
Extending hammocks for parallelism detection∗

Michele Tartara, Stefano Crespi Reghizzi†, Simone Campanoni‡

Extended abstract

Introduction and basic definitions Finding the independent parts of a Control Flow Graph
(CFG) is important for exposing program parallelism. Two types of instruction dependences con-
strain the order of execution, data- and control-dependences (CD). Abstracting from data-dependences,
it is useful to study the idealized parallelism allowed by program control structure. CD’s are assumed
as the dependence relation of the trace (i.e., partially commutative) language defined by the DFA
naturally associated to the CFG. Two CFG’s are control(C)-equivalent if they have identical CD’s
and define the same trace language. The family of such C-equivalent CFG’s is a model for programs
obtained from each other by commuting C-independent instructions. Since single instructions are a
too fine-grained unit for efficient parallelization on modern computer architectures, we characterize
larger program parts, called Movable Control Components (MCC) that can be executed in differ-
ent order preserving C-equivalence. MCC is a new notion derived from the established concept of
single-entry single-successor subgraph, also known as a hammock, by imposing that no cycle can
span across different MCC’s. A recursive decomposition of a program into sets of mutually indepen-
dent MCC’s is introduced. It is proven that all and only the C-equivalent CFG’s are obtained by
local transformations that commute two successive MCC’s that are part of a linear sequence of such
components. This study provides part of the theoretical base needed for on-going work on automatic
program parallelization.

We need to define some standard concepts from program and compiler theory.
In a Control Flow Graph (CFG) [5] a node v predominates (resp. postdominates) node w, written

v a w (resp. v ` w), if every path from START to w contains v (resp., if every path from w to END

contains v). Both relations are tree-orders.
The immediate postdominator ipostdom(S) of a set of nodes S is the least node i, in the ` order,
such that i ∈

⋂
n∈S postdom(n), the latter function denoting the set of postdominators of n.

An edge n→ h is a back-edge if h a n.
It is customary to assume that a node has at most two successors; nodes with two successors are

conditional instructions.
For a node h of a graph we consider the subgraph, denoted by SCC(h), which is the minimal

Strongly Connected Component (SCC) containing h (excluding SCC(h) = {h} unless it is the only
SCC of h); for a SCC S, the exit set, exit(S), includes the nodes in S having at least one successor
out of S.

The following definitions of Binary and Ternary Control Dependence relations (BCD, TCD) from
[2] are equivalent to the standard ones [1, 4].

A node y is BCD-dependent on a node x iff x is a conditional instruction and is the only prede-
cessor of u and v; there exists a path x, u, . . . , END that does not contain y; every path x, v, . . . , END
contains y.

y is TCD-dependent on x via v if y is BCD-dependent on x, v ∈ succ(x), and v predominates y.
We name C-dependence any one of BCD and TCD.

A hammock [4] H is a subgraph (VH , EH) of G with a distinguished node h in VH called entry
node and a distinguished node s in V \ VH called successor such that all edges from (V \ VH) to VH

∗Partially supported by MIUR 2007TJNZRE 002
†Politecnico di Milano
‡Harvard University

1

go to h and all edges from VH to (V \ VH) go to s.
A node e ∈ VH with s ∈ succ(e) is an exit from H.

Nodes in VH and in (V \ VH) are resp. called internal and external to H. Clearly, all internal
nodes are predominated by the entry point and immediately postdominated by the successor of H.

A hammock does not qualify as a program region suitable for parallelization, because a cycle
may span across several hammocks, thus preventing their execution in a different order or in parallel.
Refining hammock definition with ideas from [2], we introduce a more suitable notion.

Movable Control Component(MCC).
A MCC M = M(h, s) is a hammock (VM , EM) with entry point h (called head) and successor s, such
that no predecessor of h is predominated by h.

Figure 1: (a) MCCs of a CFG containing as hammocks the sets
{a}, {abcdefg}, {abcdefgh}, {b}, {bcde}, {bcdef}, {bcdefg}, {bcdefgh}, {cde},
{cdef}, {d}, {e}, {f}, {h}; (b) another CFG with its MCCs; and, (c) the same CFG after
parallelization.

Fig. 1(a) illustrates the difference between hammocks and MCCs.
The following properties of MCCs are straightforward:
Let M(h, s) be a MCC contained in G.

An internal node C-depends on h iff h is a conditional instruction. (1)

No external node C-depends on an internal node. (2)

Any two MCCs are either disjoint or contained one in the other. (3)

No exact partition of a MCC into smaller MCCs exists. (4)

If h is the end-point of a back-edge, every internal node (5)

C-depends on every node in exit(SCC(h)).

Any simple cycle that traverses a back-edge (6)

ending in h is wholly contained into M .

An internal node has at least one BCD that no external node has. (7)

2

Therefore, a MCC is identified by its head h, and the same letter, written h̃, will denote the MCC,
and Ṽ the set of MCCs of a CFG. Prop. (4) states that a MCC is a minimal region with the defining
properties. Prop. (6) makes the important difference w.r.t. hammocks. Using hammocks to detect
parallel code is not practical, since different parts of a loop may belong to different hammocks and
any attempt to parallelize them needs complex and inefficient handling of synchronization between
different threads. On the other hand, it will be argued that a MCC can be moved, if needed, in
different positions inside the CFG, and executed in parallel with some other MCCs, just taking care
of not breaking data dependencies.

Relationships between MCCs We extend the predecessor and successor relations to MCCs,
i.e., to (V ∪ Ṽ)× (V ∪ Ṽ), marking with tilde the relations over Ṽ × Ṽ , as follows:
pred(ã) = pred(a)
succ(ã) = s where ã = M(h, s)

p̃red(ã) = {b̃ | ∃x ∈ pred(a) ∧ x ∈ b̃ ∧ x /∈ ã ∧ ã /∈ b̃}

s̃ucc(ã) =

s̃ if ã = M(h, s)

and s is the head of a component
∅ otherwise

Notice that both p̃red and s̃ucc are partial functions.
Next we consider MCCs that precede each other in a linear subgraph. A linear sequence (LS) of

MCCs is a sequence h̃1, . . . , h̃n, such that, for 1 ≤ i ≤ n − 1, {h̃i+1} = s̃ucc(h̃i) and |p̃red(h̃1)| 6= 1

and |s̃ucc(h̃n)| 6= 1.
A LS is in some sense analogous to a basic block [1], but the elements are, of course, more complex

than single instructions.

Property 1 Let a ∈ h̃i, b ∈ h̃j where h̃i, h̃j are in a LS. Then a and b have identical C-dependencies

w.r.t. any node c that is external to h̃i and h̃j.

The analysis of a CFG into MCCs, as in Fig. 1, produces a tree, more precisely, a forest decom-
position. At the outermost level the CFG is a LS of MCCs preceded by START and ended by END.
Two MCCs are called siblings if they belong to the outermost LS or if they have the same MCC as
father. Clearly, all MCCs in a LS are siblings.

Control equivalence and component movement Program transformations that just resched-
ule instructions (without duplication or modification) are precisely defined by the notion of control
equivalence introduced in [2], to be next informally presented.

The BCD relation of a CFG G can be made reflexive and symmetric, thus obtaining a relation
D that can be used as dependence relation in a partially commutative (trace) monoid [3]. Let I
be the complement of D, i.e., the independence relation. A CFG G can be taken as the graph of a
deterministic finite automaton (DFA) A, and the language recognized L(A) is then a conservative
approximation of all possible runs of the program. By applying standard concepts of trace theory,
we state the relevant definition.

Two CFGs G = (V,E), G′ = (V,E ′) are C-equivalent, if, they have the same dependence relation
D, and, for the corresponding DFA A,A′, L(A) is equal to L(A′) modulo the trace equivalence
relation induced by I.

This definition leaves unanswered the practical question: how to transform a CFG into a C-
equivalent one. We are going to prove that all and only the C-equivalent graphs can be obtained by
displacing the movable components.

MCCs are termed “movable” because two of them, under rather straightforward conditions, can
be interchanged without affecting program semantics from the point of view of C-dependencies. On
the other hand, a node that is not the head of a MCC (for example a cycle exit) is never movable.

Property: Let CFG G′ be obtained from G by interchanging two MCCs in the same LS. Then G′

is C-equivalent to G.

3

Proof: immediately from Property 1
The following recursive definition captures the idea that two MCCs are equivalent if they only

differ in the linear arrangement of some sub-MCCs that are part of the same LS.
Consider two MCCs h̃ and h̃′. Consider the LS-CFGs H and H ′ obtained by substituting each LS

in h̃ and h̃′ respectively with a single node (termed LS-node). h̃ and h̃′ are equivalent if the following

conditions are met: H and H ′ are isomorphic; moreover, corresponding LSs in h̃ and h̃′ are identical
modulo a permutation of pairwise equivalent MCCs; and corresponding nodes of H and H ′ that are
not MCC heads, are identical instructions.

Implicitly the definition introduces a program transformation consisting of permuting the MCCs
that belong to a LS.

The main result follows.

Theorem 1 Two CFGs G and G′ are control-equivalent iff their outermost linear sequences are
permutations of pairwise equivalent MCCs.

The theorem is proven in the full paper by demonstrating that permutations of linear sequences are
control-equivalent and by recursively proving that pairwise equivalent MCCs are control-equivalent.
The reverse implication is proven by showing that pairwise equivalent MCCs preserve control depen-
dencies and define the same trace language. The same holds for different permutation of LSs.

Related work and conclusion Research on static program analysis and compilation has in-
troduced control dependencies, and identified hammocks as interesting components, especially for
reverse engineering and program restructuring [6]. Program transformation by instruction reschedul-
ing is a vast research area, based, of course, on the study of dependencies, but we are not aware of
any paper using trace theory apart from [2].

The main contribution of this paper is to formalize all the programs compatible with the same
control dependences in terms of permutability of well-defined hammock types. Concerning the future,
theoretical developments are needed for studying other transformations, including code duplication
and loop restructuring. We have produced tools, based on the MCC decomposition theory, that
extract MCCs from real programs, and we plan to use the result, together with data-dependence
analysis, for evaluating the speed-up obtainable by executing independent MCCs in parallel.

References

[1] Andrew W. Appel and Jens Palsberg. Modern compiler implementation in Java. Cambridge
University Press, second edition, 2002.

[2] Simone Campanoni and Stefano Crespi-Reghizzi. Traces of control-flow graphs. In Volker Diekert
and Dirk Nowotka, editors, Developments in Language Theory, volume 5583 of Lecture Notes in
Computer Science, pages 156–169. Springer, 2009.

[3] Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific, Singapore,
1995.

[4] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, 1987.

[5] Keshav Pingali and Gianfranco Bilardi. Optimal control dependence computation and the Roman
chariots problem. ACM Transactions on Programming Languages and Systems, 19(3):462–491,
May 1997.

[6] Fubo Zhang and Erik H. D’Hollander. Using hammock graphs to structure programs. IEEE
Trans. Softw. Eng., 30(4):231–245, 2004.

4

