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Abstract. This is a new applied development of trace theory to com-
pilation. Trace theory allows to commute independent program instruc-
tions, but overlooks the differences between control and data dependen-
cies. Control(C)-dependences, unlike data-dependences, are determined
by the Control Flow Graph, modelled as a local DFA. To ensure seman-
tic equivalence, partial commutation must preserve C-dependences. New
properties are proved for C-dependences and corresponding traces. Any
local language is star-connected with respect to C-dependences, hence
this trace language family is recognizable. Local languages unambigu-
ously represent traces. Within the family of local languages with the
same C-dependences, we construct the language such that instructions
are maximally anticipated. This language differs from the Foata-Cartier
normal form. Future directions for application of trace theory to program
optimization are outlined.

1 Introduction

This is a research on the application of trace theory to compilation. Optimiz-
ing compilers transform a program in many ways. Transformations which only
change the order of execution of instructions are known as rescheduling. In-
side compilers, the Control Flow Graph CFG representation carries the essential
information needed for performing program transformations. CFG nodes rep-
resent the instructions (such as assignments and predicates), and the arcs the
predecessor-successor relation. A CFG is conveniently viewed as a Deterministic
Finite Automaton (DFA) of the local [3] type. Program instructions interfere in
different ways, termed dependences.

The set of dependences for a program may be viewed as inducing
a partial ordering on the statements and predicates in the program
that must be followed to preserve the semantics of the original pro-
gram. Dependences arise as the result of two separate effects. First, a
[Data-]dependence exists between two statements whenever a variable
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appearing in one statement may have an incorrect value if the two state-
ments are reversed. . . . Second, a [Control(C)-]dependence exists between
a statement and the predicate whose value immediately controls the ex-
ecution of the statement [7].

Mazurkiewicz’s theory quite abstractly represents the program statements as
letters of an alphabet, and D-dependences by means of a binary relation. This
abstraction is realistic because a data-dependence, say of the Read-After-Write
type, is solely determined by the variables used or defined in the two statements,
and not by their position in the CFG. This allows to find a program (i.e. a model
in the logical sense) for any arbitrarily given data-dependence relation over the
alphabet.

On the other hand a C-dependence is a structural property of the program
CFG. If C-dependences are arbitrarily assigned, discrepancies may arise between
the real program and its idealization by means of trace theory. More precisely,
a C-dependence is generally neither symmetric nor reflexive; and, for a given
partially commutative alphabet and CFG, it may well be that no program exists
with the corresponding C-dependence relation.

Related work. A few formal studies of C-dependences exist such as [10], but
not oriented towards program transformation. We know of just one work [5] on
locally defined traces, investigating the word problem for certain program loops.
In looser sense, some similarity of objectives may be seen between our work and
the much more established line [8] investigating the application of asynchronous
automata to concurrent programs.

As we did not find any previous work useful to apply trace theory for program
optimization, we investigated how C-dependences constrain commutation. The
next simple example introduces the problem.

a : read (x, y);
b : if x > 0 goto c else goto d;

c : x = x − 1; goto e; d : x = x + 1; goto e;
e : print (y);

The runs are just {abce, abde}. Since instruction e is data-dependent only on a,
among the runs obtained by permuting independent instructions such as c and
e, we have {abec, abde}. Clearly the two sets represent the same trace language.
But strings of the latter set, when viewed as CFG paths, imply the existence
of path abdec, which violates the program semantics since both successors of
predicate b are executed! The inconsistency comes from overlooking an essen-
tial constraint: instruction rescheduling must ensure that the original and the
transformed program have the same C-dependences.

This paper sets a new rigorous framework for such program transformations,
combining and extending some basic results of trace and compilation theories.
The paper proceeds as follows. Sect. 2 contains basic definitions from com-
piler theory, and states simple but elsewhere non-available properties of post-
dominance and C-dependence relations. Sect. 3 specializes trace theory for C-
dependences. Any local language is star-connected with respect to
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C-dependences, hence this trace language family is recognizable. Moreover CFG
local languages unambiguously represent traces, and identity of traces implies
identity of C-dependences. Sect. 4 is a significant application: within the fam-
ily of local languages with the same C-dependences, we define and construct
the language such that instructions are maximally anticipated. This language
differs from the Foata-Cartier normal form, which in general is not a local lan-
guage. Sect. 5 lists future directions for application of trace theory to program
parallelization.

2 Basic Definitions and Properties

For the basic concepts of formal language and trace theory we refer primarily
to [6], for compiler theory to e.g. [2,1,9]. Let Σ be a finite alphabet. The set of
all strings over Σ is denoted by Σ∗, including the empty string, denoted by ε.
For any string x ∈ Σ∗, |x| denotes the length of x, x(i), with 1 ≤ i ≤ |x|, is the
i-th character of x, alph(x) denotes the set of letters present in x, and πΔ(x)
denotes the projection of x on a set Δ ⊆ Σ of letters.

In compilation and software engineering a program is often represented by a
control flow graph CFG, a single entry (i), single exit (t) directed graph G =
(Σ, E). Let pred(b), succ(b) denote the predecessors and successors of node b.
The following customary hypotheses will be tacitly assumed.

1. Each node has at most two successors. A node with two successors is a
predicate (or conditional instruction).

2. The successor of a node cannot be the node itself, i.e. the CFG has no self-
loops.

3. For any node b there exists a path from the i to b, and a path from node b
to t.

The definition of CFG is next rephrased within automata theory, using a re-
stricted type of DFA known as local automaton [3].

Definition 1. A Control Flow Automaton representing a CFG G = (Σ, E) is
a DFA A = (Q, Σ, δ, q0, F ) where the state set is Q = Σ, the initial and final
states are q0 = i, F = {t} , the graph of the transition function δ is such that
δ(p, b) = q if, and only if, p = a, q = b and a → b ∈ E. A recognizes a language
L(A). The corresponding language family is termed CFG family and denoted by
CFG.

A CFA defines a local language [3], and CFG is strictly included in the family of
local regular languages, because of the above restrictions on CFG. In particular,
a language in CFG is never empty and may not contain the empty string.

It is known that local automata are convenient visualized identifying the states
with terminals and omitting the transitions labels, as shown in figure 1.
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Fig. 1. Program, CFA, strict post-dominance tree, and C-dependence relations

In compiler theory two properties of a CFG play a major role: predominance
and postdominance. An instruction a post-dominates instruction b if, and only
if, after executing instruction b, instruction a is always executed.

Definition 2. Let A be a CFA, and let a �= b. The strict postdominance relation
�s⊆ Σ × Σ is

a �s b if, and only if, for any x ∈ L(A) : π{a,b}(x) ∈ {(a, b)∗a ∪ ε}

Then the postdominance relation � is obtained adding to �s the identity relation.
The immediate postdominance relation �i is

a �i b iff a �s b and a does not postdominate any other dominator of b

Similarly, instruction a strictly predominates instruction b if, and only if, before
executing instruction b, instruction a is always executed. The notation for pre-
dominance is a 	s b. Postdominance and predominance are partial order reflexive
relations and more precisely tree partial orders.

The concept of an instruction depending on a predicate has been formalized
within compiler and software engineering research. Slightly different formulations
exist (e.g. [10]) and we follow [7,2,9]).

For a CFA A or CFG language L, let the sub-alphabet Σ2 ⊂ Σ contain the
letters having two successors, and let Σ1 = Σ \ Σ2. The letters in Σ2 represent
predicates.

Definition 3. For a CFG language L ⊆ Σ+ the ternary C-dependence relation
D3 ⊂ Σ ×Σ2 ×Σ, pronounced as a is control dependent on b via c, is defined as

(a, b)c ∈ D3(L) if, and only if, (a � c) ∧ ¬(a �s b) ∧ c ∈ succ(b).

By erasing the third argument, we obtain the binary intermediate relation

D32(L) = {(a, b) | (a, b)c ∈ D3(L) for some c ∈ Σ}
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Then closing D32(L) by means of commutation and adding the identity relation,
we obtain the binary C-dependence relation

(a, b) ∈ D2(L) = {(a, b) | (a, b) ∈ D32(L) ∨ (b, a) ∈ D32(L) ∨ (a = b)}

Examples are shown in Figures 1 and 2. Notice that in the ternary relation a
may coincide with c or a may coincide with b, but b necessarily differs from c
because the successor relation is irreflexive. Intuitively, a is control dependent
on b via c when predicate b has a successor c such that, if c is executed then also
a is surely executed, but, if the other successor of b is taken, it is not certain that
a will be later executed. The intermediate binary relation is less informative; it
does not say which of the successors of the predicate is always followed by a.
Finally the binary relation is symmetric and reflexive, to be consistent with the
usual assumptions of trace theory.

Some properties of C-dependences are next stated, which are later needed.
Let A be a CFA and L ⊆ Σ∗ be its language.

Statement 1. The C-dependence relation D3(L) is empty iff Σ2 = ∅.

In other words, there no C-dependences if, and only if, the CFA graph has no
bifurcation. Notice that the “only if” part of the statement is not obvious.

Statement 2. Let b ∈ Σ2, with succ(b) = {a, d}. Then at least one of (a, b)a or
(d, b)d is in D3(L).

Proof. By contradiction, assume

∃a ∈ Σ such that |succ(a)| > 1 and ∀b ∈ succ(a) it is (b, a)b /∈ D3(L).

Since by definition of CFA, ∀b ∈ succ(a) it is b �= a, it follows that ∀b ∈ succ(a),
b postdominates a. Let now {b1, b2} = succ(a); but if b1 � a∧ b2 � a, then either
b1 � b2 or b2 � b1. Considering the case b1 � b2 (the other case is analogous),
any string w ∈ L containing b2 can be factorized as w = y1b2y2b1y3t, with b2
not occurring in y2 or in y3. But since b2 ∈ succ(a), there exists a string w1 ∈ L
such that w1 = x1ab2x2t, with b1 not occurring in x2. Hence b1 does not post-
dominate a, a contradiction. Moreover, Figure 1 provides an example where one
successor (t) of a predicate (b) is not control dependent on the predicate. ��

Thus (at least) one of the successors of a predicate is control dependent on it.
For a CFA, a circuit O = a1, a2, . . . , an is a sequence of states ai ∈ Σ, such

that for all positions but the last, ai+1 is in succ(ai) and a1 is in succ(an). A
node ai present in O, having a successor b ∈ succ(ai) not in O, is called an
exit from circuit O. An iterative factor of a language L is a string w such that
xw∗z ⊆ L, for some strings x and z. A circuit or iterative factor is simple if
all letters are distinct. Clearly for a CFG language a simple iterative factor is a
simple circuit of the CFA graph.

The next statement, informally presented in [7], characterizes the cases of
cyclicity of the C-dependence relation. The property immediately follows from
Lemma 1 of Section 3.
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Statement 3. The binary intermediate relation D32(L) contains a cycle if, and
only if, the graph of A contains a circuit. Moreover, when a CFA circuit has more
than one exit, the exit nodes exhibit mutual C-dependences.

For instance, consider a program loop such as the one in fig.1. Node b is the the
loop exit, and it is control dependent on itself. Notice that this statement does
not imply that a set of letters that make a loop within the graph of A, make a
loop within D32 as well.

The next statement relates C-dependence and pre-, post-dominance relations.
Statement 4. Let a, b ∈ Σ. If �c, d ∈ Σ such that (a, c) ∈ D32(L) and (b, d) ∈
D32(L), then the following two conditions are met: a 	 b∨b 	 a and a � b∨b � a.

3 Control Flow and Traces

This central section studies traces and C-dependences.
Let D ⊆ Σ × Σ be a symmetric and reflexive dependence relation, and its

complement be denoted by I and named the independence relation. The depen-
dence alphabet is the pair (Σ, D). The equivalence relation over Σ∗ induced by
I is denoted by ∼I . The free partially commutative monoid, i.e. the quotient
of Σ∗ by the congruence ∼I is denoted by M(Σ, I). For a string x ∈ Σ∗, the
equivalence class of x under ∼I is called a trace and denoted by [x]I . The map-
ping from strings to traces is denoted by ϕ: ϕ(x) = [x]I . For a string language
X ⊆ Σ∗, the mapping ϕ(L)) = {[x]I | x ∈ X} produces a trace language, also
denoted by [X ]I = ϕ(L). We use interchangeably I and its complement D, if
no confusion arises. The subscript I is dropped if the (in)dependence relation is
understood.

A trace or string is D-connected if its letters induce a connected subgraph of
the dependence graph; a language is D-connected if every sentence is so.

Given a trace language T over a trace monoid M(Σ, D), the family of all
languages L ⊆ Σ∗ such that [L]I = T is denoted by L(T ). Any language in L(T )
is a representative of T .

For a subset Δ ⊆ Σ and a binary relation D ⊆ Σ ×Σ, the relation (or graph)
induced by Δ is D|Δ = D ∩ Δ2.

We refer to [6,4] for the notions of recognizable Rec, rational Rat, and un-
ambiguous trace language, and for the Foata-Cartier Normal Form.

Traces of CFG Languages

We consider a control-flowautomaton A0, recognizing the languageL0 = L(A0) ⊆
Σ∗, which is, as we know, a local regular language and more specifically a mem-
ber of the CFG language family. Let D3(A0) = D3(L0) be the C-dependence re-
lation and D2 its symmetric and reflexive embedding. Since we do not consider
data-dependences (except in Sect. 5), we may take the independence relation to be
I = (Σ × Σ) \ D2.

A regular expression is D-star-connected, if the star is used over D-connected
languages only. For a CFA, the definition becomes: if, for every circuit of the
DFA graph, the state labels are D2-connected.
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Definition 4. Let L0 be a language in CFG. The trace language [L0]D2(L0) is
called the trace language C-defined by L0. The family of CFG trace languages is

TCFG = {T | T is a trace language C-defined by L0, for some L0 in CFG}
The next technical Lemma will be used to prove that, for any CFG language,
the graph of the D32 relation is connected for every iterative factor.

Lemma 1. Let L ⊆ Σ∗ be a language in CFG and D32 = D32(L) be the in-
termediate binary C-dependence relation. Let w be a simple iterative factor with
W = alph(w). Then for every pair of letters a, e ∈ W such that e is an exit from
w, the graph D32 |W contains a (not necessarily directed) path, termed a D-path,
between a and e.

Proof. The proof is by induction. Let PATHSk, k ≥ 2, be the set of CFG paths
of length k contained in circuit w, and denote with EPATHSk the paths ending
in an exit node. We say EPATHSk has the D-connection property, if, for every
path z in EPATHSk, the graph D32 |alph(z) is connected1.

Induction base. For circuit w, let ab be a path in EPATHS2. Since b exits
from w, from the definition of control-dependence it follows that (a, b) ∈ D32 .
Thus EPATHS2 has the D-connection property.

Inductive hypothesis. From the induction base, we may assume that for
circuit w with |w| = k, the set EPATHSj has the D-connection property,
for all 2 ≤ j ≤ k − 1.

Induction step. We prove that EPATHSk has the D-connection property.
Let b1b2 . . . bk−1bk be a path in EPATHSk. Since the path x = b2 . . . bk−1bk

is in EPATHSk−1, it has the D-connection property. It suffices to show that
b1 is D-connected to a letter in alph(x), and we prove it for b2. Two cases
arise.
b2 postdominates b1. Since b2 is control-dependent on some letter in

{b2, . . . , bk−1bk}, from the definition of control-dependence it follows b1
is dependent on the same letter.

b2 does not post-dominate b1. Then b1 is a predicate with b2 as one of
its successors. From Statement 2 it follows that (b2, b1)b1 ∈ D3. ��

Clearly the property remains true for non-simple iterative paths. The next trace
language family inclusion follows immediately.

Theorem 1. The TCFG family is strictly included within the family Rec of
recognizable trace languages.

Proof. Inclusion follows from the fact [6] that a trace language T is recognizable,
if, and only if, there exists a regular language X ⊆ Σ∗ such that every iterative
factor of X is D-connected and T = [X ]. Moreover, the inclusion is strict: the
(finite) language R = {abc} with the dependence relation D = {(a, b)} is recog-
nizable, but D differs from the binary control relation D2(R), which is empty
(Statement 1). ��

1 We prefer to use the intermediate binary relation D32 instead of D2 because
it makes more perspicuous the arguments based on the properties of control-
dependences.
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Control Equivalent Automata

We have argued in the introduction that a CFG language, though equivalent
modulo the C-independence relation to a given language, may not correspond
to a semantically equivalent program. This fact is precisely stated in the next
theorem.

Theorem 2. Let L′ and L′′ be languages in CFG over the same ranked alphabet
Σ = Σ1 ∪Σ2. If the trace languages C-defined by the two languages are identical,
then the binary C-dependence relations are equal, in formula

if [L′]D2(L′) = [L′′]D2(L′′) then D2(L′) = D2(L′′)

but the converse implication does not hold.

In other words, for a given partition of the alphabet into predicates (Σ2) and
non-predicates, a trace language uniquely determines the C-dependence relation
for all CFG representatives. On the other hand, two CFG languages having
equal D2, may represent different trace languages and therefore, they are not
semantically equivalent when viewed as programs. For this reason, the theorem
calls for a new stronger concept of equivalence.

Definition 5. Let L0 = L(A0) be a language in CFG and let T0 = [L0]D2(L0) be
the C-defined trace language. The family LC(L0) ⊆ CFG includes the languages
L, such that D3(L) = D3(L0) and [L]D2(L0) = T0. The corresponding family
of CFG automata is denoted by AC(L0). The languages (or automata) in these
families are termed C-equivalent.

For a given CFG language, we are interested in studying C-equivalent languages,
having desirable properties. With the terminology of compilers, they can be
viewed as obtained by legal program transformations.

To conclude this part, we formalize a fact anticipated in the introduction: a
regular language, which represents the same trace as a CFG language L0, may
not even be in CFG.

Statement 5. Let L0 be a language in CFG and T0 its C-defined trace lan-
guage. The language family LC(L0) is strictly included within the family {R |
R is a regular language and [R]D3(L0) = T0}.

Proof. Weak inclusion is obvious. Strictness of inclusion follows from the example
in Sect. 1. The set L0 = {abce, abde} is in CFG, with D2(L0) = {(b, c), (b, d)}
(omitting the identity relation). The language R = {aebc, abde} defines modulo
D2(L0) the same trace language C-defined by L0, but it is not a local language,
hence not a CFG language. ��

Unambiguity

A natural question to ask concerns ambiguity. We recall a rational trace language
T is unambiguous if, there exists a regular language X such that T = [X ]I and for
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every trace t ∈ T , X contains exactly one representative for t. In that case we say
that language X unambiguously defines trace language T . Since all recognizable
trace languages are unambiguous, from Theor. 1 the same holds for the TCFG

family. The next statement solves the question whether every CFG language
unambiguously defines its trace language.

Theorem 3. Consider a language L in CFG, the C-defined trace language T ,
and the family LC(L) of CFG languages which C-define T . Every language in
this family unambiguously defines T .

Proof. It is based on Lemma 2 and Lemma 3. We show that for any distinct
strings w1, w2 ∈ L it is [w1]D2(L) �= [w2]D2(L). Assume by contradiction that
[w1]D2(L) = [w2]D2(L).

If D3(L) = ∅, from statement 1 it follows that each letter has at most one
successor, and, since the first letter must be i, |L| = 1, hence w1 = w2, a
contradiction.

It remains to analyze the case D3(L) �= ∅. Consider the longest common prefix
xa of the two strings w1 = xaby11 w2 = xacy21 with b �= c and y11, y21 ∈ Σ∗.

Since [w1]D2(L) = [w2]D2(L) implies πb(w1) = πb(w2)∧πc(w1) = πc(w2), letter
b must occur in y21 and letter c must occur in y11, hence the factorizations

w1 = xaby12cy13 w2 = xacy22by23

where y12, y13, y22, y23 ∈ Σ∗ ∧ c /∈ y12 ∧ b /∈ y22. Moreover, since w1 and w2 are
in the same trace, b and c are independent letters (i.e. (b, c) /∈ D32(L)).

From Lemma 3, it follows that ∀d ∈ y12, (c, d) /∈ D32(L) and ∀d ∈ y22, (b, d) /∈
D32(L). Moreover, from Lemma 2, we have c � b and b � c. Since the post-
dominance relation makes a tree over Σ, and c � b and b � c, then c = b.
Contradiction found. ��

Lemma 2. Let L ∈ CFG contain a sentence of the form xyaz, for a letter a,
and some strings x, z ∈ Σ∗, y ∈ Σ+. Then

∃c, d ∈ ya such that (a, c)d ∈ D3 if, and only if, ∃e ∈ ya such that ¬(a � e)

Proof. We provide the proof in two rounds.
∃c, d ∈ ya | (a, c)d ∈ D3 ⇒ ∃e ∈ ya | ¬(a � e) By contradiction, we suppose

that:
(∃c, d ∈ ya | (a, c)d ∈ D3) ∧ (�e ∈ ya | ¬(a � e))

Then it follows ∀e ∈ ya, (a � e). Since (a, c)d ∈ D3 follows that ¬(a � c) by
definition of D3. Since c ∈ ya ∧∀e ∈ ya, (a � e) then a � c. Contradiction found.

∃c, d ∈ ya | (a, c)d ∈ D3 ⇐ ∃e ∈ ya | ¬(a � e) We provide the proof by induc-
tion.

Induction base. For the string ya, let the length of y be one and then y ∈ Σ.
Since a � a by definition of the pre-dominance relation, then the Lemma
becomes ¬(a � y) ⇒ (a, y)a ∈ D3 which is true by definition of D3.
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Inductive hypothesis. From the induction base, we may assume that for any
y with length equal to n − 1 the Lemma holds.

Induction step. We prove that for any y with length n, the Lemma holds.
We can write the string as xdy1az where y = dy1. If ¬(a � y1(1)), then by
the Inductive hypothesis, the Lemma holds. Then it suffices to consider the
case a � y1(1). Two cases arise:

– (¬(a � d)): by definition of D3 it follows (a, d)y1(1) ∈ D3 and then the
Lemma holds.

– (a � d): then �e ∈ ya | ¬(a � e) and then the Lemma holds.
��

Lemma 3. Let L0 be in CFG, and let w1, w2 ∈ L0 be sentences representing
the same trace t = [w1]D2 = [w2]D2 , such that for some letters a �= b ∈ Σ,
w1 = xax11bx12 and w2 = xbx21ax22, where x, x11, x12, x21 and x22 are possibly
empty strings. Then

– ∀e ∈ alph(x11) and ∀f ∈ Σ it is (b, e)f �∈ D3(L0);
– ∀e ∈ alph(x21) and ∀f ∈ Σ it is (a, e)f �∈ D3(L0).

Comment: consider a program represented by a CFA. Theor. 3 says that it is
impossible for a program to have two runs that are a permutation of each other.
Moreover this remains impossible for any program that is C-equivalent to the
original one.

4 Maximally Parallel Program

In this section we show how to transform a CFA into a semantically equivalent
one, and especially into the one with maximal parallelism. For the latter we
discuss its relation with the Foata-Cartier normal form of traces.

Ordering by Degree of Parallelism

To compare the degree of parallelism of programs, we introduce two different
binary relations over string languages that define the same trace language. We
need some definitions. A clique of the independence graph is a set of mutually
independent letters. The set of such cliques is denoted by ΣI . For a string s ∈ Σ∗

the clique decomposition is s = s1s2...sn where each si is a clique, and each sj ,
1 ≤ j < n contains a letter such that there exists a dependent letter in sj+1.
The string decomposition must be computed from left to right, thus ensuring its
uniqueness for any given string. The height of the string is height(s) = n.

Let L1 and L2 be string languages. We define an order relation ≥P on strings
s1 ∈ L1, s2 ∈ L2 representing the same trace. We say string s1 is more parallel
than s2, written s1 ≥P s2, if for their clique decompositions s1 = s1,1s1,2...s1,n

and s2 = s2,1s2,2...s2,m it is n ≤ m. This relation induces a partial order on
languages: L1 is more parallel than L2, written L1 ≥P L2, if for each string
s1 ∈ L1 and s2 ∈ L2 with [s1]D2(L1) = [s2]D2(L2) , it is s1 ≥P s2. The strict
relation >P is defined in the obvious way, using existential quantifier.
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Of two strings with equal height, one may place a certain letter in an earlier
clique than the other. This concept of greediness or anticipation is captured by
another order relation ≥G on strings s1 ∈ L1, s2 ∈ L2 representing the same
trace and having equal height. String s1 is greedier than s2, written s1 ≥G s2,
if for the clique decompositions s1 = s1,1s1,2...s1,n and s2 = s2,1s2,2...s2,n the
following condition holds. Let sign(|s1,i| − |s2,i|) be a symbol in {0, n, p}. Then
the sequence of signs is in 0∗p(n | p)∗. The ≥G naturally induces a partial order
on string languages.

We are especially interested in a language that is more parallel and greedy
than any other C-equivalent language.

Computing C-Equivalent Languages

We move into application, to present an algorithm for computing the set of C-
equivalent automata (vs Def. 5). After proving correctness and completeness of
the algorithm, we show how to construct the most parallel and greedy automaton.

Definition 6. Let A be a CFA with L(A) ⊆ Σ∗, and let D3 be the ternary
C-dependence relation. The following transformation of the graph of A is termed
“moving a letter b to a letter a”. Let j be a letter such that:

j �i b ∧ ∀p ∈ pred(j) | b 	 p (1)

The edges E′ of the CFG (Σ, E) of A become as following:

– Edel = {(p, d) | (d = a ∨ d = b ∨ d = j) ∧ (p, d) ∈ E}}
– Eadd = {(p, b) | (p, a) ∈ E} ∪ {(p, j) | (p, b) ∈ E} ∪ {(p, a) | (p, j) ∈ E}
– E′ = (E \ Edel) ∪ Eadd

Notice that a becomes the immediate postdominator of b; if b ∈ Σ2, the move
can shift other nodes which are transitive successors of b. Such a transformation
is called a legal move if the new automaton recognizes a language C-equivalent
to L(A).

Consider a CFA A and its graph. For each non-initial node a of the graph,
we define the guest set, Guest(a) ⊆ Σ \ {i, t}, which includes the letters b such
that:
∀c, d ∈ Σ, (a, c)d ∈ D3 ⇔ (b, c)d ∈ D3 ; ∀c ∈ Σ, (a, c) ∈ D32 ⇒ (a 	 c ⇔ b 	 c)
and ∃j such that condition 1 is met. The sets are computed from C-dependence
and pre-dominance relations. Since the latter can be computed in polynomial
time, the computation of guest sets is in the complexity class P .

The next technical Lemma will be used to prove that we can construct any
C-equivalent automaton by moving some letter from its current position in the
graph of A, to some node which has the letter as guest.

Lemma 4. Let L1 be a CFG language, the move of b to a is legal if, and only
if, b ∈ Guest(a).
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Theorem 4. Let A be the class of automata computed by applying one or more
legal moves to A, and L0 = L(A). Then A coincides with the class LC(L0).

The following statement characterizes the pre- and post-dominance properties
of guest letters, and will be used to compute the maximally greedy and parallel
automaton.

Statement 6. Let a, b ∈ Σ. If b ∈ Guest(a), i.e. a is a host of b, then the
following two relations hold: b 	 a ∨ a 	 b and b � a ∨ a � b.

Maximally Parallel and Greedy Control Flow Automaton

For a given CFA automaton A, we define the most parallel and greedy automaton,
Amax, as the CFA obtained by the following transformation.
For every letter b, legally move b to a letter a such that no other letter c, which
pre-dominates a, has b as guest, in formula: �c ∈ Σ such that b ∈ Guest(c)∧c 	 a.

Statement 7. Let L = L(A) be in CFG and Amax be defined as above. Then
L(Amax) is the most parallel and greedy language C-equivalent to L, i.e. it is:
∀L′ ∈ LC(L), L(Amax) >P L′ or L(Amax) ≥G L′.

Proof. Since each move applied is legal, i.e. b ∈ Guest(a), from Theor 4 it follows
that the automaton is C-equivalent to A. The proof of maximal greediness is
based on Stat. 6.

Foata-Cartier Normal form vs. Maximally Parallel Program

It is known that for a trace [x], the clique decomposition associated to the
Foata-Cartier normal form gives the most parallel and greedy form of x. The
next example proves that the set of such Foata-Cartier decompositions, in gen-
eral, is not C-equivalent to the given CFG language. Therefore it differs from
L(Amax), which has been proved to be the most parallel and greedy language
which preserves C-equivalence.

For L ∈ CFG we denote as AFoata the minimum DFA that recognizes the
Foata-Cartier normal forms of the strings in L. More precisely, since there is
more than one automaton AFoata, depending on the serialization of the letters
in an independence clique, we may assume that serialization complies with the
lexicographic order of the terminal alphabet.

Example 1. Let L be the CFG language recognized by the CFA A in Figure 2.
C-dependence and dominance relations and guest sets are also shown. Let the
letters be lexically ordered as listed: Σ = {i, a, b, c, d, e, t}. The Foata-Cartier
automaton and Amax are in Figure 3.
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L ∈ CFG
i {}

a {a}

f {f} b {b, e}

c {c} d {d}

e {e}

g {g}

t {}

Pre-dominator
tree of L

i

a

g f b t

c e d

C-dependence relations
D3 D32

(b, a)b (b, a)
(f, a)f (f, a)
(c, b)c (c, b)
(d, b)d (d, b)
(e, a)b (e, a)
(g, a)b (g, a)
(g, f)g (g, f)

Fig. 2. CFA with relations and guest sets

A(LF oata)

q0

q1

q2

q8 q3

q4

q9 q5

q6

q7

i

a

b

e

g

cd

t

f

g

t

t

A(LMax)

i

a

f e

b

c d

g

t

Fig. 3. Foata-Cartier automaton and maximally parallel and greedy automaton

The I-cliques present in the Foata-Cartier strings differ from the cliques in
L(Amax). Clearly AFoata is not C-equivalent to A, since it is not a local au-
tomaton. Moreover, this example shows that L(AFoata) ≥P L(Amax).

We summarize the above discussions and example in the following statement.

Statement 8. The automaton AFoata defines the maximally parallel and greedy
language L(AFoata). The automaton Amax defines the maximally parallel and
greedy C-equivalent language.

Technical remark: to achieve the Foata-Cartier parallelism, copies of the same
instruction have to be differentiated in order to re-obtain the local property of
the automaton. This is an ordinary transformation for compilers, that replicates
the same instructions at different addresses.

5 Conclusion

We have shown that program transformations consisting in instruction reschedul-
ing can be conveniently studied and actually implemented using results from
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trace theory, combined with concepts and methods of compiler theory. Control-
dependence and pre- post-dominance relations play an essential role in that.
The automata constructions described are efficient and have a potential for
compilation.

Of course data-dependences too must be considered for realistic applications.
It is an easy job to superimpose data- onto control constraints. Another straight-
forward development is to study a program transformation with the aim to
achieve uniform parallelism at all steps, instead of maximal greediness.

We believe that this effort for expressing program transformations by means of
a suitably enriched trace theory should be continued to cover other parallelizing
transformations done by compilers, such as speculative execution, loop unrolling
or software pipelining. Such developments are likely to need other algebraic
concepts, in particular partially inverse monoids.

Lastly, we observe that we have proved several properties for the traces rep-
resented by CFG languages, which are a subclass of local languages. It is not
known whether such properties still hold for the latter.

Acknowledgement. we would like to thank Massimiliano Goldwurm for critical
reading and suggestions.
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