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Abstract
Automatic generation of parallel code for general-purpose
commodity processors is a challenging computational prob-
lem. Nevertheless, there is a lot of latent thread-level paral-
lelism in the way sequential programs are actually used. To
convert latent parallelism into performance gains, users may
be willing to compromise on the quality of a program’s results.
We have developed a parallelizing compiler and runtime that
substantially improve scalability by allowing parallelized code
to briefly sidestep strict adherence to language semantics at run
time. In addition to boosting performance, our approach limits
the sensitivity of parallelized code to the parameters of target
CPUs (such as core-to-core communication latency) and the
accuracy of data dependence analysis.

1. Introduction
Contrary to common assumptions, there is considerable latent
parallelism, even in irregular sequential programs, e.g., be-
tween the iterations of a loop. When such iterations can run un-
fettered on multiple cores in a modern multicore processor, per-
formance scales with the number of cores. Unfortunately, loop
iterations often depend on one another and require strict order-
ing. Hence, compilers that strictly adhere to program seman-
tics generate slow sequential code to guarantee correct results.
However, for applications that can tolerate bounded distortion
of results, there is an exciting opportunity to ignore some de-
pendences and liberate parallelism. We show how to avoid bot-
tlenecks by relaxing sequential consistency constraints in a dis-
ciplined manner, doing so only when it increases performance
while incurring little or no output distortion.

Automatic generation of parallel code is hampered by the
huge computational complexity of teasing out truly indepen-
dent parallel threads at static compile time. Conventional com-
pilers will conservatively keep apparent dependences unless
provable otherwise. While this strict adherence to program se-
mantics guarantees correctness, not all dependences are created
equal. Some will slow down execution more than others. Some
dependences have little to no impact on the outputs we actually
care about. Lastly, these characteristics change depending on
inputs and at run time. Therefore, the challenge is identifying
these dependences that bottleneck parallel performance, under-
standing what impact if any there would be on the outputs by
relaxing sequential requirements, and relaxing them at runtime,
all guided by performance goals and tolerable limits set by the
program’s user (not the programmer).

Relaxing constraints in exchange for performance is not a
new concept. Approximate computing has been studied and ap-
plied to a wide variety of applications that can tolerate bounded
approximate outputs, for example, multimedia, machine learn-
ing, and pattern recognition [17, 26, 27]. This work seeks to
combine approximate computing with automatic paralleliza-
tion by providing user settable tuning knobs that trades out-
put distortion for performance and/or energy gains. In this ef-
fort, we implemented the unleashed parallelizer (HELIX-UP),
a co-design of profilers, a loop-parallelizing compiler, and a
runtime system. The HELIX-UP compiler, built on top of a
recently developed parallelizing compiler called HELIX [4],
selectively relaxes strict adherence to language semantics to
increase parallel scalability at run time. HELIX-UP’s user pro-
vides a sequential program, representative training inputs, and
a function that measures distortion of the program’s outputs.
The profiler uses this information to assess how much of the
program semantics can be relaxed and the impact of doing so.
Finally, the runtime system applies the relaxations judiciously
and automatically based on the user’s request.

In contrast to other work that combines approximate com-
puting with automatic parallelization, HELIX-UP makes the
following contributions. First, because it relaxes program se-
mantics only long enough to overcome bottlenecks detected
at run time, HELIX-UP delivers high performance with less
output distortion. Second, it automatically tunes relaxation of
program semantics to the characteristics of the target platform.
Third, HELIX-UP is able to eliminate obstacles to paralleliza-
tion because it recognizes which code segments cause them.

The remainder of this paper is organized as follows. Sec-
tion 2 lays out the opportunities and justifications for applying
approximate computing to automatic parallelization. We then
describe the details of HELIX-UP, its constituent components
and how they interact at runtime in Section 3. Section 4 then
presents optimizations offered by relaxed semantics and Sec-
tion 5 evaluates HELIX-UP compared to related approaches to
parallelization and approximate computing. Finally, Section 6
describes the related prior work in detail.

2. Opportunity
Even complex, irregular, sequential programs have latent par-
allelism. Research over the last decade has developed ways to
unlock that parallelism on commodity multicore microproces-
sors [4, 6, 23]. For example, HELIX is a parallelizing compiler
that automatically speeds up SPEC benchmarks by an average
of 2.3× on a 6-core processor [4]. However, the performance
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Figure 1: Possible improvements for semantics-relaxing code parallelization like HELIX-UP.

gains tend to saturate with higher core counts. Moreover, these
gains are sensitive to hardware characteristics (such as core-to-
core latency and bandwidth) and to the amenability of work-
loads to high-quality analysis.

Traditionally, parallelizing compilers are conservative. They
preserve sequential evaluation order of programs unless the re-
ordering is provably not observable. They respect all appar-
ent dependences unless proven to not be actual dependences,
guarantee parallelized versions will terminate if the original se-
quential programs do, and produce exactly the same results. In
contrast, approximate computing suggests that for users who
can characterize representative inputs of their programs and
can accept small deviations from perfect outputs, this conser-
vatism is blocking potential performance and/or energy ben-
efits. There is an opportunity to realize those benefits by dis-
ciplined relaxation of strict adherence to program semantics
(dependence satisfaction and therefore program order).

The HELIX-UP compiler builds on HELIX, which is a con-
servative parallelizing compiler that automatically generates
parallel threads from a sequentially-expressed program and al-
lows parallel loop iterations to run concurrently on separate
cores in a commodity multicore processor. This approach re-
sembles traditional DOACROSS parallelism [11]. To satisfy
data dependences between loop iterations (i.e., loop-carried
dependences), HELIX identifies segments of a loop’s body—
called sequential segments—that must execute in iteration or-
der on the separate cores. Synchronization operations that sur-
round each sequential segment guarantee loop-iteration order.
HELIX also guarantees that different sequential segments are
independent so that dynamic instances run in parallel to gain
more performance [5].

Three main sources of overhead hinder performance im-
provements in traditional parallelizing compilers like HELIX
that strictly adhere to program semantics. First, strict obser-
vance of a program’s original sequential order leads to bot-
tlenecks resulting from a long running iteration that stalls all

other cores. Second, slow communication between cores am-
plifies the cost of inter-core data sharing and communication
required to satisfy dependences. Lastly, distribution of shared
data across multiple cores degrades locality. By carefully relax-
ing otherwise strict adherence to program semantics, HELIX-
UP can alleviate all three of the aforementioned overheads with
little to no impact on output correctness.

2.1 Example Comparing Execution of HELIX to
HELIX-UP.

To better understand how HELIX-UP improves performance
over a traditional parallelizing compiler like HELIX, we use
an illustrative example. Figure 1a shows a snippet of sequen-
tial code that resembles the most important loop found in
256.bzip2 from SPEC CPU2000 after applying transforma-
tions (e.g., memory privatization and variable vectorization)
performed by HELIX before parallelization to remove as many
dependences as possible. The while loop compresses a stream
of bytes (i.e., byteStream) read from a file where each loop
iteration compresses a block of the stream (i.e., block). An it-
eration starts by initializing the memory required for its execu-
tion (Line 0). Then, it retrieves the next block from the byte
stream (Line 1). Because this part of the iteration depends
on itself across the loop boundary, HELIX creates a sequential
segment shown as SeqSeg 1. Line 2 compresses the block
and Line 3 computes some statistics (e.g., how many bytes
saved by compression) updated by all iterations. Hence, HE-
LIX creates another sequential segment SeqSeg 2 to serial-
ize their updates. Finally, Line 4 cleans up the private mem-
ory used since the beginning of the iteration.

Figure 1b illustrates the execution of parallel code gener-
ated by HELIX. All instances of Line 0 run in parallel on
three cores. However, Core 1 happens to take longer initial-
izing its private memory, delaying execution not only in Core
1 but also in Core 2. This is because program semantics dic-
tate dynamic instances of sequential segments must execute in
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Figure 2: User provides a sequential program to parallelize, a function to measure program’s output distortions, representative inputs, and goal
and constraints. The compiler parallelizes the code, including in it both knobs and knob controllers. The profilers annotate knob controllers by
using the training inputs. The tuners customize knob controllers for the target platform. While the program runs with the reference input, the
runtime interprets knob controllers, adjusting knobs to alleviate performance bottlenecks, while respecting the constraints and goal set.

loop iteration order and only one instance of a sequential seg-
ment may run at a time.1 This strict adherence requires stalling
Core 2 while waiting for the sequential segment in the prior
iteration to complete. But this type of bottleneck of the parallel
code can be measured at runtime. Relaxing constraints on pro-
gram order just long enough to remove detectable bottlenecks
substantially increases performance while minimizing the im-
pact on program output. Said another way, if transformations
that sidestep strict sequential semantics are judiciously applied
only when needed and beneficial, HELIX-UP can relieve all
three sources of overhead. Figure 1c shows how relaxing the
treatment of sequential segments improves parallelization.

Distortion-free reordering. Sidestepping strict sequential
semantics need not distort the output. In our example, SeqSeg
1 arises from the actual dependence between Line 1 and it-
self. The imposed ordering prevents separate iterations from
picking the same block to compress, but serves no other pur-
pose since blocks can be compressed in any order. Unfortu-
nately, compilers cannot make such semantically-justified in-
ferences, especially if they only hold during parts of the work-
load’s execution. However, HELIX-UP can. Relaxing the or-
dering requirement removes this sequential bottleneck and al-
lows the third iteration to now compress the second block in-
stead of waiting, demonstrated in Figure 1(c). The reordering
also reduces communication overhead by removing synchro-
nizations. Moreover, the compiler is now free to reschedule it-
erations to preserve spatial locality.

Low-distortion reordering. Of course, there sometimes is a
cost to breaking the semantics of the original sequential pro-
gram, but this cost can be small and often ignored. Again look-
ing at our example, HELIX executes SeqSeg 2 sequentially
to guarantee that loop statistics are computed in the same or-
der as in the original sequential program; every instance of
SeqSeg 2 loads the value generated by the previous iteration,
updates the shared value, and stores back the new value. If the
program’s user can tolerate some error in these statistics, the
HELIX-UP compiler allows SeqSeg 2 to execute in paral-
lel most of the time. Breaking the dependence that gave rise to
SeqSeg 2 eliminates sequencing and communication over-

1 Consequently, HELIX prefers many short sequential segments over few long
segments.

heads. It also improves data locality. Instead of loading statis-
tics data from a remote private DL1 cache, as done in HELIX,
data is kept in the private cache of a core while Line 3 runs
in parallel.

3. Unleashed Parallelization
HELIX-UP provides scalable and robust performance of par-
allelized code automatically generated from sequential pro-
grams by sidestepping language semantics at runtime. HELIX-
UP’s runtime system relaxes the program order dictated by in-
struction dependences when beneficial. This allows HELIX-
UP to improve TLP by reducing sequential code; to reduce the
amount of communication among cores, by not sharing data
and not synchronizing cores; and to reorder parallel loop it-
erations to improve data locality. HELIX-UP also allows the
user to set the maximum amount of relaxation allowed, rang-
ing from nothing (e.g., all dependences must be satisfied) to
unbounded (e.g., no dependence need be satisfied). As in exist-
ing approximate computing systems, the user provides an extra
function, for example

∑
ô−o
ô where ô is the expected output

and o is the output obtained [17], to compute distortion during
the profiling phase based on user-provided inputs. Through this
output distortion function, the user expresses the relative im-
portance of program goals, albeit not in domain-specific terms.
A user chooses between performance and energy savings and
sets a maximum or a minimum performance, energy savings,
and/or output distortion. Then, HELIX-UP automatically de-
cides how much to relax the code at runtime to fulfill user re-
quirements. The rest of this section describes the components
of HELIX-UP and how they interact to relax program order.

Figure 2 provides an overview of HELIX-UP. Information
inferred by the HELIX-UP compiler through traditional code
analyses (e.g., data dependence analysis or induction variable
analysis) is coupled with information collected by HELIX-UP
profilers. Each profiler identifies dependences that have little
or no impact on workload outputs when left unsatisfied. The
HELIX-UP runtime uses this information while monitoring
parallel execution. When the observed execution does not meet
expectations, the runtime selectively relaxes program order
based on profiler data to boost performance.

To control how much to relax program order, HELIX-UP
provides a set of knobs, which are defined by the compiler,

237



calibrated off line by profilers, and then used by the HELIX-
UP runtime. Each knob corresponds to a potential source of
parallelism-dampening overhead for a parallelized loop. For
example, a knob may describe how strictly the dynamic in-
stances of a sequential segment like those in Figure 1 are se-
quenced, or whether the order of loop iterations is being main-
tained, or how rigorously communication between cores is be-
ing carried out. The setting of a knob starts from the most con-
servative configuration (e.g., program order is preserved com-
pletely, at some cost in performance) to the most aggressive one
(e.g., order is sacrificed completely to maximize performance).

Creating knobs. The HELIX-UP compiler generates paral-
lel code that includes knobs as well as one automaton per par-
allelized loop that serves as a knob controller (Figure 2). Each
state of a knob controller represents a specific setting of the
loop’s knobs. State transitions represent the changes to knob
settings that the runtime is allowed to make. Each transition is
labeled with a condition, based on knob metrics, under which
the corresponding knob changes can be made. Each knob has
an associated knob metric, a measurement of the amount of
overhead generated as a result of the knob’s current setting.
For example, for a knob that models a sequential segment, the
knob metric represents the cumulative time spent by all threads
waiting to execute this sequential segment.

Calibrating knobs. Knobs are calibrated based on training
inputs provided by the user, and they can be adjusted by the
runtime in response to changing behavior of the parallelized
workload. The HELIX-UP runtime uses the knob metric to de-
cide when to adjust the knob. Offline HELIX-UP profilers (Fig-
ure 2) use representative inputs to characterize the sensitivity
of knobs during parallelization and measure the characteristics
of the code (e.g., performance). The profilers then annotate all
states of a knob controller with performance, energy saved, and
output distortion generated by different knob settings. These
measurements are averages over the available inputs, relative
to the execution of the original sequential program (e.g., 3×
speedup, 2× energy saved, 1% output distortion), and they
are computed for the entire program execution (i.e., end-to-
end evaluation). HELIX-UP’s profilers rely on hardware per-
formance counters of commodity platforms.

Tuning knob controllers. During installation, tuners define
a triggering condition for each state transition of each con-
troller, based on platform-specific characteristics. Tuners rely
both on microbenchmarks and on the original sequential pro-
gram. We run microbenchmarks to assess platform-specific
characteristics like core-to-core communication latency. We
run the original program to assess platform-specific behavior,
such as its cache miss ratio, used in triggering conditions that
respond to data locality loss. For example, if a platform has
high core-to-core communication latency and cores begin to
synchronize frequently, the synchronization-relaxing knob can
lower communication overhead, albeit at the cost of some out-
put distortion. But if a platform’s inter-core communication
links are fast enough, there is no benefit to making this compro-
mise. After defining a controller automaton’s transitions, the
tuner minimizes states that do not improve performance, en-

ergy, or output distortion prior to installing it in the parallelized
executable file.

Using knobs. The runtime is an independent thread created
when the program starts. It uses knobs to control whether and
for how long the parallelized program makes compromises to
gain performance and save energy. Before initiating the com-
piled program, the runtime further optimizes each knob con-
troller by removing states that fail to satisfy user constraints.
The runtime starts each knob controller in its semantics-
preserving state, i.e., with all knobs at the most conservative
settings. After starting the compiled program, the runtime uses
hardware performance counters to monitor the knob metrics
associated with each parallelized loop as it executes. It wakes
up periodically to check all conditions (defined by tuners at
installation time) that might trigger a state change. Triggering
conditions prompt the runtime either to increase or decrease
aggressiveness of knob settings. When a transition is triggered,
the runtime checks whether moving to the new state helps to
meet the user’s objective (e.g., performance). If so, the runtime
makes the transition and adjusts the knob settings accordingly.

Assumptions and limitations. HELIX-UP assumes that the
training inputs yield representative performance, energy, and
output distortion. If that assumption is incorrect, HELIX-UP
does not guarantee to bound output distortion or to avoid un-
recoverable faults. In that case, the user of HELIX-UP risks
unexpected output distortion to gain substantial performance
or energy benefits. To overcome this problem, other systems
rely on calibration periods at run time [26].

4. Optimizing for Adaptability
For a region that has an associated knob, the HELIX-UP com-
piler produces alternative implementations corresponding to
the settings of that knob. At least one alternative reflects strict
semantics. Others relax semantics to improve performance
and/or power. The HELIX-UP runtime sets a knob by selecting
which alternative to execute. The runtime itself never generates
or reoptimizes code.

HELIX-UP’s relaxed-semantics optimizations fall into three
categories, according to the overhead they target: sequential
bottlenecks, loss of data locality, and delay incurred by inter-
core communication.

4.1 Optimizing Sequential Bottlenecks

We define a sequential bottleneck as the case where most of
the cores running parallelized loops get stuck waiting for one
core to finish its loop iteration. A bottleneck can occur be-
cause, strictly speaking, dynamic instances of each sequential
segment within a loop (which arise from a loop-carried depen-
dences between loop instructions) should evaluate in loop iter-
ation order. Recall the example in Figure 1(b), SeqSeg 1 is a
sequential segment that guarantees dynamic instances of line
1 execute in the order specified by the original sequential pro-
gram, which leads to stalling core 2 and all subsequent itera-
tions. Another source of sequential bottlenecks is the barrier at
the end of a loop that prevents code beyond the loop from run-
ning until all iterations complete. Bottlenecks like these, which
occur when loop iterations are out of balance, are an important
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(a) Sequential segment knob (b) Loop-end barrier knob (c) Grouping iteration knob (d) Communication knob (e) SMT knob

Figure 3: Knobs automatically generated by the HELIX-UP compiler. Increasing a knob setting relaxes program semantics.

source of overhead for HELIX and similar parallelizers. The
following subsections describe different optimizations HELIX-
UP’s runtime relies on to address the above bottlenecks. We
describe each optimization with respect to the underlying idea,
the associated knob settings, and the metric used to determine
which setting to use at run time.

4.1.1 Relaxing Sequentiality
Idea. The consumption of data resulting from a loop-carried
dependence is often more than one iteration away from its pro-
duction [6]. In that case, or when failure to satisfy the depen-
dence has a tolerable impact on program output, mutual exclu-
sion of all subsequent instances of the corresponding sequential
segment is unnecessary. Notice that, for a semantics-preserving
compiler, inferring the number of iterations that separate the
producing and consuming instructions of a dependence is chal-
lenging at best, and sometimes impossible, for non-trivial pro-
grams. Also, for some sequential segments, maintaining loop
iteration order is unnecessary and their dynamic instances can
run in any order. This is usually a consequence of an overly
sequential implementation arising from a sequential program-
ming language such as C. We saw in Figure 1(c) how HELIX-
UP freed SeqSeg 1 to run the third iteration on core 2 ahead
of the second iteration on core 1. Again, a semantics-preserving
compiler cannot readily infer this code property.

Knob. Figure 3a illustrates the knob automatically created
by the HELIX-UP compiler and available to the HELIX-UP
runtime for optimization. The compiler generates one knob per
sequential segment and retains the most conservative setting
to restrict execution of at most one thread per sequential seg-
ment and to preserve loop-iteration order (i.e., the HELIX pol-
icy for sequential segments). A more relaxed setting removes
this order constraint while letting in one thread per sequential
segment, making it a critical section. The next relaxed setting
allows two threads per sequential segment, as though guarded
by a 2-thread semaphore. Additional settings allow increasing
numbers of cores to execute a sequential segment at a time,
making it a parallel segment. Note that all settings other than
the last require thread synchronization.

Metric. The metric for this knob that is related to a sequen-
tial segment is the idle time spent by cores waiting for its seg-
ment instances to execute sequentially. We estimate it with:

Pressure =

∑
i∈Threads Idlei

WallTime× (Cores− 1)

where Idlei is the time that thread i idles before it can execute
the corresponding sequential segment. WallTime is the wall-
clock time since the start of the parallelized loop.

4.1.2 Relaxing the Loop-End Barrier

Idea. Data generated by loops are not always used immedi-
ately. Therefore, the barrier placed at the end of the loop to
resume the execution of code outside of it can be relaxed.

Knob. Figure 3b illustrates the knob corresponding to this
optimization. The compiler generates one knob per loop. The
most conservative setting waits for all threads to complete
before resuming execution of the code outside the loop. A
relaxed setting waits for all but one of the threads to complete.
Subsequent settings wait for fewer and fewer threads.

Metric. The Pressure metric also applies here.

4.2 Optimize Data Locality

Distributing loop iterations across multiple cores typically de-
grades spatial and temporal locality compared to the original
sequential code that runs on a single core. This can be an im-
portant source of overhead.

4.2.1 Grouping Loop Iterations

Idea. Rather than distributing individual iterations across
cores, executing a few contiguous iterations on the same core as
a group gains both temporal and spatial locality. However, this
can create create a severe sequential bottleneck if all depen-
dences must be satisfied. In other words, a sequential segment
of the first iteration of a core has to wait for all prior iterations
on an adjacent core to complete. To avoid this bottleneck, we
generate the code such that only the first iteration of the group
synchronizes with only the first iteration of the previous group
running on the adjacent core. Of course, this comes with the
risk of breaking some dependences that might lead to output
distortions. However, because most loop-carried data depen-
dences are not between adjacent loop iterations [6], the output
distortion created by this transformation can be acceptably low
for some loops.

Knob. Figure 3c shows the knob corresponding to this op-
timization, where the compiler generates one knob per loop.
The most conservative setting is to not group iterations like for
HELIX. The more relaxed setting groups two subsequent iter-
ations together. Next settings increase the number of iterations
per group. We set the maximum number of iterations within a
group to be twice the number of cores of the platform.

Metric. The extra DL1 cache misses of all cores per cycle
corresponds to the overhead due to grouping loop iterations
together. We tried other cache levels and observed that DL1
best represents the locality lost. This metric is defined as:

LocLost =
(
∑

c∈Cores Currentc)
Cores − Expected

WallTime
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where Currentc is the DL1 miss rate for the i-th core since
the beginning of the parallelized loop. Expected is the average
cumulative DL1 misses of the sequential version of the paral-
lelized loop across all of its invocations, found by running the
original sequential program. WallTime is the wall-clock time
since the start of the parallelized loop being executed.

4.3 Optimize Core-to-Core Communication Cost
Inter-core communication overhead can also be optimized.

4.3.1 Relaxing Synchronization
Idea. As a side effect of other synchronizations, some se-
quential segments may get synchronized with prior iterations,
thereby making some synchronizations redundant. However,
this redundancy is difficult to predict and the conservativeness
of traditional code analysis can easily miss it. This optimization
relaxes synchronizations assuming some may be redundant.

Knob. Figure 3d illustrates the knob corresponding to this
optimization. Again, the compiler generates one knob per se-
quential segment. The most conservative setting is to always
synchronize with prior iterations. The relaxed settings decrease
the frequency of synchronizations by skipping an increasing
number of successive iterations.

Metric. On commodity platforms, threads can only synchro-
nize via memory operations that invoke the cache coherence
protocol. Hence, synchronization incurs an overhead of mov-
ing modified cache lines from the private DL1 cache of one
core to the cache in a core requiring synchronization. This
metric estimates how frequently cores communicate as fol-
lows: Comm = ModCacheLinesT

Loads , where ModCacheLinesT is the
number of modified cache lines transferred between cores and
Loads is the sum of all loads executed by any core used.

4.3.2 Multiple Uses of SMT
Idea. The simultaneous multithreading (SMT) feature in to-
day’s commodity platforms can ether hide the communication
latency between cores or perform actual computation. The best
use of SMT depends on the runtime characteristics of a par-
allelized loop. If the parallel code requires a relatively large
amount of communication, then best to hide latency (as it is
used by HELIX [4]). On the other hand, if cores communi-
cate infrequently enough (e.g., thanks to relaxed-semantics op-
timizations previously described), it may be better to use SMT
to execute more iterations.

Knob. Figure 3e illustrates the knob corresponding to this
optimization. The compiler generates one knob per core and
only has two settings: hide communication latency or execute
iterations. Similar to grouping iterations (Section 4.2.1), SMT
threads execute iterations without synchronizing with any other
iterations to avoid severe sequential bottlenecks.

Metric. The Comm metric also applies here.

5. Evaluation
The HELIX-UP runtime temporarily relaxes strict program se-
mantics, but only for long enough to alleviate performance bot-
tlenecks. Doing so, HELIX-UP makes the performance of par-
allelized code robust and scalable while limiting output distor-
tion. We now demonstrate the resulting benefits on a variety

of today’s commodity platforms, and we show that each com-
ponent of HELIX-UP is important to its success, including the
semantics-preserving code optimizations that come with HE-
LIX. We conclude with an oracle study that quantifies remain-
ing opportunities.

5.1 Experimental Setup
Using sequentially-designed benchmarks ranging from those
commonly considered difficult to parallelize (SPEC CPU suite)
to more regular ones (PARSEC), we evaluated HELIX-UP on
real desktop and server processors from Intel and AMD.

Platforms. We label the platforms with their microarchitec-
ture names. The first, Nehalem, includes six Intel R© CoreTM

i7-980X cores, each operating at 3.33 GHz. The second,
Haswell, includes four Intel R© CoreTM i7-4770K cores, each
operating at 3.5 GHz. We disabled Turbo Boost for both plat-
forms. Each has three cache levels. L1 (32KB) and L2 (256KB)
are private to each core. With HyperThreading enabled, two
threads can run per core, sharing the first two cache levels. In
both Nehalem and Haswell, the last level cache (12MB and
8MB, respectively) is shared by all cores.

The third platform, Bulldozer, includes eight AMD Opteron
6380 cores, each operating at 2.5 GHz. This processor also has
three cache levels. The 16KB first-level data cache is private
to each core. Adjacent pairs of cores share a 2MB DL2 cache.
The 8MB DL3 cache is shared by all cores. Each core runs one
thread at a time.

On each of the three platforms, the cache coherence protocol
is the only mechanism for synchronizing the cores of a single
die and for sharing data.

HELIX-UP Tuners. Transition rules are pre-defined and
they rely on thresholds. Threshold values are either universal
to all benchmarks (e.g., core-to-core communication latency
of the target platform) or benchmark specific (e.g., DL1 cache
miss rate on the target platform). The latter are computed by
running the sequential form of the benchmark on the target
platform during tuning at installation time.

In more detail, to define the triggering conditions for each
state transition of knob controllers, tuners included in HELIX-
UP measure the following platform characteristics with special-
purpose microbenchmarks: core-to-core communication band-
width (CB), latency (CL), and the difference (in clock cycles)
between time to access the last level cache and that to access
the DL1 cache (DL1L). We found the following transition
thresholds empirically. For a knob that uses the LocLost met-
ric, exceeding the threshold 0.05

DL1L
causes the knob setting to

increase by a step. For a knob that uses Comm metric, the cor-
responding threshold is (0.20× CB

CL
). An observed metric lower

than 0.001, on the other hand, causes either of those knobs to
decrease by a step. For a knob that uses the Pressure metric,
a value higher than 0.15 triggers a one step increase; a value
lower than 0.002 decreases the setting by one step.

Compiler. We used the second version of the HELIX com-
piler, HCCv2 [6]. HCCv2 is based on the ILDJIT compilation
framework [3]. We extended ILDJIT to use the latest avail-
able version of LLVM: 3.4.1. The sequential programs used
as baseline were the unmodified versions of benchmarks, opti-
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Figure 4: HELIX-UP doubles the speedup obtained by the traditional parallelizing compiler HELIX. Platform used: Nehalem

mized (O3) and compiled by ILDJIT with LLVM 3.4.1 as the
back end. On all platforms considered, this baseline outper-
forms GCC 4.8.2 on our benchmark set by 1% on average.

Benchmarks. Our benchmark set included four benchmarks
from the SPEC CPU2000 suite and two from the PARSEC
suite. In each case, we used the suite’s training inputs for
profiling and its reference inputs for evaluations. While these
benchmarks are well known, we review each one in the context
of HELIX-UP.

177.mesa is an OpenGL library. The input defines the use of
the library. Execution of this code using the inputs included in
the suite renders a 3D image. With HELIX-UP, approximation
was applied to the rendering. The output distortion function
compared the rendered image with the expected one.

179.art first trains a neural network on two objects and
then uses the trained network to recognize these objects in
a large image. Approximation was applied to both phases of
the execution. The output distortion function compared the
locations of the recognized objects.

183.equake simulates the propagation of waves. Approxi-
mation was applied to these propagations. The output distor-
tion function checked all wave propagations.

256.bzip2 compresses and then decompresses an input file.
For this study, we used only the compression phase, which
accounts for (85%) of the execution time. Approximation was
applied to the computation of statistics about the compression.
The output distortion function validated the compressed file as
well as the statistics of the compression.

blackscholes prices a portfolio of European options by solv-
ing a partial differential equation. Approximation was applied
to the solution of this equation. The output distortion function
checked the computed prices.

swaptions prices a portfolio of swaptions by using Monte
Carlo simulation to solve a partial differential equation. Ap-
proximation was applied to the Monte Carlo simulation. The
output distortion function checked the computed prices.

Measuring code executions. We used hardware perfor-
mance counters to measure both performance and energy con-
sumed. The PAPI library, version 5.3.0, includes support for
RAPL performance counters. We used them to measure the en-
ergy consumed as implemented in HaPPy [34]. Finally, all
measurements were cumulative over all loops parallelized,
which cover the majority (≥ 80 %) of benchmark executions.

Prior work. We compare HELIX-UP with the HELIX par-
allelizing compiler [4] and with our implementations of three

state-of-the-art approximate computing approaches: SAGE,
loop perforation, and QuickStep. All three were implemented
under the same compilation framework on which HELIX-UP
is built.

SAGE [26] is designed for GPUs, but one of its semantics-
relaxing transformations, thread fusion, is applicable to CPUs
as well. Hence, we applied it to the parallel code generated
by HELIX. Thread fusion merges adjacent threads (hence,
adjacent loop iterations) and a copy of the output of the first
becomes the output of the second.

Loop perforation [27] skips loop iterations. We applied it
both to the sequential program (sequential loop perforation)
and to the HELIX-generated code (parallel loop perforation).

QuickStep [22] distributes loop iterations across cores with-
out relying on either code analyses or code transformations.
We applied our implementation of QuickStep, called Quick-
StepLike, to the sequential versions of the benchmarks.

5.2 Performance Evaluation

Figure 4 compares HELIX-UP on the Nehalem platform
against prior work when either 0% or 10% output distor-
tion is acceptable. To evaluate thread fusion, loop perforation,
and QuickStepLike, we swept their transformation parameters
(e.g., which loop iterations to skip) and we kept the best results.

Using semantics-relaxing code transformations to enhance
semantics-preserving ones is better than replacing them (as
QuickStepLike does). Their difference in Figure 4 shows the
value of sidestepping strict semantics sparingly—only when
semantics-preserving optimizations fall short.

HELIX-UP limits the duration of departures from strict
semantics by using the resulting code only long enough to
erase the bottlenecks detected at run time. Doing so achieved
at least the same performance as the other approaches with
significantly less output distortion. Loop perforation applies
its relaxation scheme for the entire execution, and we applied
SAGE thread fusion in the same way.

No output distortion. Figure 4a plots the performance
achieved when no output distortion is allowed. On the six-core
Nehalem platform, HELIX-UP increases the average workload
speedup to 6× (versus 3.5× for HELIX) without changing the
output. This is the result of allowing transformations that can-
not be proved correct at compile time, but that turn out to be
correct at run time. One example is the transformation that
changes the sequential segment SeqSeg 1 in Figure 1 into a
critical section.
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Figure 5: Performance-accuracy trade-off of HELIX-UP (called UP
in these figures). Platform: Nehalem

HELIX-UP improves speedup beyond the number of cores
for some benchmarks (e.g., 177.mesa). While HELIX always
uses an available SMT thread to hide inter-core communication
latency [4], the HELIX-UP runtime also uses an SMT thread
for computation whenever advantageous.

HELIX-UP outperforms QuickStepLike because the lat-
ter does not incorporate semantics-preserving transformations
(such as variable vectorization, method inlining, and code ver-
sioning) that enable additional parallelism. HELIX-UP applies
semantics-preserving optimizations before using those that re-
lax semantics. Section 5.6 further evaluates the importance of
retaining semantics-preserving optimizations.

When no output distortion is allowed, neither loop perfora-
tion nor SAGE thread fusion improves the performance of its
HELIX-parallelized input code. Each approach relies on skip-
ping some computation (e.g., loop iterations), which necessar-
ily changes the output for our six benchmarks. Hence, neither
can increase performance over HELIX. The same reasoning
applies to sequential loop perforation, the baseline.

Low output distortion. When up to 10% output distortion
is allowed, HELIX-UP achieves higher performance for every
benchmark (Figure 4b). SAGE thread fusion and loop perfora-
tion produced about the same speedups as HELIX-UP, but at
the cost of significantly larger output distortion. The reason is
that the loops selected by HELIX to maximize parallelism tend
to have large iterations. Because thread fusion and loop per-
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foration apply to whole loop iterations, the coarse granularity
limits their freedom to trade output accuracy for performance.

HELIX-UP significantly outperforms other approaches for
179.art. This is because HELIX-UP only slightly reduces the
quality of the output (by sidestepping strict semantics only
when necessary at run time). 179.art is particularly sensitive to
distortion of the data generated by parallelized loops because
poor accuracy during its second phase causes it to use more
iterations to converge to a fixed point. This result highlights the
importance of tightly controlling distortion during execution.
We found that allowing more than 1.5% output distortion for
179.art led to extra iterations during its second phase, which
reduced its overall speedup due to parallelization.

5.3 Performance, Energy, Output Accuracy Trade-offs
Figure 5 plots the tradeoff between performance and output
accuracy for HELIX-UP.2 To generate this data, we swept the
constraints given as inputs to HELIX-UP while keeping perfor-
mance as the goal. We ran these experiments on Nehalem.

Conventional wisdom holds that the most important bottle-
neck in a parallelized program is the sequential component.
Figure 5 shows that this is not the case for some benchmarks.
To highlight the most important bottleneck for a benchmark,
we turned on and off each of the three classes of knobs used by
HELIX-UP one at a time. For some benchmarks (e.g., 179.art),
the locality lost through parallelization is the main bottleneck,
which is orthogonal to the sequential code created by depen-
dences. Other benchmarks follow the conventional wisdom
(e.g., 183.equake).

2 Accuracy is computed as 100 minus the output distortion.
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tolerant to DDG inaccuracies. This reduces the burden of designing
accurate DDG analysis. Platform used: Nehalem

To further understand the loss of data locality through par-
allelization, we analyzed the DL1 cache miss rate of all cores.
Figure 6 compares the overall DL1 cache miss rate of each core
against the baseline (the black line) when HELIX-UP does not
optimize for data locality. This data is also representative of
the code generated by HELIX. As Figure 6 shows, the DL1
cache miss rate increases significantly for some benchmarks
(e.g., 179.art) when the code is parallelized. The figure also
shows the DL1 cache miss rate for HELIX-UP when all knobs
are used. Thanks to the knob that targets data locality, the DL1
cache miss rate decreases to the level for the baseline, confirm-
ing that HELIX-UP eliminates this source of overhead.

There are no redundant semantics-relaxing code transfor-
mations in HELIX-UP. Figure 5 shows that disabling any class
of knobs decreases performance for at least some benchmarks.

Finally, HELIX-UP saves energy. Figure 7 shows the trade-
off between energy and output accuracy on the Haswell plat-
form, the only one of our experimental processors with RAPL
counters, which were used to compute energy consumption.

5.4 Tolerance of Dependence Analysis Weaknesses

HELIX-UP makes a strict parallelizing compiler like HELIX
less sensitive to inaccuracies in data dependence analysis. We
modeled a less accurate data dependence analysis, compared
to the analysis used in HELIX, by adding random dependences
to parts of the data dependence graph (DDG) to be parallelized
by the compiler (either HELIX or HELIX-UP). Figure 8 plots
speedups obtained when different numbers of additional de-
pendences were added. We performed these experiments on the
Nehalem platform.

The performance gained by HELIX noticeably drops even
with a few additional dependences. In contrast, HELIX-UP’s
performance remains substantially constant, but output distor-
tion for 183.equake and 256.bzip2 get worse as more depen-
dences are added. This is because the additional dependences
led the compiler to merge two sequential segments into one.
Before being merged, the two segments had different require-
ments: one required loop iteration order and the other did not.
After the merge, HELIX-UP was forced to relax loop itera-
tion order for the merged sequential segment to preserve per-
formance, which led to higher output distortion.
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5.5 Performance on Different Architectures
HELIX-UP achieves consistent performance per core across
commodity architectures. Figure 9 plots the performance of
HELIX, HELIX-UP-0 (HELIX-UP with no output distortion),
and HELIX-UP on our three target platforms. Each workload
was compiled separately for the target on which it was tested.

Curiously, HELIX performance drops on Haswell compared
to Nehalem. Using microbenchmarks, we found that the la-
tency to move a CPU word between adjacent cores increases
from 110 cycles in Nehalem to 190 cycles in Haswell, which
accounts for the performance degradation. HELIX-UP, on the
other hand, maintains consistent performance by trading off
output accuracy to reduce inter-core communication overhead.

To further illustrate this tradeoff, Figure 9 also plots HELIX-
UP’s performance when constrained to avoid output distortion
(HELIX-UP-0). Performance decreases, but not as much as
for HELIX, thanks to semantics-relaxing transformations that
turned out to be correct at run time.

Finally, it is important to tune the program for the plat-
form on which it is been installed. To demonstrate that, Fig-
ure 9 includes performance results when HELIX-UP’s tuners
were not used and the parallel code was generated for Ne-
halem. Recall our microbenchmarks show Nehalem has lower
core-to-core communication latency than Nehalem, result-
ing in higher thresholds to trigger relaxation. Hence, without
tuners, HELIX-UP’s performance on Haswell degrades be-
cause the HELIX-UP runtime was not able to adapt to running
on Haswell.

5.6 Importance of Retaining Semantics-Preserving
Transformations

HELIX-UP needs semantics-preserving code transformations
to efficiently extract parallelism. Figure 10 compares HELIX-
UP with the case in which code transformations included in
HELIX (e.g., variable vectorization) were not used. As noted
previously for QuickStepLike, HELIX-UP also loses a signifi-
cant amount of performance if it cannot rely on code transfor-
mations designed to help extract parallelism. This is because
semantics-relaxing transformations included in HELIX-UP do
not effectively replace the semantics-preserving ones used by
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HELIX. For example, HELIX-UP cannot vectorize a variable
to avoid dependences.

5.7 Remaining Opportunities

To estimate what remains to be improved, we built several or-
acles that decide when to relax strict semantics to gain perfor-
mance. These oracles were computed using a brute force ap-
proach. Figure 11 plots the results when HELIX-UP uses these
oracles. We first validate the effectiveness of the runtime. Then,
we discuss whether the compiler could be improved to elimi-
nate the runtime.

HELIX-UP’s use of code produced by semantics-relaxing
transformations is effective. As seen by the data labeled “UP
w/ runtime oracle for increasing knobs” in Figure 11, replac-
ing the runtime with an oracle only for relaxing knobs has small
impact for most benchmarks. However, results for “UP w/ run-
time oracle”, obtained by using an oracle that entirely replaces
the HELIX-UP runtime, exhibit a larger difference. This dif-
ference suggests there may be opportunities to increase com-
putation accuracy by improving how the HELIX-UP runtime
reverts back to strict mode after relaxing actions have served
their purpose and are no longer needed.

Finally, the HELIX-UP runtime is needed to decide when to
make compromises. Figure 11 plots results for two additional
oracles: the static and “static per knob” oracles. For these two
experiments, we removed the HELIX-UP runtime and chose
the knobs settings statically. Knobs were set at the beginning
of execution and remained unchanged until the end. The oracle
“static” chooses only one setting for all knobs of the same
type. The oracle “static per knob” chooses one setting for
each knob. This last oracle represents the best results we can
obtain at static time even if we were to implement advanced
code analyses for deciding which knob settings to use. The
gap between “static” and HELIX-UP is small only for regular
benchmarks, like blackscholes. Hence, the runtime plays a
crucial role for less regular benchmarks.

6. Related Work
6.1 Semantics-Relaxing Code Transformations

Several code transformations have been proposed that relax
program semantics for various purposes [7, 8, 17, 26, 27]. None
of these extracts TLP from sequentially-designed programs and
all of them work by skipping computation, whereas HELIX-UP
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Figure 11: A runtime is needed to choose the best performance-
accuracy settings. HELIX-UP is called UP in these figures. Platform
used: Nehalem

temporarily ignores dependences when it is advantageous. Ap-
proaches that skip computation, like loop perforation [27] and
SAGE thread fusion [26], could profitably be combined with
HELIX-UP. When low output distortion is required, HELIX-
UP provides higher performance because it relaxes the code
only long enough to avoid performance bottlenecks. When
high output distortion is acceptable, skipping computation pro-
vides higher performance by increasing relaxation.

6.2 Automatic Parallelization

Semantics-preserving approaches. Many strategies for ex-
tracting parallelism while preserving program semantics have
been proposed, starting a half century ago [2, 4, 9, 10, 12,
14, 18, 20, 21, 23, 25, 29, 32]. These approaches rely only
on semantics-preserving code transformations. While we have
shown their value in HELIX-UP, this paper also shows the
value of combining them with semantics-relaxing transforma-
tions when perfect output isn’t crucial.

Speculation. Several parallelizing compilers rely on thread-
level speculation to reduce the cost of dependences that turn
out to be false at run time (i.e., apparent dependences) [13, 15,
16, 19, 24, 28, 30, 31, 33, 35]. All of these approaches are still
designed to preserve the program semantics. Hence, if a de-
pendence has been misspeculated (i.e., the dependence actually
exists), then the execution rolls back, paying the correspondent
overhead. While speculative approaches reduce the cost of ap-
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parent dependences, they behave like traditional compilers for
the actual ones. Instead, HELIX-UP not only erases the cost of
apparent dependences, it also reduces the cost of those that are
actual, but have low impact on program output.

Relaxing program semantics improves the performance
obtained by a hypothetical speculative approach. Executions
shown in Figure 4a produce 100% correct output, so no specu-
lative approach could do better than the HELIX-UP bar in that
figure. Finally, the increase in HELIX-UP’s performance be-
tween Figures 4a and 4b is due to relaxing program semantics.

Semantics-relaxing approaches. Recently, a new way of
extracting thread-level parallelism that embraces the semantics-
relaxing approach has been proposed: QuickStep [22] and
ALTER [1]. QuickStep first distributes loop iterations among
cores without synchronizing them. Then, it adds synchroniza-
tions as needed based on profiling information. Unlike Quick-
Step, HELIX-UP uses semantics-relaxing transformations to
enhance the semantics-preserving ones instead of replacing
them. Section 5.6 shows the importance of this strategy.

ALTER distributes loop iterations among cores, determin-
istically allowing stale reads from a consistent snapshot of the
global memory. The parallelization is based on source annota-
tions that can be defined either manually or automatically. AL-
TER’s semantics-relaxing transformations are chosen at com-
pile time. HELIX-UP, on the other hand, observes program be-
havior at run time to engage semantically relaxed code only
for long enough to avoid performance bottlenecks. Moreover,
HELIX-UP includes nondeterministic computations with ac-
ceptable unsynchronized data races.

7. Conclusion
HELIX-UP is a fully-implemented parallelizing compiler that
incorporates both semantics-relaxing and semantics-preserving
code transformations. The user of HELIX-UP need not under-
stand the implementation of the program being parallelized, but
must be skilled enough to provide representative inputs and
an output distortion function. Currently HELIX-UP offers no
feedback about how well the properties of production input
data have been covered by user-supplied training sets. In fu-
ture work, we will use lightweight run-time instrumentation to
dynamically assess and improve the quality of training inputs
that can be used when a program is re-parallelized.

HELIX-UP shows that when representative inputs are avail-
able, enhancing a parallelizing compiler with semantics-relaxing
transformations yields substantial performance gains. More-
over, future extension of HELIX-UP to include transformations
that skip computation, such as loop perforation, will combine
benefits of both: HELIX-UP produces high performance gains
with low distortion, and skipping computation may boost per-
formance even higher, but with higher distortion.
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