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ABSTRACT
Resources such as quantities of transistors and memory,
the level of integration and the speed of components have
increased dramatically over the years. Even though the
technologies have improved, we continue to apply outdated
approaches to our use of these resources. Key computer
science abstractions have not changed since the 1960’s.
Therefore this is the time for a fresh approach to the way
systems are designed and used.

1. INTRODUCTION
Recently, multicore processors have become prevalent in
the whole spectrum of computing systems, ranging from
embedded solutions like mobile handheld devices to
warehouse-scale systems like Google’s datacenters. The
growing amount of on-chip processing elements and their
heterogeneity, coupled with the increasing number of
concurrent applications, exponentially inflates the
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design-space of efficient computing systems calling for
innovative performance- and power-aware resource
management techniques. A deep redefinition of the
hardware/software stack is needed to manage the
fundamental trade-offs between maximizing performance
under a power cap. Computer architectures could leverage
reconfigurable fabrics to dynamically specialize and
support the performance/power requirements of fluctuating
loads; compilers and runtimes should automatically tune
code generation to better exploit the underlying computer
architecture to reach the sweet-spot in terms of
performance per Watt; operating systems should
implement smart resource management techniques
leveraging the dynamic knobs provided by both computer
architectures (e.g., dynamic voltage and frequency scaling)
and compilers (e.g., degree of parallelism, accuracy of the
resulting results).

As commodity processors acquire increasing numbers of
cores, program performance depends more and more on
creating or discovering thread-level parallelism. Because
developing a multi-threaded program is hard, and because
mainstream compilers lack effective parallelization
strategies, the processing power of multicore processors is
often wasted. Section 2 presents HELIX, a parallelizing
compiler that extracts threads automatically, even for
sequentially-designed, irregular programs. The parallel
code that it generates can adapt at run time to make use
of available cores. Moreover, when the output of a
parallelized program only needs to approximate that of the
sequential original, HELIX enables the user to control the
trade-off between performance, energy consumed, and
acceptable blurring of results.

Moreover, the actual power consumption of digital systems
is strongly affected by their current working state, which
is often a consequence of the external interactions they are
subject to. As their power consumption is poorly described
as the mere sum of contributions of the components they are
composed of, it is difficult to make accurate predictions on
the power consumed by the whole system over time, when
it is subject to constantly changing operating conditions:
this makes the definition of energy saving policies not trivial
in most of real world scenarios. Because of this, Section 3
presents an holistic power modeling framework that can be
used to profile the energy consumption of a wide range of
energy-constrained systems: the same high-level workflow is
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tailored on the actual system’s features, extracting a specific
power model able to describe and predict the future energy
behavior of the observed entity.

Finally, in Section 4 the energy-optimization techniques
that can be applied to optimize an e-Health application in
an MCC scenario is presented. In wireless body sensor
networks (WBSNs), the human body has an important
effect on the performance of the communication due to the
temporal variations caused and the attenuation and
fluctuation of the path loss. This fact suggests that the
transmission power must adapt to the current state of the
link in a way that it ensures a balance between energy
consumption and packet loss. On the other hand, the
Mobile Cloud Computing (MCC) Scenario imposes a huge
amount of acquired data that sometimes imply the usage
of data centers to process such information. The proposed
techniques cover the provision of transmission power level
policies (reactive and predictive approaches) to minimize
the energy consumption of the wireless monitoring nodes,
as well as a workload assignment technique, based on
heterogeneity and application-awareness, that redistributes
low- demand computational tasks from high-performance
facilities to idle nodes with low and medium resources in
the WSN infrastructure.

2. HELIX-UP
Program performance in today’s multicore processors
mainly depends on the amount of thread level parallelism
(TLP) available in a program. TLP is also important for
obtaining energy efficiency because idle cores of today’s
multicore processors still consume power, and it is more
energy efficient to rely on TLP rather than Instruction
Level Parallelism (ILP) exploited by a single core to gain
performance.

Some computing problems often translate to either
inherently parallel or easy-to-parallelize numerical
programs. However, sequentially designed non-numerical
programs, which are hard to parallelize because of their
complicated control and data flow, are much more
common. Non-numerical programs offer no TLP when
traditional compilers are used; this leads to low
performance and low energy efficiency in today’s multicore
processors. To obtain high performance per watt in today’s
systems, we need to enable a high amount of TLP even for
non-numerical programs that are notoriously difficult to
parallelize either manually or automatically.

Contrary to common assumptions, there is considerable
latent TLP even in non-numerical sequentially designed
programs, e.g., between the iterations of a loop [5, 3, 4, 20].
When such iterations can run unfettered on multiple cores
in a modern processor, performance adjusts with the
number of cores. Unfortunately, loop iterations often
depend upon one another and require strict ordering; thus,
compilers that strictly adhere to program semantics
generate slow sequential code to guarantee correct results.
For applications that can tolerate bounded distortion of
results, however, there is an exciting opportunity to ignore
some dependences and liberate parallelism. We propose
extracting TLP from programs (including non-numerical)
by relaxing sequential consistency constraints in a

disciplined manner, doing so only when it increases
performance and energy efficiency while incurring little or
no output distortion.

Our work is based on the empirical observation that not all
dependences are created equal. Some will slow execution
more than others. Other dependences have little to no
impact on the outputs of interest. Lastly, these
characteristics change depending on inputs and at run
time. Therefore, the challenge lies in identifying these
dependences that bottleneck parallel performance,
understanding impact (if any) on the outputs by relaxing
sequential requirements and relaxing them at runtime, all
guided by performance goals and tolerable limits set by the
program’s user (not the programmer). To this end, we
implemented the unleashed parallelizer (HELIX-UP), a
co-design of profilers, a loop-parallelizing compiler, and a
runtime system. The HELIX-UP compiler, built on top of
the HELIX parallelizing compiler [3], selectively relaxes
strict adherence to language semantics to increase parallel
scalability at run time. HELIX-UP’s user provides a
sequential program, representative training inputs, and a
function that measures distortion of the program’s outputs.
The profiler uses this information to assess how much the
program semantics can be relaxed and the impact of doing
so. Finally, the runtime system applies the relaxations
judiciously and automatically based on the user’s request.

2.1 The HELIX Parallelizing Compiler
HELIX is a conservative parallelizing compiler that
automatically generates parallel threads from a
sequentially-expressed program, and allows parallel loop
iterations to run concurrently on separate cores in a
commodity multicore processor. This approach resembles
traditional DOACROSS parallelism [9]. To satisfy data
dependences between loop iterations (i.e., loop-carried
dependences), HELIX identifies segments of a loop’s
body—called sequential segments—that must execute in
iteration order on the separate cores. Synchronization
operations that surround each sequential segment
guarantee loop-iteration order. HELIX also guarantees
that different sequential segments are independent so that
dynamic instances run in parallel to gain more
performance [4].

Three main sources of overhead hinder performance
improvements in traditional parallelizing compilers like
HELIX that strictly adhere to program semantics. First,
strict observance of a program’s original sequential order
leads to bottlenecks resulting from a long-running iteration
that stalls all other cores. Second, slow communication
between cores amplifies the cost of inter-core data sharing
and communication required to satisfy dependences.
Lastly, distribution of shared data across multiple cores
degrades locality. By carefully relaxing otherwise strict
adherence to program semantics, HELIX-UP alleviates all
three of the aforementioned overheads with little to no
impact on output correctness.

2.2 The HELIX-UP Solution
Figure 1 provides an overview of HELIX-UP, which builds
on the HELIX compiler to include semantics-relaxing code
transformations in addition to the conventional
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Figure 1: User provides a sequential program to parallelize, a function to measure program’s output
distortions, representative inputs, and goal and constraints. The compiler parallelizes the code, including in it
knobs and knob controllers. The profilers annotate knob controllers by using the training inputs. The tuners
customize knob controllers for the target platform. While the program runs with the reference input, the
runtime interprets knob controllers, adjusting knobs to alleviate performance bottlenecks, while respecting
the constraints and goal set.

semantics-preserving ones [6]. Information inferred by the
HELIX-UP compiler through traditional code analyses
(e.g., data dependence analysis or induction variable
analysis) is coupled with information collected by
HELIX-UP profilers. Each profiler identifies dependences
that have little or no impact on workload outputs when left
unsatisfied. The HELIX-UP runtime uses this information
while monitoring parallel execution. When the observed
execution does not meet expectations (e.g., performance is
too low), the runtime selectively relaxes program order
based on profiler data to boost performance.

The HELIX-UP knobs. To control relaxation of program
order performed by semantics-relaxing code
transformations, HELIX-UP relies on a set of knobs, which
are defined by the compiler, calibrated off line by profilers,
and then used by the HELIX-UP runtime. Each knob
corresponds to a potential source of parallelism-dampening
overhead for a parallelized loop. For example, a knob may
describe how often a dependence between instructions is
satisfied, or whether the order of loop iterations is being
maintained. The setting of a knob starts from the most
conservative configuration (e.g., program order is
completely preserved, with some loss of performance) to
the most aggressive (e.g., program order is totally
sacrificed to maximize performance).

Setting a knob might affect the impact of other knobs, so
the design space created by knob configurations grows
exponentially with the number of knobs. To limit this
space, we empirically observed that a knob that changes
the code of a given loop has no effect (as a first
approximation) on knobs included in other loops.
Exploiting this empirical observation, we perform an
exponential reduction of the knob space.

All knob configurations of the reduced knob space are
characterized in terms of performance, energy, and output
distortion. These metrics are measured after whole
program executions using training inputs.

Assumptions and limitations. HELIX-UP assumes that
the training inputs yield representative performance,
energy, and output distortion. If that assumption is
incorrect, HELIX-UP does not guarantee restriction of
output distortion or avoidance of unrecoverable faults. In
that case, the HELIX-UP user risks unexpected output
distortion while gaining substantial performance or energy
benefits. To overcome this problem, other systems rely on
calibration periods at run time [24].

2.3 Evaluation
HELIX-UP makes the performance of parallelized code
robust and scalable while limiting output distortion. We
now demonstrate the resulting benefits on today’s
commodity platforms, and we show that each component
of HELIX-UP is important to its success.

Experimental setup. Using sequentially-designed
benchmarks, ranging from those considered difficult to
parallelize (SPEC CPU suite) to more regular ones
(PARSEC), we evaluated HELIX-UP on today’s multicore
processors. We label the platforms with their
microarchitecture names. The first, Nehalem, includes six
Intel R© CoreTM i7-980X cores, each operating at 3.33 GHz.
The second, Haswell, includes four Intel R© CoreTM

i7-4770K cores, each operating at 3.5 GHz. We disabled
Turbo Boost for both platforms. Each has three cache
levels. L1 (32KB) and L2 (256KB) are private to each
core. With HyperThreading enabled, two threads can run
per core, sharing the first two cache levels. In both
Nehalem and Haswell, the last level cache (12MB and
8MB, respectively) is shared by all cores.

We used the second version of the HELIX compiler,
HCCv2 [5], which is based on the ILDJIT compilation
framework [2]. The sequential programs used as baseline
were the unmodified versions of benchmarks, optimized
(O3) and compiled by ILDJIT with LLVM 3.4.1 as the
back end.
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Figure 3: A runtime is needed to choose the best
performance-accuracy settings. HELIX-UP is called
UP in these figures. Platform used: Nehalem

Both semantics-relaxing and semantics-preserving
code transformations are needed. Figure 2 evaluates
HELIX-UP on the Nehalem platform when either 0% or
10% output distortion is acceptable. The important
difference between HELIX-UP and when
semantics-relaxing or semantics-preserving transformations
are disabled suggests that using semantics-relaxing code
transformations to enhance semantics-preserving ones is
better than replacing them. These results also suggest that
conventional parallelizing compilers like HELIX are
severely limited because they include only
semantics-preserving transformations.

Parallelized code needs to be dynamically adjusted.
Figure 3 plots the trade-off between performance and
output accuracy for HELIX-UP with and without a
runtime.1 To generate this data, we swept the constraints
given as inputs to HELIX-UP while keeping performance
as the goal. The difference between the two scenarios
shown in Figure 3 highlights the value of sparingly
sidestepping strict semantics only when
semantics-preserving optimizations fall short. In other
words, there is great value in dynamically adjusting the
parallelized code.

1Accuracy is computed as 100 minus the output distortion.
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Figure 4: Energy-accuracy trade-off of HELIX-UP.
Platform used: Haswell

HELIX-UP provides an energy efficient solution.
Figure 4 shows the trade-off provided by HELIX-UP
between energy and output accuracy on the Haswell
platform. This platform is the only one of our experimental
processors with the RAPL hardware performance counters
which were used to compute energy consumption.

Note that without semantics-relaxing transformations, a
parallelizing compiler like HELIX cannot provide better
energy efficiency than the results obtained by HELIX-UP
with 100% output accuracy shown in Figure 4.

2.4 Conclusion
Thread Level Parallelism (TLP) is necessary for both
performance and energy efficiency for today’s multicore
processors. HELIX-UP automatically extracts TLP even
from those programs notorious for being difficult to
efficiently parallelize either manually or automatically. To
obtain TLP, HELIX-UP enhances a parallelizing compiler
with semantics-relaxing code transformations and controls
them at run time. This provides a trade-off between
performance (or energy) and the output distortion
generated by these added code transformations.

3. HOLISTIC POWER MODELS AND
MANAGEMENT

Power consumption has become a major concern for almost
every digital system: from the smallest embedded circuit to
the biggest computer cluster, an energy budget is always
constraining the performance of the system. Moreover, the
actual power consumption of these systems is strongly
affected by their current working state(e.g., from idle to
heavy-workload conditions, with all the shades in between),
which is often a consequence of the external interactions
they are subject to. As their power consumption is poorly
described as the mere sum of contributions of the
components they are composed of, it is difficult to make
accurate predictions on the power consumed by the whole
system over time, when it is subject to constantly changing
operating conditions: this makes the definition of energy
saving policies not trivial in most of real world scenarios.

3.1 An holistic power modelling approach
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Figure 2: Both semantics-relaxing and semantics-preserving transformations are needed to extract TLP.

We not want to show an holistic power modelling tool that
can be used to profile the energy consumption of a wide
range of energy-constrained systems: the same high-level
workflow is tailored on the actual system’s features,
extracting a specific power model able to describe and
predict the future energy behavior of the observed entity.
More specifically, we observed that the energy behavior of
a computing system is generally piecewise linear. On the
one hand, there exist some variables of the systems that
determine a strong difference in its power consumption
(i.e., a significantly different slope of the energy trace over
time): these variables determine the configuration of the
system in a certain instant and are often related to the
current working state of its internal hardware components.
These variables are often controllable, and these are the
knobs we can use to tweak the system’s power
consumption. On the other hand, other variables can not
be controlled (e.g., user-defined workload conditions) and
have to threaten as an exogenous input of the modeled
system. This methodology is provided in an as-a-service
fashion: at first, the target system is instrumented to
collect power metrics and workload statistics in its real
usage context; then, the collected measurements are sent to
a remote server, where data is processed using well known
techniques (e.g., Principal Components Analysis, Markov
Decision Chains, AutoRegressive statistical models, etc.);
finally, an accurate power model is built as a function of
the metrics monitored on the instrumented system, which
will then be able to take advantage of these information to
optimize its behavior with respect to its own
performance-per-watt goals, being that on an hourly or a
daily basis.

3.1.1 The MPower case study
We validated the aforementioned approach in a mobile
device scenario: we developed an Android application,
codename MPower (available on the Google Play Store), to
collect data about smartphones and tablet in their real
usage scenarios [11, 17]. The system produced power
models for more than one thousand of devices, showing
how the proposed methodology is able to perform better
than the one implemented by Google Historian for recent
releases of the Android operating system, thus allowing the
definition of more effective power management policies able
to save as much power as possible with respect to the
user’s goals. The proposed methodology observes the
device’s behavior for a certain period of time in its real
operating context, in order to learn how its battery lasts in
different conditions. This knowledge is then used to make
accurate predictions of the Time-To-Live (TTL) of a

generic mobile device in its real usage context. The
estimated TTL is provided in terms of minutes (and not
just in term of remaining battery percentage) and it gives
an important information to the user, because it allows
him/her to choose how to use his/her device, with respect
to his/her current needs. These predictions are based on
data directly retrieved from devices without any dedicated
hardware tool, laboratory measurements or modification of
the operating system: as a consequence, the adopted
modeling system may apply to the burden of devices
currently available on the market, with the only constraint
of having a set of APIs to easily access measurements
coming from available sensors. To validate the proposed
methodology, we implemented a real system currently
working on Android devices, since it is the most
widespread open source mobile operating system, which
provides the necessary set of APIs (an Android application
is available for free on the Google Play Store [13]).
Differently from the already existing approaches for
hardware power modeling, our method starts from
everyday usage data (all the data provided by the mobile
app listed in Tab. (1)) coming from devices in real context
[11], to achieve a high level of flexibility: consequently, it is
able to adapt both to new devices and new OS versions.

3.1.2 From mobile to datacenters
We now want to show how it is possible to exploit the
same methodology to account and profile power
consumption of virtual machines in a multi-tenant server
infrastructure. During our collaboration with University of
California Berkeley, we instrumented the current prototype
of the Tessellation operating system [8], based on the Xen
Hypervisor: we monitored the processor’s Hardware
Performance Counters (HPC) to get per-core metrics of
CPU utilization and the Running Average Power Limit
(RAPL) interface to get per-socket energy measurements.
In this scenario, data showed us that resource allocation
and virtual machines placement strongly influence the
system’s power consumption, thus defining the
configuration of the system. Then, HPC metrics, related to
the instantaneous workload condition of a virtual
container, can be threaten as an exogenous input. The
holistic power modeling tool will then exploit this
information to learn the power model of the system,
enabling the development of an energy-aware scheduler:
given a certain hourly or daily energy budget, the system
will be able to estimate the best tradeoff between global
performance and power consumption, still providing the
required Quality-of-Service to all the guests applications
towards an adaptive and power-aware multi-tenant server
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Table 1: Data gathered from the device.

Screen Battery CPU(s) Mobile WiFi Audio Bluetooth GPS
is on on charge max freq. state is on music active is on is on
brightness mode temperature min freq. activity is connected speaker on state status
brightness value voltage current freq. net type signal strength music volume
width percentage max scaling freq. signal strength link speed ring volume
height technology min scaling freq. tx bytes
refresh rate health governor rx bytes
orientation usage call state

cpu id airplane mode

infrastructure.

3.2 Power Model Estimation
Experimental setting Since the goal of the proposed
system is the TTL prediction, we want to provide evidence
on how the models computed by the system are effective in
predicting the device TTL. We used the data collected
within the remote server as the test bed for the prediction
task. These data come from 188 devices which nowadays
are continuously sending data (this set is composed of
more than 30 different devices models, which are mainly
Samsung, HTC and LG). We took into account 11638860
samples coming from 5 months long recording (spanning
the period October, 15 2013 - March, 15 2014) with a
minimum of 1443 and a maximum of 299205 samples per
device). Around 75% of the data were used for training,
while the remaining was saved for testing purposes.

We decided to use the linear time-invariant ARX model
family. We selected the ARX orders by basing on the
validation error and exploring models with na = {0, . . . , 3}
and nb = {1, . . . , 5}, using as input variables x(t) CPU
frequency and screen brightness (25% of the training set
was used for model selection). After this phase, batches of
M = 100 samples (selected as described in Section ??)
were extracted and used to compute the parameter vectors
αcs. For each training batch, we computed the parameter
vector through a non-positive least square algorithm2,
which guarantees to reach the least square solution under
the constraint of having only negative parameters. We
opted for a model with only negative coefficients since,
within this context, if a variable increases its value we
expect an higher discharge rate, e.g. the more the screen
brightness is high, the more the battery level will drain. At
last, in a real scenario, we do not have information about
the future value of the uncontrollable inputs u, hence, we
substitute, for prediction purpose, future inputs with their
estimated average value.

To evaluate the performance of the proposed prediction
methodology, we used the absolute error described in [26]:

M(t) = β|e(t)|+ (1− β)M(t− 1)

where M(0) = 0 and e(t) = ŷ(t) − y(t) is the error at time
t. For a fixed configuration c, we computed Mc = M(360),
i.e., the smoothed error made by our system after 1 hour of
prediction. We used the value of β = 0.1, as suggested in

2This algorithm is a trivial modification of the non-negative
least square presented in [14]

[26]. Since the data used for estimation were limited
compared to those needed for the estimation of the
distribution of the coefficient vectors, we decided to apply
a 10 fold cross-validation approach, considering the average
of Mc for each configuration. The total error for each
device is then computed by taking a weighted average:

Mdi = w1Mc1 + . . .+ w|C|Mc|C|

where di is the device index and weights wi are computed
as the fraction of time the i-th configuration is reported on
a given device.

Furthermore, we analyzed the predicted configuration
models per device and the predicted TTL for 400 models,
different in configuration and device.

Results Figure 5 shows the performance of our
methodology in making a complete forecast on unseen
data. In this example, when a configuration without a
model is found, it is replaced by the real discharge
behaviour for visualization purposes. The graph illustrate
how our methodology is able to follow the real discharge of
the device (line in green): clearly a better result is
obtained by using real inputs (line in red) of the traces
analyzed, while a still reasonable prediction is performed
by the model with the chosen euristic for input
reconstruction (line in green).

The averaged error Md distribution for the considered
devices is presented in Figure 6. In the proposed system,
by considering the real input, the average absolute error is
M̄d = 0.036, around 90% of the devices has Md ≤ 0.065
and the maximum error computed on a device is
Mmax = 0.87, which allows us to infer that there is only a
slight difference in the behavior of our system on different
devices. Thus the methodology we presented is flexible
w.r.t. the wide range of Android-based devices.

Another interesting statistics is that the average number
of estimated configurations is 9, while the total amount of
observed ones is 21. This justifies the effort of the presented
methodology, which is able to compare devices and reuse
estimated models.

At last, to underline the variability of the discharge curves
predicted on different configurations, we computed the TTL
of each estimated configuration, stating by a 100% charged
battery. The results provided a TTL spanning from 2 to 22
hours: this high variability of the predicted TTL justifies
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the use of multiple models crafted for each configuration.

4. POWER TRANSMISSION AND WORK
BALANCING POLICIES IN THE
EHEALTH MOBILE CLOUD
COMPUTING SCENARIO

The Internet of Things (IoT) holds big promises for
healthcare, especially in proactive personal eHealth. To
fulfill these promises major challenges must be achieved,
especially in areas of non intrusive monitoring devices,
predictive models and applications. These scenarios place a
major concern in the amount of data to be processed.
24-hours monitoring studies generate a huge amount of
data that require a high computing capability only

available in state-of-the-art Data Centers. However, these
facilities have a large energy consumption and strong
impact on carbon footprint, leading to unsustainable
electricity bills and environmental costs.

Following sections drive through a real case of prediction in
the eHealth scenario, devoted to neurological disorders.
The presented case study focuses on the migraine
headache. Migraine is one of the most wide spread
neurological disorders, with a higher prevalence in women
than men. This mostly hereditary disease represents a cost
in Europe of e1222 per patient per year [15]. A Wireless
Body Sensor Network (WBSN) for non intrusive
ambulatory monitorizations has been used to monitor four
hemodynamic variables. These are: electrocardiogram
(ECG) signal for heart rate (HR), surface skin temperature
(TEMP), electrodermal activity (EDA) and peripheral
capillary oxygen saturation (SpO2). Changes in these
variables are regulated by the autonomic nervous system
(ANS) and some clinical literature have related changes in
some of these variables with migraines attacks [19, 22].
Recent studies demonstrated the capability of predicting
migraines with these variables [21].

Data obtained using the WBSN is communicated to an
embedded processing element, i.e. a coordinator (a PDA or
smartphone), and sent to the Cloud. In order to predict
migraines, huge data sets must be analyzed. To deal
efficiently with such computationally intensive tasks, part
of the processing and storage will be local, in the node,
while another part will be communicated and processed in
the Data Centers. This computing paradigm is generally
called Mobile Cloud Computing (MCC) [12]. As the target
population is large, the key challenge in this scenario is
how computation can be off-loaded and distributed
efficiently to Data Centers. However, Data Centers
consume a huge amount of power and generate a
tremendous amount of heat.

The aim of this section is to present a workload balancing
proposal in order to optimize the energy consumption in
each point of the monitoring and prediction framework (from
the WBSN to the Data Center). Three energy consumption
scenarios are presented, according to the amount of energy
used for gathering data, pre-processing them and make the
predictions. The first scenario represents a dummy situation
where data is gathered and transmitted in streaming. The
second scenario applies energy aware off-loading techniques,
and the third one applies Data Center energy minimization
policies on top of the previous off-loading techniques.

4.1 Experimental set up
In order to monitor and predict migraines, each patient
needs to carry two sensor nodes wirelessly connected to a
coordinator node, which on its turn transmits data to the
Data Center via a 3G link. For our experiments, we
consider a target population of 10000 patients being
monitored at the same time.

Two phases are considered in this framework of migraine
prediction: i) model training and ii) real-time prediction.
During the training phase, data are gathered and sent to
the Data Center. In the Data Center, data is pre-processed
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and models are created and validated. Training is made
offline. In addition to gathering hemodynamic variables,
patients mark in the smartphone their subjective pain.
With these points a normalized two semi-gaussian
symptomatic curve is generated. During real-time, the
generated models are applied in runtime to the input data.
Real-time prediction can be performed in the Data Center
or in the coordinator node. Data can be pre-processed in
the sensing nodes, or in the coordinator, or even in the
Data Center. All possible combinations will be studied in a
future work. In this paper two extreme situations are
considered: i) executing all the processing in the Data
Center or, ii) using the WBSN and coordinator (PDAs,
smartphones) to off-load computation, under certain
constraints, and minimize overall energy consumption.

The N4SID state-space algorithm has been used for
migraine prediction. Training and validation codes have
been developed using the System Identification Toolbox of
the MATLAB software; however, the compiled version
(from Matlab Compiler for standalone applications) has
been computed in servers, improving the speed-up. N4SID
matrices and states have been implemented in C-code for
servers and the coordinator node.

4.1.1 The WBSN
The WBSN is composed of three nodes in a star topology.
Two of them are peripheral sensor nodes placed in the
right arm (Node 1, link L1) and in the right knee (Node 2,
link L2). These are connected to the third one, the hub or
coordinator node (a smartphone with radio interface3).
The two sensor nodes sense the four aforementioned
hemodynamics variables. The coordinator collects data
from sensor nodes and forwards them to the Data Center
as needed.

The sensor nodes are well known Shimmer [25] devices.
Shimmer devices are based on the MSP430F1611 16-bit
microcontroller. These microcontrollers use a 10 kB RAM
and 48 kB flash memory at a maximum frequency of 8
MHz. The CC2420 chip radio performs the radio interface,
implementing the IEEE 802.15.4 radio standard. Node 1
senses ECG signal on the chest and EDA in the arm with
electrodes, and surface skin temperature near the armpit
with a NTC thermistor. Node 2 senses SpO2 and
photoplethysmography (not used in this work) in the
capillarity zone near the groin, through the NONIN devices
(8000R sensor and the OEM-III board [18]). The data
acquisition sampling frequencies are 250 Hz for ECG and
0.2 Hz for TEMP and EDA, whereas the maximum data
allowed by the OEM-III device is 3 kbps. Shimmer uses
the operating system for embedded devices TinyOS;
nevertheless, the FreeRTOS has been used instead, being
more energy efficient due to the most recent development.

We consider the sensor nodes working in two different
scenarios listed below:

• Scenario 14: Node 1 samples ECG and transmits the

3For simulation, the coordinator is supposed to be placed in
the waist (just over the navel).
4TEMP and EDA data are considered negligible for energy

Table 2: Data transmission properties for sensors
Scenario 1 Scenario 2

Node 1 Node 2 Node 1 Node 2
TXr (ms) 277 1000 60000 20000
D (Bytes) 128 471 30 9252
TXt (ms) 4 15 0.1 296

Duty cycle (%) 1.42 1.56 0.0016 1.56

data immediately (streaming). Node 2 reads data from
NONIN device every second and transmits the data
immediately (streaming).

• Scenario 2: Node 1 computes the HR (sampling +
processing) and transmits it. Node 2 reads data, stores
it for a while and transmits the data (burst mode).
Data from Node 2 does not need conversion.

For the 802.15.4 radio standard, a 104 Bytes data payload
has been used, and 128 Bytes correspond to 1 transmission
packet (including headers). The radio data rate is 250
kbps. Table 2 summarizes the transmission rate (TXr), the
amount of data sent (D, including headers in packets), the
transmission time cost (TXt), and the duty cycle
(transmission time related with the transmission rate) for
nodes 1 and 2 in each scenario.

The energy consumption of the microcontroller and
external devices has been measured using a high precision
digital amperimeter, whereas, the consumption of the radio
has been simulated, due to the complexity in measurement
of energy consumption in the real scenario. Simulation has
been carried out with the open source simulator
Castalia [7], which is designed specifically for WBSNs and
that includes a channel model based on data measured
empirically, and a model of radio CC2420, used for our
experiments with the patient. Also, the simulation
capabilities provided by Castalia have been extended to
include the path loss values calculated from RSSI
measurements obtained with the sensor nodes in the
experimental stage. It is assumed for our experiments that
radio switches on for every transmission, going off after
finishing. Simulations for this work have been executed at
the maximum power available in the radio CC2420 chip,
0 dBm. A retransmission rate has been simulated as
random retransmissions along the time, simulating the
channel effects (data collisions, medium accesses, etc.),
using a 802.15.4 MAC with two transmission attempts and
temporal variation model to recreate the dynamics of the
path-loss.

The coordinator node is an smartphone. To simplify energy
characterization, a BeagleBone Black platform [1] has been
used, as it uses the same processor as the Samsung Galaxy S
smartphone. The processor is an ARM Cortex-A8 at 1 GHz
with 512 MB DDR3 RAM. A 2 GB SD memory card has
been used to store data. As radio device, the same CC2420
as in the Shimmer devices is supposed to be used in the
platform or smartphone. We plan a case study to apply
energy-aware off-loading policies that balance computation

consumption calculation
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between the computing elements and the Data Center. In
this sense, the coordinator node may perform two actions:
i) data pre-processing, in case it was not executed in the
Shimmer nodes, or ii) run-time testing of the algorithms to
off-load computation from the Data Center.

4.1.2 The Data Center
The Data Center setup comprises two clusters: i) a High-
Performance Computing (HPC) cluster to train and validate
the models, as this are CPU and memory intensive tasks,
and ii) a virtualized Cloud cluster for model testing. The
HPC cluster is composed of Quad-core Intel Xeon RX300
servers with 16GB of RAM, and the Cloud cluster consists
on Intel SandyBridge Decathlete servers with six cores and
32 GB of RAM.

We characterize in terms of power and performance the
training and validation tasks by taking real measurements
in these servers. The training and validation phase of 1
patient runs for approximately 3.5 hours. Training and
validation for the 10000 patients is performed in a
simulated HPC SLURM cluster [16] consisting on 20
servers. We consider that, in average, models need to be
re-trained once per month per patient.

Run-time prediction time is computed every 1 minute. The
time horizon of prediction is always 30 minutes forward,
i.e., a migraine is predicted 30 minutes in advance.
Run-time prediction is a light-weight process that can be
computed at the coordinator node or at the Data Center.
If computed at the Data Center, a cluster of 10 servers
virtualized using OpenStack over KVM is used. Several
testing instances are packed together in the same virtual
machine, until a high utilization is reached. When this
happens, OpenStack automatically scales up resources,
launching as many virtual machines as needed to execute
the workload.

We assume all 30 servers are placed in an air-cooled data
room equipped with a Daikin FTXS30 unit [10], with a
nominal cooling capacity of 8.8kW and a nominal power
consumption of 2.8kW.

4.2 Results
Results have been calculated for a young, middle-sized and
middleweight female migraine patient without treatment.
15 migraines have been used for training the models.
Energy results have been generalized for a population of
10000 patients. The microcontroller energy consumption
for Node 1 in both scenarios has been obtained from [23].
The consumption in Node 2 has been measured with a
HAME HM8012 digital multimeter. Radio consumption
has been calculated in simulation with Castalia for both of
the nodes.

Table 3: Energy consumption for Shimmer nodes
Node 1 (mJ) Node 2 (mJ)

uC Radio Total uC + NONIN Radio Total
Scenario 1 396 13526 13922 3635 3600 7235
Scenario 2 430 9 439 3635 74 3709

Table 3 shows the energy consumption for the Shimmer

nodes (microcontroller and radio for Node 1, and
microcontroller, 8000R oximetry sensor, OEM-III board
and radio for Node 2), calculated for the execution time of
1 minute and only for 1 patient. As previously commented,
radio switches on and switches off in every transmission,
what explains the high consumption of Node 1 in Scenario
1. In Scenario 2, Node 1 switches on just one time per
minute, while in Scenario 1 it does for 217 times, (see
Table 2). A similar situation occurs with Node 2; in
Scenario 1 radio switches on 20 times more than in
Scenario 2. Energy savings for computing HR in Node 1
reaches the 3171% and 195% in Node 2 due to delaying
transmissions.

Table 4 shows the energy consumption for the overall
application framework of migraine monitoring and
prediction under three extreme scenarios, during 1 week of
execution and 10000 patients:

• Scenario A: Shimmer nodes streaming data (Scenario
1), coordinator node only executing data
pre-processing, all training performed in the HPC
cluster, and all testing in the virtualized cluster.

• Scenario B: Shimmer nodes pre-processing data
(Scenario 2), coordinator nodes executing testing 70%
of the time (when battery power allows), all training
performed in the HPC cluster.

• Scenario C: same off-loading techniques than in
Scenario B, but we also use virtual machine
consolidation, turning off unused servers in the Cloud
cluster, and applying cooling control techniques.

Results are aggregated per device, i.e. each column shows
the aggregated energy value for all 10000 patients under
test. For instance, for Scenario A, 20000 sensors (10000
ECG and 10000 SpO2) consume 592kWh, and 10000
coordinator nodes consume 1262kWh. As can be seen, in
an scenario with so large number of sensors and
coordinators, the impact of these devices on the overall
energy consumption of the application is large. In this
sense, reducing the energy consumed by the sensor devices
implies significant savings. Data Centers are an important
contributor to overall energy, as only 30 servers consume
almost 40% of the overall energy for the application.

Table 4: Energy consumption for various workload
off-loading scenarios and 1 week (kWh)

Sensors Coordinators DC IT DC Cool. Total
Scenario A 592 1262 579 231 2664
Scenario B 116 1264 550 220 2150
Scenario C 116 1264 464 197 2041

For space reasons, only three scenarios are tested and
limited energy minimization policies are presented. The
policies applied yield to savings of 23.4% in the overall
application. All possible combinations and further
energy-aware policies, including SLURM allocation
optimization, and improved VM consolidation will be
applied in future work, following the methodology in [27].
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