely on memory profiling.

6.5 Performance Analysis
The performance improvement of PROMPT comes from designs discussed in §4 and §5. In Table 8,
we use the redesigned memory dependence profiler in Table 7 to show the effect of each technique.
All results are evaluated on SPEC 2017 benchmarks. The baseline is the memory dependence profiler
without any optimization and we incrementally apply each optimization to the baseline. Note that
these improvement numbers are specific to this profiler. Different memory profilers may benefit
differently from each technique.

Specialization. Table 9 shows the reduction of the number of events with specialization for
different profilers. With specialization, the reduction of the profiling events is significant, ranging
from 17% to 72%.
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PROMPT
Optimizations

Geomean
Slowdown Improvement

Baseline 21.89× N/A

Specialization 14.48× 51%

High-throughput Queue 12.29× 18%

Data Parallelism 7.84× 57%

High-throughput Data Structure 7.26× 8%
Table 8. Performance improvements with optimizations.

Profiler Memory
Dependence

Value
Pattern

Object
Lifetime

Points-
to

Geomean Reduction (%) 17.19 54.04 71.86 52.89
Table 9. The geomean reduction of profiling events with specialization for each memory profiler.

Queue Type Time (ms)

boost::lockfree[Szuppe 2016] queue 4603.7
spsc_queue 555.1

Liberty Queue [Jablin et al. 2010] 48.6

PROMPT Queue 1 Consumer 26.8
8 Consumers 32.2

Table 10. The performance comparison of the queue.

High-Throughput Queue. We compare the performance of our queue implementation against
others (two from Boost [Szuppe 2016] and the Liberty queue [Jablin et al. 2010]). We run it with a
benchmark where two processes communicate tenmillion events from the trace of 544.nab through
a shared-memory queue. The boost::lockfree::spsc_queue, Liberty queue, and PROMPT queue
are configured with the same queue size (2MB). The boost::lockfree::queue is set to its max
queue size of 65534. We repeat the runs 50 times and take the average. As shown in Table 10, the
PROMPT’s queue outperforms other queues by at least 81%. The performance improvement comes
from optimizations in §5.2 that reduce the overhead of event production. The throughput difference
from one consumer to eight consumers is only 20%, a small cost to enable generic data parallelism.

Parallel Workers 1 2 4 8 16 32

Geomean Slowdown (×) 12.3 10.4 8.3 7.8 7.6 9.0
Table 11. The slowdown with different parallel workers with data parallelism wrapper for the memory
dependence profiler.
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Data Parallelism Wrapper. Table 11 shows the slowdowns of the memory dependence profiler
with different numbers of workers for data parallelism. The numbers are the geomean slowdowns
of all SPEC CPU 2017 benchmarks and the high-throughput data structures are turned off for this
evaluation. On the machine we tested on, data parallelism improves the performance till 16 workers
then starts to drop.

High-throughput Data Structures. We evaluate the performance with a benchmark that inserts ten
million dependences to htmap_count that keeps the count of the dependence §5.3. The dependences
are collected from the trace of 544.nab. We run it ten times and take the average. We compare
the performance against two maps from C++ standard library, and phmap::flat_hash_map, a
more efficient open-source hash map implementation from parallel-hashmap library based on
Abseil[Abseil Team 2023; greg7mdp 2023]. The high-throughput map outperforms the standard
library maps significantly; and it outperforms flat_hash_map starting from two threads; with 32
threads, the performance almost doubles. The time of the baseline shows if the insertion to the
map is completely gone and is the upper limit of our map.

Implementation Time (ms)

libstdc++ (6.0.28) map 319
unordered_map 264

Parallel Hashmap (1.3.8)[greg7mdp 2023] flat_hash_map 102

PROMPT Data Structure
htmap_count

1 126
2 91
4 75
8 70
16 60
32 53

Baseline 33
Table 12. The performance comparison of different implementations of maps to achieve a key to the count.
The baseline of PROMPT htmap_count only inserts to the buffer instead of inserting to the map.

Memory and Binary Size Overhead. Thememory overhead of the profiling frontend is the constant
size oversize introduced by the buffer of the queue. The memory overhead of the backend comes
from the constant size from the backend code and data sections, the data structures to store the
profiling information, and auxiliary data structure during runtime. Due to the reduction nature of the
profiling process, the memory overhead of the profiling information data structures is usually small.
The auxiliary ones depend on the implementation of the profiler. A most significant and common
cost comes from the shadow memory that enables mapping from the address to the metadata.
The overhead of the shadow memory is bounded by 𝑃 × heap memory size + ∑

profile size + 𝐶 ,
where P is the shadow memory ratio (number of bytes of metadata per byte of memory) and C
is the constant cost including the queue and other auxiliary data structures. The data parallelism
does not increase the memory overhead because the workers share the same memory space. We
measured the peak memory overhead of the memory dependence profiler running on all SPEC
2017 benchmarks. When the fixed queue is excluded, the backend memory overhead ranges from
20% to 9.7×. The instrumented binary size is 17% to 231% larger than the original.
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7 DISCUSSION
Potential Applications. The most important application of PROMPT is speculative optimization.

While speculative optimizations, including automatic parallelization, have been shown to be
effective and broadly applicable [Apostolakis et al. 2020a; Bridges et al. 2007; Johnson et al. 2012b;
Thies et al. 2007], these systems have not been widely adopted largely because of problems with
memory profiling. By reducing the runtime and engineering costs, PROMPT can greatly help
speculative optimization clients. PROMPT also has the potential to attract a diverse range of users
to build various profilers on top of it or use it for different clients. Multiple use cases beyond
speculative optimization can be addressed using the existing profilers in PROMPT, such as memory
prefetching, memory object layout optimization, and security analysis.

Types of memory profiling not supported by PROMPT. Memory profilers that alter the behavior of
the program being profiled, such as simulating the behavior of a hypothetical load instruction not
present in the original program (perhaps for prefetching), are not ideally suited for PROMPT. While
it is feasible to add new events to the frontend, as elaborated in §5.1, it is crucial that these added
events do not modify the behavior of the program being profiled. They should only report such
events, in line with the design principles of PROMPT. We believe that most memory profiling use
cases can be addressed by solely implementing the profiling logic on the backend, using existing
profiling events.

Multi-threaded programs. At present, PROMPT solely supports single-threaded programs, as its
primary motivation lies in speculative automatic parallelization clients that only necessitate this
level of support. To expand its capabilities for multi-threaded workloads, events produced from
multiple threads can either be combined into a single queue or assigned to individual SPMC queues
for each thread. The most suitable approach depends on the requirements of the memory profiling
modules.

Profiling without source code available. PROMPT provides full precision when the source code
is available at compile time. Functions from libraries that do not have source code available at
compile time are detected during compilation and reported to the client, who can then decide
how to proceed with the profiling results. In many cases, the profiling results are still helpful but
need to be conservative in cases involving external calls. A potential enhancement for PROMPT
could involve incorporating binary profiling. The decoupled design of PROMPT simplifies the
implementation process for such an addition.

Beyond memory profiling. A memory profiler tracks memory-related events as listed in Table 2.
Other types of profilers can be implemented with this framework, as the list of possible events
encompasses more than just memory events. However, PROMPT’s design is highly optimized for
memory profiling. Other profilers may not have as high a throughput as memory profiling and
thus may not benefit from PROMPT’s queue and other optimizations. The factorization process of
memory profiling used in PROMPT, namely the separation and generalization, may inspire other
software systems. The separation helps to reduce the complexity, while the generalization helps to
reduce the cost of development. Both help with building a more efficient system.

8 RELATEDWORK
Memory Profilers. Many memory profilers have been proposed for various use cases [Apostolakis

et al. 2020a; Johnson et al. 2012b; Kim et al. 2010; Mason et al. 2009; Vanka and Tuck 2012; Yu and
Li 2012a; Zhao et al. 2006]. They are different in terms of the profiling events they gather and the
summarization method. They can collect memory dependence [Kim et al. 2010; Mason et al. 2009;
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Yu and Li 2012a; Zhao et al. 2006], value pattern [Gabbay and Mendelson 1997], object lifetime [Wu
et al. 2004], and points-to relation [Johnson et al. 2012b]. There are sub-variants for collecting
memory dependence – loop-aware, context-aware, tracking distance, or tracking counts[Chen
et al. 2004; Kim et al. 2017; Mason et al. 2009; Zhang et al. 2009]. The growing number of different
profilers also suggests new client profiling needs. PROMPT is an extensible memory profiling
framework that can easily implement all these memory profilers.
Many directions have been explored to reduce the overhead of memory profiling. Prior work

has shown that shadow memory is particularly effective at improving run-time analysis of pro-
grams [Nethercote and Seward 2007a; Zhao et al. 2010]. Parallelism is also used in many memory
profilers to optimize for speed [Kim et al. 2010; Moseley et al. 2007; Wallace and Hazelwood 2007; Yu
and Li 2012b]. We leverage their findings and generalize their optimization in PROMPT. Lossy tech-
niques can reduce overhead [Chen et al. 2004; Vanka and Tuck 2012]. Vanka et al. combine sampling
with a signature-based approach to achieve 3.0× overhead [Vanka and Tuck 2012]. However, such
techniques suffer from imprecise results and some clients are very sensitive to precision. PROMPT
achieves low overhead without resorting to sampling. Augmenting PROMPT with sampling for
clients that tolerate imprecision is straightforward.
The LLVM address and memory sanitizer can be considered memory profilers with custom

allocators [Serebryany et al. 2012; Stepanov and Serebryany 2015]. They achieve low overhead – the
address sanitizer reports less than 2.75x slowdown in the worst case and the memory sanitizer less
than 7x. However, their optimizations are very specialized for the given task and do not generalize
to other memory profiling tasks considered in this paper. PROMPT provides a framework on which
various memory profilers can be built with generalized components and optimizations.

Implementing Memory Profilers. Pin and DynamoRio can instrument programs at the binary
level [Bruening et al. 2012; Wallace and Hazelwood 2007]. LLVM and GCC have more freedom
to instrument programs at the intermediate representation level [GCC Team 2023; Lattner and
Adve 2004]. Tracing systems, sometimes built on top of instrumentation systems, collect program
traces that can be used for online or offline analysis [DynamoRio Team 2023; Tallam and Gupta
2007; Zhang and Gupta 2004; Zhao et al. 2006]. These systems help with building memory profilers.
However, even with these systems, building a memory profiler is hard. In addition, some tracing and
binary instrumentation systems introduce baseline overheads for generating the trace or dynamic
binary instrumentation. PROMPT does not strive to replace instrumentation or tracing systems.
Instead, it focuses on memory profiling, providing components and optimizations to make building
fast memory profilers much easier.

Optimization Techniques. Program specialization to reduce cost has been proposed for many use
cases [Reps and Turnidge 1996; Schultz et al. 2003; Wang et al. 2022]. PROMPT uses a specialization
technique where unnecessary events are not instrumented depending on the needs of the client.
PROMPT does it automatically at link time to remove the need to communicate with the LLVM
pass.

The Liberty queue is the most related to the queue design [Jablin et al. 2010; Rangan and August
2006]. It is a lock-free implementation designed for fast core-to-core communication and shifts
communication overhead to the more idle end of the queue. The PROMPT high-throughput queue
design is influenced by the Liberty queue but leverages the latency-insensitive aspect of memory
profiling to get more performance. PROMPT uses a ping-pong buffer to reduce the cost of checking
and communication and outperforms the Liberty queue by 81%.

Different techniques have been developed to make use of parallelism in memory profilers [Kim
et al. 2010; Moseley et al. 2007; Wallace and Hazelwood 2007; Yu and Li 2012b]. PROMPT generalizes
them as different forms of data parallelism and provides a generic data parallelismwrapper. PROMPT
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automatically manages parallel workers and the interaction with shadow memory. This makes it
much easier to integrate data parallelism with any memory profiler.

The optimization used for the high throughput containers in PROMPT is parallel reduction [Rauch-
werger and Padua 1995]. However, PROMPT wraps the parallelism in containers with insertion
logic, so users can use them with ease and get parallelism for free.

9 CONCLUSION
This paper presents a novel factorization of memory profiling, emphasizing the significance of core
profiling logic. This emphasis is achieved by separating the front and backend and generalizing
shared components and optimizations. Based on this factorization, the paper introduces PROMPT,
an open-sourced, fast, and extensible memory profiling framework. Two existing LLVM-based
memory profilers have been seamlessly ported to PROMPT, resulting in simpler implementations
and improved performance. Furthermore, a tailored memory profiling workflow was redesigned for
Perspective, a state-of-the-art speculative parallelization framework. This workflow is encapsulated
in a concise 570 lines of code and reduces client profiling time by more than 90%. Such outcomes
emphasize PROMPT’s role in enhancing the practicality and broader application ofmemory profiling
techniques. In summary, this research positions PROMPT as a pivotal framework in advancing the
application of memory profiling techniques.

REFERENCES
Abseil Team. 2023. Abseil/Abseil-CPP: Abseil Common Libraries (C++). https://github.com/abseil/abseil-cpp.
Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and David I. August. 2020a. Perspective: A Sensible Approach

to Speculative Automatic Parallelization. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. Association for Computing Machinery, New York, NY, USA,
351–367.

Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Greg Chan, Simone Campanoni, and David I. August. 2020b. SCAF: A Speculation-
Aware Collaborative Dependence Analysis Framework. In Proceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA,
638–654. https://doi.org/10.1145/3385412.3386028

Matthew Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and David August. 2007. Revisiting the Sequential Program-
ming Model for Multi-Core. In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 69–84.

Derek Bruening, Qin Zhao, and Saman Amarasinghe. 2012. Transparent dynamic instrumentation. In Proceedings of the 8th
ACM SIGPLAN/SIGOPS conference on Virtual Execution Environments. 133–144.

James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017: Next-generation compute benchmark. In
Companion of the 2018 ACM/SPEC International Conference on Performance Engineering. 41–42.

Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO: Automatic Feedback-Directed Optimization for
Warehouse-Scale Applications. In Proceedings of the 2016 International Symposium on Code Generation and Optimization
(Barcelona, Spain) (CGO ’16). Association for Computing Machinery, New York, NY, USA, 12–23. https://doi.org/10.
1145/2854038.2854044

Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu, and Pen-Chung Yew. 2004. Data Dependence Profiling for Speculative
Optimizations. In Compiler Construction, Evelyn Duesterwald (Ed.). Lecture Notes in Computer Science, Vol. 2985.
Springer Berlin / Heidelberg, 2733–2733.

D. A. Connors. 1997. Memory Profiling for Directing Data Speculative Optimizations and Scheduling. Master’s thesis.
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL.

Albert Danial. 2021. cloc: v1.92. https://doi.org/10.5281/zenodo.5760077
Enrico Armenio Deiana, Brian Suchy, Michael Wilkins, Brian Homerding, Tommy McMichen, Katarzyna Dunajewski, Peter

Dinda, Nikos Hardavellas, and Simone Campanoni. 2023. Program State Element Characterization. In International
Symposium on Code Generation and Optimization (CGO ’23).

DynamoRio Team. 2023. drcachesim. https://dynamorio.org/page_drcachesim.html.
g++ 2023. Profile Guided Optimization in g++. g++ -profile-generate -profile-use.
F. Gabbay and A. Mendelson. 1997. Can program profiling support value prediction?. In Proceedings of 30th Annual

International Symposium on Microarchitecture. 270–280. https://doi.org/10.1109/MICRO.1997.645817

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/abseil/abseil-cpp
https://doi.org/10.1145/3385412.3386028
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.5281/zenodo.5760077
https://dynamorio.org/page_drcachesim.html
https://doi.org/10.1109/MICRO.1997.645817


PROMPT: A Fast and Extensible Memory Profiling Framework 1:23

GCC Team. 2023. GCC, the GNU compiler collection. https://gcc.gnu.org/.
GNU C Library Team. 2023. Memory Allocation Hooks. https://www.gnu.org/software/libc/manual/html_node/Hooks-for-

Malloc.html.
greg7mdp. 2023. GREG7MDP/parallel-hashmap: A family of header-only, very fast and memory-friendly hashmap and

BTREE containers. https://github.com/greg7mdp/parallel-hashmap.
intelc++ 2023. Profile Guided Optimization in the Intel C++ Compiler. http://software.intel.com/sites/products/

documentation/hpc/compilerpro/en-us/cpp/lin/compiler_c.
Thomas B Jablin, Yun Zhang, James A Jablin, Jialu Huang, Hanjun Kim, and David I August. 2010. Liberty queues for epic

architectures. In Proceedings of the Eigth Workshop on Explicitly Parallel Instruction Computer Architectures and Compiler
Technology (EPIC).

Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August. 2012a. Speculative Separation for Privatization
and Reductions. Programming Language Design and Implementation (PLDI) (June 2012).

Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August. 2012b. Speculative Separation for Privatization
and Reductions. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’12). Association for Computing Machinery, New York, NY, USA, 359–370. https://doi.org/10.1145/2254064.2254107

Alain Ketterlin and Philippe Clauss. 2012. Profiling data-dependence to assist parallelization: Framework, scope, and
optimization. In 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 437–448.

Changsu Kim, Juhyun Kim, Juwon Kang, Jae W Lee, and Hanjun Kim. 2017. Context-Aware Memory Profiling for Speculative
Parallelism. In 2017 IEEE 24th International Conference on High Performance Computing (HiPC). IEEE, 328–337.

Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. 2010. SD3: A scalable approach to dynamic data-dependence profiling. In
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’10). IEEE Computer
Society, Washington, DC, USA, 535–546.

Rakesh Krishnaiyer, Emre Kultursay, Pankaj Chawla, Serguei Preis, Anatoly Zvezdin, and Hideki Saito. 2013. Compiler-
Based Data Prefetching and Streaming Non-temporal Store Generation for the Intel(R) Xeon Phi(TM) Coprocessor. In
2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum. 1575–1586. https:
//doi.org/10.1109/IPDPSW.2013.231

J. R. Larus. 1993. Loop-Level Parallelism in Numeric and Symbolic Programs. IEEE Trans. Parallel Distrib. Syst. 4, 7 (jul 1993),
812–826. https://doi.org/10.1109/71.238302

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.
In Proceedings of the Annual International Symposium on Code Generation and Optimization (CGO). 75–86.

Liberty Research Group. 2022. Collaborative Parallelization Framework Compiler. https://github.com/PrincetonUniversity/
cpf.

Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau, and Josep Torrellas. 2006. POSH: a TLS compiler
that exploits program structure. In PPoPP ’06: Proceedings of the 11th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. 158–167.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. 2005. Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation. SIGPLAN
Not. 40, 6 (jun 2005), 190–200. https://doi.org/10.1145/1064978.1065034

Thomas Mason, A David, and I August. 2009. Lampview: A loop-aware toolset for facilitating parallelization. Master’s thesis,
Dept. of Electrical Engineeringi, Princeton University (2009).

Nicolas Morew, Mohammad Norouzi, Ali Jannesari, and Felix Wolf. 2020. Skipping non-essential instructions makes
data-dependence profiling faster. In European Conference on Parallel Processing. Springer, 3–17.

Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald, and Ramesh Peri. 2007. Shadow Profiling: Hiding instrumen-
tation costs with parallelism. In Proceedings of the International Symposium on Code Generation and Optimization (CGO
’07). IEEE Computer Society, Washington, DC, USA, 198–208.

mTrace Team. 2013?. MTRACE. http://lacasa.uah.edu/index.php/software-data/mtrace-tools-and-traces.
Nicholas Nethercote and Julian Seward. 2007a. How to shadow every byte of memory used by a program. In VEE. 65–74.
Nicholas Nethercote and Julian Seward. 2007b. Valgrind: a framework for heavyweight dynamic binary instrumentation.

ACM Sigplan notices 42, 6 (2007), 89–100.
Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. Bolt: a practical binary optimizer for data centers

and beyond. In 2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE, 2–14.
Arun Kejariwal PengWu and Calin Cascaval. 2008. Compiler-Driven Dependence Profiling to Guide Program Parallelization.

In LCPC. 232–248.
pogo 2022. Profile Guided Optimization in the Microsoft Visual C/C++ Compiler. https://docs.microsoft.com/en-

us/cpp/build/profile-guided-optimizations.
PROMPT Team. 2023. PROMPT memory profiling system. https://github.com/PrincetonUniversity/PROMPT.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://gcc.gnu.org/
https://www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.html
https://www.gnu.org/software/libc/manual/html_node/Hooks-for-Malloc.html
https://github.com/greg7mdp/parallel-hashmap
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/cpp/lin/compiler_c
http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-us/cpp/lin/compiler_c
https://doi.org/10.1145/2254064.2254107
https://doi.org/10.1109/IPDPSW.2013.231
https://doi.org/10.1109/IPDPSW.2013.231
https://doi.org/10.1109/71.238302
https://github.com/PrincetonUniversity/cpf
https://github.com/PrincetonUniversity/cpf
https://doi.org/10.1145/1064978.1065034
http://lacasa.uah.edu/index.php/software-data/mtrace-tools-and-traces
https://docs.microsoft.com/en-us/cpp/build/profile-guided-optimizations
https://docs.microsoft.com/en-us/cpp/build/profile-guided-optimizations
https://github.com/PrincetonUniversity/PROMPT


1:24 Ziyang Xu, Yebin Chon, Yian Su, Zujun Tan, Sotiris Apostolakis, Simone Campanoni, and David I. August

Ram Rangan and David I August. 2006. Amortizing software queue overhead for pipelined interthread communication. In
Proceedings of the Workshop on Programming Models for Ubiquitous Parallelism (PMUP). Citeseer, 1–5.

Lawrence Rauchwerger andDavid Padua. 1995. The LRPD test: speculative run-time parallelization of loopswith privatization
and reduction parallelization. ACM SIGPLAN Notices 30, 6 (1995), 218–232.

Thomas Reps and Todd Turnidge. 1996. Program specialization via program slicing. In Partial Evaluation. Springer, 409–429.
Yukinori Sato, Yasushi Inoguchi, and Tadao Nakamura. 2012. Whole program data dependence profiling to unveil parallel

regions in the dynamic execution. In 2012 IEEE International Symposium on Workload Characterization (IISWC). IEEE,
69–80.

Ulrik P Schultz, Julia L Lawall, and Charles Consel. 2003. Automatic program specialization for Java. ACM Transactions on
Programming Languages and Systems (TOPLAS) 25, 4 (2003), 452–499.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. 2012. AddressSanitizer: A Fast
Address Sanity Checker. In USENIX ATC 2012. https://www.usenix.org/conference/usenixfederatedconferencesweek/
addresssanitizer-fast-address-sanity-checker

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. 2000. A Scalable Approach to Thread-Level Speculation. In Proceedings
of the 27th International Symposium on Computer Architecture. 1–12.

Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: Fast detector of uninitialized memory use in C++. In
2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 46–55. https://doi.org/10.1109/
CGO.2015.7054186

K. Swaminathan, G. Lakshminarayanan, and Seok-Bum Ko. 2012. High Speed Generic Network Interface for Network
on Chip Using Ping Pong Buffers. In 2012 International Symposium on Electronic System Design (ISED). 72–76. https:
//doi.org/10.1109/ISED.2012.11

Jakub Szuppe. 2016. Boost.Compute: A Parallel Computing Library for C++ Based on OpenCL. In Proceedings of the 4th
International Workshop on OpenCL (IWOCL ’16). Association for Computing Machinery, Article 15, 39 pages. https:
//doi.org/10.1145/2909437.2909454

Sriraman Tallam and Rajiv Gupta. 2007. Unified Control Flow and Data Dependence Traces. ACM Transactions on Architecture
and Code Optimization 4, 3 (Sept. 2007), 19. https://doi.org/10.1145/1275937.1275943

William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. 2007. A Practical Approach to Exploiting Coarse-
Grained Pipeline Parallelism in C Programs. In Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 356–369.

Rajeshwar Vanka and James Tuck. 2012. Efficient and accurate data dependence profiling using software signatures. In
Proceedings of the Tenth International Symposium on Code Generation and Optimization (CGO ’12). ACM, New York, NY,
USA, 186–195.

Steven Wallace and Kim Hazelwood. 2007. SuperPin: Parallelizing Dynamic Instrumentation for Real-Time Performance.
In Proceedings of the International Symposium on Code Generation and Optimization (CGO ’07). IEEE Computer Society,
Washington, DC, USA, 209–220.

Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and Yu Jiang. 2022. Odin: on-demand instrumentation with
on-the-fly recompilation. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. 1010–1024.

Q. Wu, A. Pyatakov, A. Spiridonov, Easwaran Raman, D.W. Clark, and D.I. August. 2004. Exposing memory access regularities
using object-relative memory profiling. In International Symposium on Code Generation and Optimization, 2004. CGO
2004. 315–323. https://doi.org/10.1109/CGO.2004.1281684

Hongtao Yu and Zhiyuan Li. 2012a. Fast loop-level data dependence profiling. In Proceedings of the 26th ACM international
conference on Supercomputing (ICS ’12). ACM, New York, NY, USA, 37–46.

Hongtao Yu and Zhiyuan Li. 2012b. Multi-slicing: a compiler-supported parallel approach to data dependence profiling. In
Proceedings of the 2012 International Symposium on Software Testing and Analysis (ISSTA 2012). ACM, New York, NY, USA,
23–33.

Xiangyu Zhang and Rajiv Gupta. 2004. Whole Execution Traces. In Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture (Portland, Oregon) (MICRO 37). IEEE Computer Society, USA, 105–116. https://doi.org/
10.1109/MICRO.2004.37

Xiangyu Zhang, Armand Navab, and Suresh Jagannathan. 2009. Alchemist: A transparent dependence distance profiling
infrastructure. In In CGO ’09: Proceedings of the 2009 International Symposium on Code Generation and Optimization. IEEE
Computer Society, 47–58.

Qin Zhao, Derek Bruening, and Saman Amarasinghe. 2010. Efficient memory shadowing for 64-bit architectures. In
Proceedings of the 2010 international symposium on Memory management (ISMM ’10). ACM, New York, NY, USA, 93–102.

Qin Zhao, Joon Edward Sim, Weng-Fai Wong, and Larry Rudolph. 2006. DEP: detailed execution profile. In Proceedings of
the 15th international conference on Parallel architectures and compilation techniques. 154–163.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://doi.org/10.1109/CGO.2015.7054186
https://doi.org/10.1109/CGO.2015.7054186
https://doi.org/10.1109/ISED.2012.11
https://doi.org/10.1109/ISED.2012.11
https://doi.org/10.1145/2909437.2909454
https://doi.org/10.1145/2909437.2909454
https://doi.org/10.1145/1275937.1275943
https://doi.org/10.1109/CGO.2004.1281684
https://doi.org/10.1109/MICRO.2004.37
https://doi.org/10.1109/MICRO.2004.37

	Abstract
	1 Introduction
	2 Background
	2.1 A Typical Memory Profiler
	2.2 Different Ways to Use Memory Profiling

	3 Overview: The PROMPT Approach
	4 Design
	4.1 Generalizing Memory Profiling Components
	4.2 Generalizing Memory Profiling Optimizations
	4.3 Trading Latency for Throughput

	5 Implementation
	5.1 Profiling Events
	5.2 Event Queue
	5.3 Backend Components
	5.4 Implementing a Memory Profiler with PROMPT

	6 Evaluation
	6.1 Experiment Setups
	6.2 PROMPT's Extensibility
	6.3 PROMPT's Speed
	6.4 Redesigned Memory Profiling for Perspective
	6.5 Performance Analysis

	7 Discussion
	8 Related Work
	9 Conclusion
	References

