
HELIX-RC: An Architecture-Compiler Co-Design
for Automatic Parallelization of Irregular Programs

Simone Campanoni Kevin Brownell Svilen Kanev Timothy M. Jones+ Gu-Yeon Wei David Brooks

Harvard University University of Cambridge+

Cambridge, MA, USA Cambridge, UK

Abstract
Data dependences in sequential programs limit paralleliza-

tion because extracted threads cannot run independently. Al-
though thread-level speculation can avoid the need for precise
dependence analysis, communication overheads required to syn-
chronize actual dependences counteract the benefits of paral-
lelization. To address these challenges, we propose a lightweight
architectural enhancement co-designed with a parallelizing com-
piler, which together can decouple communication from thread
execution. Simulations of these approaches, applied to a pro-
cessor with 16 Intel Atom-like cores, show an average of 6.85×
performance speedup for six SPEC CINT2000 benchmarks.

1. Introduction
In today’s multicore era, program performance largely depends
on the amount of thread level parallelism (TLP) available. While
some computing problems often translate to either inherently
parallel or easy-to-parallelize numerical programs, sequentially
designed, non-numerical programs with complicated control
(e.g., execution path) and data flow (e.g., aliasing) are much
more common, but difficult to analyze precisely. These non-
numerical programs are the focus of this paper. While conven-
tional wisdom is that non-numerical programs cannot make good
use of multiple cores, research in the last decade has made steady
progress towards extracting TLP from complex, sequentially-
designed programs such as the integer benchmarks from SPEC
CPU suites [3, 6, 27, 45, 48]. To further extend this body of
research, this paper presents lightweight architectural enhance-
ments for fast inter-core communication in order to support
advances in a custom compiler framework that parallelizes loop
iterations across multiple cores within a chip multiprocessor.

Performance gains sought by parallelizing loop iterations of
non-numerical programs depend on two key factors: (i) accuracy
of the data dependence analysis and (ii) speed of communica-
tion provided by the underlying computer architecture to satisfy
the dependences. Unfortunately, complex control and data flow
in non-numerical programs—both exacerbated by ambiguous
pointers and ambiguous indirect calls—make accurate data de-
pendence analysis difficult. In addition to actual dependences
that require communication between cores, a compiler must
conservatively handle apparent dependences never realized at
runtime. While thread level speculation (TLS) avoids the need
for accurate data dependence analysis by speculating that some
apparent dependences are not realized [29, 38, 39], TLS suffers

overheads to support misspeculation and must therefore target
relatively large loops to amortize penalties.

In contrast to existing parallelization solutions, we propose
an alternate strategy that instead targets small loops, which are
much easier to analyze via state-of-the-art control and data flow
analysis, significantly improving accuracy. Furthermore, this
ease of analysis enables transformations that simply re-compute
shared variables in order to remove a large fraction of actual
dependences. This strategy increases TLP and reduces core-to-
core communication. Such optimizations do not readily translate
to TLS because the complexity of TLS-targeted code typically
spans multiple procedures in larger loops. Finally, our data shows
parallelizing small hot loops yields high program coverage and
produces meaningful speedups for the non-numerical programs
in the SPEC CPU2000 suite.

Targeting small loops presents its own set of challenges. Even
after extensive code analysis and optimizations, small hot loops
will retain actual dependences, typically to share dynamically
allocated data. Moreover, since loop iterations of small loops
tend to be short in duration (less than 25 clock cycles on average),
they require frequent, memory-mediated communication. At-
tempting to run these iterations in parallel demands low-latency
core-to-core communication for memory traffic, something not
available in commodity multicore processors.

To meet these demands, we present HELIX-RC, a co-designed
architecture-compiler parallelization framework for chip multi-
processors. The compiler identifies what data must be shared
between cores and the architecture proactively circulates this data
along with synchronization signals among cores. Rather than
waiting for a request, this proactive communication immediately
circulates shared data, as early as possible—decoupling commu-
nication from computation. HELIX-RC builds on the HCCv1
compiler, developed for the first iteration of HELIX [6, 7], that
automatically generates parallel code for commodity multicore
processors. Because performance improvements from HCCv1
saturate at four cores due to communication latency, we pro-
pose ring cache—an architectural enhancement that facilitates
low-latency core-to-core communication—to satisfy inter-thread
memory dependences and relies on guarantees provided by the
co-designed HCCv3 compiler to keep it lightweight.

HELIX-RC automatically parallelizes non-numerical program
with unmatched performance improvements. Across a range of
SPEC CINT2000 benchmarks, decoupling communication en-
ables a three-fold improvement in performance when compared

978-1-4799-4394-4/14/$31.00 c© 2014 IEEE

217

to HCCv1, on a simulated multicore processor consisting of 16
Atom-like, in-order cores with a ring cache with 1KB per node
of memory (32× smaller than the L1 data cache). The proposed
system offers an average speedup of 6.85× when compared to
running un-parallelized code on a single core. Detailed evalua-
tions show that even with a conservative ring cache configuration,
HELIX-RC is able to achieve 95% of the speedup possible with
unlimited resources (i.e., unbounded bandwidth, instantaneous
inter-core communication, and unconstrained size). Moreover,
simulations for a HELIX-RC system comprising 16 out-of-order
cores show 3.8× performance speedup for the same set of non-
numerical programs. This result confirms HELIX-RC’s ability
to extract TLP on top of the instruction level parallelism (ILP)
provided by an out-of-order processor.

The remainder of this paper further describes the motivation
for and results of implementing HELIX-RC. We first review
the limitations of compiler-only improvements and identify co-
design opportunities to improve TLP of loop iterations. Next,
we explore the speedups obtained by decoupling communication
from computation with compiler support. After describing the
overall HELIX-RC approach, we delve deeper into both the com-
piler and the hardware enhancement. Finally, we use a detailed
simulation framework to evaluate the performance of HELIX-RC
and analyze its sensitivity to architectural parameters.

2. Background and Opportunities

2.1. Limits of compiler-only improvements

To understand what limits the performance of parallel code ex-
tracted from non-numerical programs, we started with HCCv1 [6,
7], a state-of-the-art parallelizing compiler.

HCCv1. This first generation compiler automatically gener-
ates parallel threads from sequential programs by distributing
successive loop iterations across adjacent cores within a single
multicore processor, similar to conventional DOACROSS par-
allelism [10]. Since there are data dependences between loop
iterations (i.e., loop-carried dependences), some segments of
a loop’s body—called sequential segments—must execute in
iteration order on the separate cores to preserve the semantics of
sequential code. Synchronization operations mark the beginning
and end of each sequential segment.

HCCv1 includes a large set of code optimizations (e.g., code
scheduling, method inlining, loop unrolling), most of which
are specifically tuned to extract TLP. Despite this, performance
improvements obtained by the original HCCv1 compiler saturate
at four cores, due to high core-to-core communication latency.

HCCv2. We first improved code analysis and transformation.
Specifically, we increased the accuracy of both data dependence
and induction variable analysis, and we added other transforma-
tions to extract more parallelism (e.g., scalar expansion, scalar
renaming, parallel reductions, and loop splitting [1]). We call
this improved compiler HCCv2.

Figure 1 compares speedups for HCCv1 and HCCv2 based on
simulations of parallel code generated by each when targeting
a 16-core processor with an optimistic 10-cycle core-to-core

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

IN
T Geo

mea
n

18
3.e

qu
ak

e

17
9.a

rt

18
8.a

mmp

17
7.m

es
a

FP
Geo

mea
n

Geo
mea

n
0
2
4
6
8

10
12
14
16

P
ro

gr
am

sp
ee

du
p Numerical

Programs

Non-Numerical
Programs

HCCv1 HCCv2

Figure 1: Improving the HCCv1 compiler alone does not improve
performance for SPEC CINT2000 benchmarks.

communication latency.1 The engineering improvements of
HCCv2 significantly raised speedups for numerical programs
(SPEC CFP2000) over HCCv1 from 2.4× to 11×. HCCv2
successfully parallelized the numerical programs because the
accuracy of the data dependence analysis is high for loops at
almost any level of the loop nesting hierarchy. Furthermore, the
improved compiler removed the remaining actual dependences
among registers (e.g., via parallel reduction) to generate loops
with long iterations that can run in parallel on different cores.

Unfortunately, non-numerical programs (SPEC CINT) are
not as compliant to compiler improvements and saw little to no
benefit from HCCv2. Because core-to-core communication in
conventional systems is expensive, the compiler must parallelize
large loops (the larger the loop with loop-carried dependences,
the less frequently cores synchronize), which limits the accuracy
of dependence analysis and thereby limits TLP extraction. This
is why HELIX-RC focuses on small (hot) loops to parallelize this
class of programs. Our hypothesis is that modest architectural
enhancements, co-designed with a compiler that targets small
loops, can successfully parallelize non-numerical programs.

2.2. Opportunity

There is an opportunity to aggressively parallelize non-numerical
programs based on the following insights: (i) small loops are
easier to analyze with high accuracy; (ii) predictable computa-
tion means most of the required communication updates shared
memory locations; (iii) we can efficiently satisfy communication
demands of actual dependences for small loops with low-latency,
core-to-core communication; and (iv) proactive communication
efficiently hides communication latencies.

Accurate data dependence analysis is possible for small
loops in non-numerical programs. The accuracy of data de-
pendence analysis increases for smaller loops because (i) there
is less code—therefore less complexity—to analyze and (ii) the
number of possible aliases of a pointer in the code scales down
with code size. In other words, we can avoid conservative pointer
aliasing assumptions that lower accuracy for large loops.

To evaluate the accuracy of data dependence analysis for small
loops using modern compilers, we started with a state-of-the-art

1Details of this experiment are in Section 6.

218

0% 100%81%48%

VLLPA +flow sensitive +path based +data type +lib calls

Figure 2: Accuracy of data dependence analysis for small hot
loops in SPEC CINT2000 benchmarks.

analysis called VLLPA [13]. Figure 2 shows the starting accu-
racy (i.e., average number of actual data dependences compared
to all dependences identified for our set of loops) of this analysis
is 48%. To improve accuracy, we extended VLLPA (i) to be
fully flow sensitive [8], which tracks values of both registers and
memory locations according to their position in the code; (ii)
to be path-based, which names runtime locations by how they
are accessed from program variables [11]; (iii) to exploit data
type and type casting information to conservatively eliminate
incompatible aliases; and (iv) to exploit standard library call se-
mantics. Figure 2 shows that these extensions increase accuracy
for small loops to 81%. As a result, most of the loop-carried data
dependences identified by the compiler are actual and therefore
require core-to-core communication.

Most required communication is to update shared mem-
ory locations. Sharing data among loop iterations requires core-
to-core communication to propagate new values when loop it-
erations run on different cores. However, if new values are
predictable (e.g., incrementing a shared variable at every itera-
tion), communication can be avoided. We extended the variable
analysis in HCCv1 to capture the following predictable variables:
(i) induction variables where the update function is a polyno-
mial up to the second order; (ii) accumulative, maximum, and
minimum variables; (iii) variables set but not used until after
the loop; and (iv) variables set in every iteration even when
the updated value is not constant.2 If a variable falls into any
of these categories, each core can re-compute its correct value
independently.

Exploiting the predictability of variables, again for small loops
in non-numerical programs, allows the compiler to remove a
large fraction of the communication required to share registers.
Figure 3 compares a naive solution that propagates new values
for all loop-carried data dependences (100%) versus a solution
that exploits variable predictability. By re-computing variables,
the majority of the remaining communication is to share memory
locations rather than registers.

Communication for small hot loops must be fast. While
the simplicity of small loops allows for easy analysis, small loops
have short iterations—typically less than 100 clock cycles long.
However, because these short iterations require (at least) some
communication to run in parallel, efficient parallel execution
demands a low-latency core-to-core communication mechanism.

To better understand this need for fast communication, Fig-
ure 4a plots a cumulative distribution of average iteration execu-
tion times on a single Atom-like core (described in Section 6) for
the set of hot loops from SPEC CINT2000 benchmarks chosen
for parallelization by HELIX-RC. The shaded portion of the

2This is an example of code replication. Details about this transformation are
outside the scope of this paper.

Mem

Mem Register
100%15%

Re-compute

Figure 3: Predictability of variables reduces register communi-
cation.

plot shows that more than half of the loop iterations complete
within 25 clock cycles. The plot also delineates the measured
core-to-core round trip communication latencies for three mod-
ern multicore processors. Even for the shortest-latency machine,
Ivy Bridge, 75 cycles is much too long for the majority of these
short loops. Of course, a conventional region-extending trans-
formation such as loop unrolling could lengthen the duration
of these inner loops, but this would also increase the lengths of
sequential segments, reducing exploitable parallelism.

Proactive communication achieves low latency by decou-
pling communication from computation. A compiler must
conservatively assume dependences exist between all iterations
for most of loop-carried dependences in non-numerical programs.
Because of the complexity of control and data flow in such pro-
grams, a compiler cannot easily infer the distance between a loop
iteration that generates data and the ones that consume it. For
conventional synchronization approaches [6, 25, 26, 43, 47, 48],
this assumption of dependences between all subsequent iterations
leads to sequential chains that severely limit the performance
sought by running loop iterations in parallel.3

These sequential chains, which include both communica-
tion and computation, have two sources of inefficiency. First,
adjacent-core synchronization often turns out to not be necessary
for every link of these chains. Second, when data forwarding
is initiated lazily (at request time), it blocks computation while
waiting for data transfers between cores.

Finally, for loops parallelized by HELIX-RC, most communi-
cation is not between successive loop iterations. Hence, because
HELIX-RC distributes successive loop iterations to adjacent
cores, most communication is not between adjacent cores. Fig-
ure 4b charts the distribution of undirected distances between
data-producing cores and the first consumer core on a platform
with 16 cores organized in a ring. Only 15% of those transfers
are between adjacent cores. Moreover, Figure 4c shows that
most of the shared values (86%) from these loops are consumed
by multiple cores. Since consumers of shared values are not
known at compile time, HELIX-RC implements a mechanism
that proactively broadcasts data and signals to all other cores.
Such proactive communication, which does not block computa-
tion, is the cornerstone of the HELIX-RC approach.

3. The HELIX-RC Solution
The goal of HELIX-RC is to decouple all communication re-
quired to efficiently run iterations of small hot loops in parallel.
This is realized by decoupling value forwarding from value gen-
eration and by decoupling signal transmission from synchroniza-
tion. We now show how HELIX-RC achieves such decoupling.

3Others have called this chain a critical forwarding path [40, 48].

219

0 25 75 110 260
Loop iteration execution time (cycles)

0

50

100

Pe
rc

en
ta

ge
of

lo
op

ite
ra

tio
ns

Measured cache
coherence latency

Nehalem

Atom

Ivy
Bridge

(a) Short loop iterations

Hop

6+6%

5
9%

4

12%

3 39%

2

22% 1
12%

(b) Distance

Core

6+9%

5

34%

4 12%

3

21%

2

8% 1
16%

(c) Consumers

Figure 4: Small hot loops have short iterations that send data
over multiple hops and to multiple cores.

3.1. Approach

HELIX-RC is a co-design of its compiler (HCCv3) and archi-
tectural enhancements (the ring cache). HCCv3 distinguishes
parallel code (i.e., code outside any sequential segment) from
sequential code (i.e., code within sequential segments) by using
two instructions that extend the instruction set. The ring cache
is a ring network that connects together ring nodes attached to
each core in the processor to operate during sequential segments
as a distributed first-level cache that precedes the private L1
cache. Because it relies on compiler-guaranteed properties of the
code, the hardware support can be simple and efficient. The next
paragraphs summarize the main components of HELIX-RC.

ISA. We introduce a pair of instructions—wait and signal—
that mark the beginning and end of a sequential segment. Each
of these instructions has an integer value as a parameter that iden-
tifies the particular sequential segment. The wait instruction
blocks execution of the core that issued it (e.g., wait 3) until all
other cores have finished executing the corresponding sequen-
tial segment, which they signify by executing the appropriate
signal instruction (e.g., signal 3).

Compiler. HCCv3 takes sequential programs and parallelizes
loops that are most likely to speed up performance when their
iterations execute in parallel. Only one loop runs in parallel at
a time and its successive iterations run on cores organized as a
unidirectional ring.

To satisfy loop-carried data dependences, HCCv3 keeps the
execution of sequential segments in iteration order by inserting
wait and signal instructions to delimit the entry and exit points
of these segments. In this way, HCCv3 guarantees that accesses
to a variable or another memory location that might need to be
shared between cores are always within sequential segments.
Moreover, shared variables (normally allocated to registers in
sequential code) are mapped to specially-allocated memory lo-
cations. Hence, their accesses within sequential segments occur
via memory operations.

Core. A core forwards all memory accesses within sequential
segments to its local ring node. All other memory accesses
(not within a sequential segment) go through the private L1
cache. To determine whether the executing code is part of a

sequential segment or not, a core simply counts the number of
executed wait and signal instructions. If more waits have
been executed than matching signals, then the executing code
belongs to a sequential segment.

Memory. The ring cache is a connected ring of nodes, one
per core. Each ring node has a cache array that satisfies both
loads and stores received from its attached core. HELIX-RC
does not require other changes to the existing memory hierarchy
because the ring cache orchestrates interactions with it. To
avoid any changes to conventional cache coherence protocols,
the ring cache permanently maps each memory address to a
unique ring node. All accesses from the distributed ring cache to
the next cache level (L1) go through the associated node for a
corresponding address.

3.2. Decoupling communication from computation

Having seen the main components of HELIX-RC, we describe
how they interact to efficiently decouple communication from
computation.

Shared data communication. HELIX-RC decouples com-
munication of variables and other shared data locations by prop-
agating new shared data through the ring cache as soon as it
is generated. Once a ring node receives a store, it records the
new value and proactively forwards its address and value to an
adjacent node in the ring cache, all without interrupting the ex-
ecution of the attached core. The value then propagates from
node to node through the rest of the ring without interrupting
the computation of any core—decoupling communication from
computation.

Synchronization. Given the difficulty of determining which
iteration depends on which in non-numerical programs, compil-
ers typically make the conservative assumption that an iteration
depends on all of its predecessor iterations. Therefore, a core
cannot execute sequential code until it is unblocked by its prede-
cessor [6, 25, 40]. Moreover, an iteration unblocks its successor
only if both it and its predecessors have executed this sequen-
tial segment or if they are not going to. This execution model
leads to a chain of signal propagation across loop iterations that
includes unnecessary synchronization: even if an iteration is not
going to execute sequential code, it still needs to synchronize
with its predecessor before unblocking its successor.

HELIX-RC removes these synchronization overheads by en-
abling an iteration to detect the readiness of all predecessor
iterations, not just one. Therefore, once an iteration forgoes
executing the sequential segment, it immediately notifies its suc-
cessor without waiting for its predecessor. Unfortunately, while
HELIX-RC removes unnecessary synchronization, it increases
the number of signals that can be in flight simultaneously.

HELIX-RC relies on the new signal instruction to handle
synchronization signals efficiently. Synchronization between a
producer and a consumer includes (i) the producer generating a
signal, (ii) the consumer requesting that signal, and (iii) signal
transmission between the two. On a conventional multicore,
which relies on a pull-based memory hierarchy for communica-
tion, signal transmission is inherently lazy, and signal request and

220

wait 1;
signal 1;

...

...

 a = a+1;

wait 1;
a=load;

store a;
signal 1;

1

sequential
segment

Parallel code

Sequential chain

Sequential code

Data forwarding

(a) Parallel code

Time

signal wait

signal

wait

signal

Core 0 Core 1 Core 2

load

signal stall

data stall

(b) Coupled communication

signal wait

signal

Core 0 Core 1 Core 2

signal

load

(c) Decoupled communication

Figure 5: Example illustrating benefits of decoupling communication from computation.

transmission get serialized. On the other hand, in HELIX-RC,
signal instructs the ring cache to proactively forward a signal
to all other nodes in the ring without interrupting any of the cores,
thereby decoupling signal transmission from synchronization.

Code example. Given the importance of these decoupling
mechanisms to fully realize performance benefits, let’s explore
how HELIX-RC implements them using a concrete example.
The code in Figure 5(a), abstracted for clarity, represents a small
hot loop from 175.vpr of SPEC CINT2000 that is responsible for
55% of the total execution time of that program. It contains a
sequential segment with two possible execution paths. The left
path contains an actual dependence where instances of instruc-
tion 1 in an iteration use values from previous iterations. The
right path does not depend on prior data. Because the compiler
cannot predict the execution path of a particular iteration (due
to complex control flow), it must assume that instruction 1, in
any given iteration, depends on the previous iteration. Therefore,
it must synchronize all successive iterations by inserting wait
and signal instructions on every execution path. Figure 5(b)
highlights this sequential chain in red. Now, assume only iter-
ations 0 and 2, running on cores 0 and 2, respectively, execute
instruction 1. Then, this sequential chain is unnecessarily long
because of the superfluous wait in iteration 1. Each iteration
waits (via the wait instruction) for the signal generated by the
signal instruction of the previous iteration. Also, iterations
that update a (iterations 0 and 2) must load previous values first
(using a regular load). Hence, two sets of stalls slow down the
chain. First, iteration 1 performs unnecessary synchronization
(signal stalls), because it only contains parallel code. Second,
lazy forwarding of the shared data leads to data stalls, because
the transfer only begins when requested, at a load, rather than
when generated, at a store.

HELIX-RC proactively communicates data and synchroniza-
tion signals between cores, which leads to the more efficient
scenario shown in Figure 5(c). The sequential chain now
only includes the delay required to satisfy the dependence—
communication updating a shared value.

4. Compiler

The decoupled execution model of HELIX-RC described so
far is possible given the tight co-design of the compiler and

architecture. In this section, we focus on compiler-guaranteed
code properties that enable a lightweight ring cache design, and
follow up with code optimizations that make use of the ring
cache.

Code properties.
• Only one loop can run in parallel at a time. Apart from a

dedicated core responsible for executing code outside parallel
loops, each core is either executing an iteration of the current
loop or waiting for the start of the next one.

• Successive loop iterations are distributed to threads in a round-
robin manner. Since each thread is pinned to a predefined core,
and cores are organized in a unidirectional ring, successive
iterations form a logical ring.

• Communication between cores executing a parallelized loop
occurs only within sequential segments.

• Different sequential segments always access different shared
data. HCCv3 only generates multiple sequential segments
when there is no intersection of shared data. Consequently,
instances of distinct sequential segments may run in parallel.

• At most two signals per sequential segment emitted by a given
core can be in flight at any time. Hence, only two signals per
segment need to be tracked by the ring cache.

This last property eliminates unnecessary wait instructions
while keeping the architectural enhancement simple. Eliminat-
ing waits allows a core to execute a later loop iteration than its
successor (significantly boosting parallelism). Future iterations,
however, produce signals that must be buffered. The last code
property prevents a core from getting more than one “lap” ahead
of its successor. So when buffering signals, each ring cache
node only needs to recognize two types—those from the past
and those from the future.

Code optimizations. In addition to the optimizations of
HCCv2, HCCv3 includes ones that are essential for best per-
formance of non-numerical programs on a ring-cache-enhanced
architecture: aggressive splitting of sequential segments into
smaller code blocks; identification and selection of small hot
loops; and elimination of unnecessary wait instructions.

Sizing sequential segments poses a tradeoff. Additional seg-
ments created by splitting run in parallel with others, but extra
segments entail extra synchronization, which adds communica-
tion overhead. Thanks to decoupling, HCCv3 can split more

221

Data and Signals

Cache array

Signal buffer

... Past
Future

Signal 1Signal S

ReadPort

WritePort

Credits

Data and
Signals

Link
Buffers

Data and
Signals

Credits Control

Loads
from Core

Stores/Signals
from Core

Ring
node

 DL1
Cache

Core

Remote L1
Request/Reply

L1 Cache Reads/Writes

Core

Figure 6: Ring cache architecture overview. From left to right: overall system; single core slice; ring node internal structure.

aggressively than HCCv2 to significantly increase TLP. Note
that segments cannot be split indefinitely—each shared location
must belong to only one segment.

To identify small hot loops that are most likely to speed up
when their iterations run in parallel, HCCv3 includes a profiler to
capture the behavior of the ring cache. Whereas HCCv1 relies on
an analytical performance model to select the loops to parallelize,
HCCv3 profiles loops on representative inputs. During profiling,
instrumentation code emulates execution with the ring cache,
resulting in an estimate of time saved by parallelization. Finally,
HCCv3 uses a loop nesting graph, annotated with the profiling
results, to choose the most promising loops.

5. Architecture Enhancements
Adding a ring cache to a multicore architecture enables the proac-
tive circulation of data and signals that boost parallelization. This
section describes the design of the ring cache and its constituent
ring nodes. The design is guided by the following objectives:

Low-latency communication. HELIX-RC relies on fast
communication between cores in a multicore processor for syn-
chronization and for data sharing between loop iterations. Since
low-latency communication is possible between physically ad-
jacent cores in modern processors, the ring cache implements a
simple unidirectional ring network.

Caching shared values. A compiler cannot easily guarantee
whether and when shared data generated by a loop iteration
will be consumed by other cores running subsequent iterations.
Hence, the ring cache must cache shared data. Keeping shared
data on local ring nodes provides quick access for the associated
cores. As with data, it is also important to buffer signals in each
ring node for immediate consumption.

Easy integration. The ring cache is a minimally-invasive
extension to existing multicore systems, easy to adopt and inte-
grate. It does not require modifications to the existing memory
hierarchy or to cache coherence protocols.

With these objectives in mind, we now describe the internals of
the ring cache and its interaction with the rest of the architecture.

5.1. Ring Cache Architecture

The ring cache architecture relies on properties of compiled code
including: (i) parallelized loop iterations execute in separate
threads on separate cores, arranged in a logical ring; and (ii) data

shared between iterations moves between cores from current to
future iterations. These properties imply that the data involved
in timing-critical dependences that potentially limit overall per-
formance are both produced and consumed in the same order as
loop iterations. Furthermore, a ring network topology captures
this data flow, as sketched in Figure 6. The following paragraphs
describe the structure and purpose of each ring cache component.

Ring node structure. The internal structure of a per-core
ring node is shown in the right half of Figure 6. Parts of this
structure resemble a simple network router. Unidirectional links
connect a node to its two neighbors to form the ring backbone.
Bidirectional connections to the core and private L1 cache allow
injection of data into and extraction of data from the ring. There
are three separate sets of data links and buffers. A primary set
forwards data and signals between cores. Two other sets manage
infrequent traffic for integration with the rest of the memory
hierarchy (see Section 5.2). Separating these three traffic types
simplifies the design and avoids deadlock. Finally, signals move
in lockstep with forwarded data to ensure that a shared memory
location is not accessed before the data arrives.

In addition to these router-like elements, a ring node also
contains structures more common to caches. A set associative
cache array stores all data values (and their tags) received by
the ring node, whether from a predecessor node or from its
associated core. The line size of this cache array is kept at
one machine word. While the small line is contrary to typical
cache designs, it ensures there will be no false data sharing by
independent values from the same line.

The final structural component of the ring node is the signal
buffer, which stores signals until they are consumed.

Node-to-node connection. The main purpose of the ring
cache is to proactively provide many-to-many core communica-
tion in a scalable and low-latency manner. In the unidirectional
ring formed by the ring nodes, data propagates by value circula-
tion. Once a ring node receives an (address, value) pair, either
from its predecessor, or from its associated core, it stores a local
copy in its cache array and propagates the same pair to its suc-
cessor node. The pair eventually propagates through the entire
ring (stopping after a full cycle) so that any core can consume
the data value from its local ring node, as needed.

This value circulation mechanism allows the ring cache to
communicate between cores faster than reactive systems (like

222

most coherent cache hierarchies). In a reactive system, data
transfer begins once the receiver requests the shared data, which
adds transfer latency to an already latency-critical code path.
In contrast, a proactive scheme overlaps transfer latencies with
computation to lower the receiver’s perceived latency.

The ring cache prioritizes the common case, where data gen-
erated within sequential segments must propagate to all other
nodes as quickly as possible. Assuming no contention over
the network and single-cycle node-to-node latency, the design
shown in Figure 6 allows us to bound the latency for a full trip
around the ring to N clock cycles, where N is the number of
cores. Each ring node prioritizes data received from the ring and
stalls injection from its local core.

In order to eliminate buffering delays within the node that
are not due to L1 traffic, the number of write ports in each
node’s cache array must match the link bandwidth between two
nodes. While this may seem like an onerous design constraint
for the cache array, Section 6.3 shows that just one write port is
sufficient to reap more than 99% of the ideal-case benefits.

To ensure correctness under network contention, the ring
cache is sometimes forced to stall all messages (data and signals)
traveling along the ring. The only events that can cause con-
tention and stalls are ring cache misses and evictions, which may
then need to fetch data from a remote L1 cache. While these ring
stalls are necessary to guarantee correctness, they are infrequent.

The ring cache relies on credit-based flow control [17] and is
deadlock free. Each ring node has at least two buffers attached to
the incoming links to guarantee forward progress. The network
maintains the invariant that there is always at least one empty
buffer per set of links somewhere in the ring. That is why a node
only injects new data from its associated core into the ring when
there is no data from a predecessor node to forward.

Node-core integration. Ring nodes are connected to their
respective cores as the closest level in the cache hierarchy (Fig-
ure 6). The core’s interface to the ring cache is through regular
loads and stores for memory accesses in sequential segments.

As previously discussed, wait and signal instructions delin-
eate code within a sequential segment. A thread that needs to
enter a sequential segment first executes a wait, which only re-
turns from the associated ring node when matching signals have
been received from all other cores executing prior loop iterations.
The signal buffer within the ring node enforces this. Specialized
core logic detects the start of the sequential segment and routes
memory operations to the ring cache.4 Finally, executing the
corresponding signal marks the end of the sequential segment.

The wait and signal instructions require special treatment
in out-of-order cores. Since they may have system-wide side
effects, these instructions must issue non-speculatively from
the core’s store queue and regular loads and stores cannot
be reordered around them. Our implementation reuses logic
from load-store queues for memory disambiguation and holds a
lightweight local fence in the load queue until the wait returns
to the senior store queue. This is not a concern for in-order cores.

4This feature may add one multiplexer delay to the critical delay path from
the core to L1.

Benchmark Phases Parallel loop coverage
HELIX-RC HCCv2 HCCv1

Integer benchmarks
164.gzip 12 98.2% 42.3% 42.3%
175.vpr 28 99% 55.1% 55.1%
197.parser 19 98.7% 60.2% 60.2%
300.twolf 18 99% 62.4% 62.4%
181.mcf 19 99% 65.3% 65.3%
256.bzip2 23 99% 72.3% 72.1%

Floating point benchmarks
183.equake 7 99% 99% 77.1%
179.art 11 99% 99% 84.1%
188.ammp 23 99% 99% 60.2%
177.mesa 8 99% 99% 64.3%

Table 1: Characteristics of parallelized benchmarks.

5.2. Memory Hierarchy Integration

The ring cache is a level within the cache hierarchy and as such
must not break any consistency guarantees that the hierarchy
normally provides. Consistency between the ring cache and the
conventional memory hierarchy results from the following invari-
ants: (i) shared memory can only be accessed within sequential
segments through the ring cache (compiler-enforced); (ii) only
a uniquely assigned owner node can read or write a particular
shared memory location through the L1 cache on a ring cache
miss (ring cache-enforced); and (iii) the cache coherence proto-
col preserves the order of stores to a memory location through a
particular L1 cache.5

Sequential consistency. To preserve the semantics of a paral-
lelized single-threaded program, memory operations on shared
values require sequential consistency. The ring cache meets this
requirement by leveraging the unidirectional data flow guaran-
teed by the compiler. Sequential consistency must be preserved
when ring cache values reach lower-level caches, but the con-
sistency model provided by conventional memory hierarchies
is weaker. We resolve this difference by introducing a single
serialization point per memory location, namely a unique owner
node responsible for all interactions with the rest of the mem-
ory hierarchy. When a shared value is moved between the ring
cache and L1 caches (owing to occasional ring cache load misses
and evictions), only its owner node can perform the required
L1 cache accesses. This solution preserves existing consistency
models with minimal impact on performance.

Cache flush. Finally, to guarantee coherence between paral-
lelized loops and serial code between loop invocations, each ring
node flushes the dirty values of memory locations it owns to L1
once a parallel loop has finished execution. This is equivalent
to executing a distributed fence at the end of loops. In a multi-
program scenario, signal buffers must also be flushed/restored at
program context switches.

6. Evaluation
By co-designing the compiler along with the architecture,
HELIX-RC more than triples the performance of parallelized
code when compared to a compiler-only solution (HCCv2). This

5Most cache coherence protocols (including Intel, AMD, and ARM imple-
mentations) provide this minimum guarantee.

223

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

IN
T Geo

mea
n

18
3.e

qu
ak

e

17
9.a

rt

18
8.a

mmp

17
7.m

es
a

FP
Geo

mea
n

Geo
mea

n
0

2

4

6

8

10

12

14

16

P
ro

gr
am

sp
ee

du
p

Numerical
Programs

Non-Numerical
Programs

HCCv2 HELIX-RC

Figure 7: HELIX-RC triples the speedup obtained by HCCv2.
Speedups are relative to sequential program execution.

section investigates HELIX-RC’s performance benefits and their
sensitivity to ring cache parameters. We confirm that the majority
of speedups come from decoupling all types of communication
and synchronization. We conclude by analyzing the remaining
overheads of the execution model.

6.1. Experimental Setup

We ran experiments on two sets of architectures. The first relies
on a conventional memory hierarchy to share data among the
cores. The second relies on the ring cache.

Simulated conventional hardware. Unless otherwise noted,
we simulate a multicore in-order x86 processor by adding
multiple-core support to the XIOSim simulator. The single-
core XIOSim models have been extensively validated against an
Intel R© Atom

TM
processor [19]. We use XIOSim because it is a

publicly-available simulator that is able to simulate fine-grained
microarchitectural events with high precision. For one of the
sensitivity experiments, we also simulate out-of-order cores mod-
eled after Intel Nehalem using the models from Zesto [21].

The simulated cache hierarchy has two levels: a per-core
32KB, 8-way associative L1 cache and a shared 8MB 16-bank
L2 cache. We vary the core count from 1 to 16, but do not vary
the amount of L2 cache with the number of cores, keeping it at
8MB for all configurations. Also scaling cache size would make
it difficult to distinguish the benefits of parallelizing a workload
from the benefits of fitting its working set into the larger cache,
causing misleading results. Finally, we use DRAMSim2 [33] for
cycle-accurate simulation of memory controllers and DRAM.

We extended XIOSim with a cache coherence protocol as-
suming an optimistic cache-to-cache latency of 10 clock cycles.
This 10-cycle latency is optimistically low even compared to
research prototypes of low-latency coherence [23]. In fact, it is
the minimum reasonably possible with a 4×4 2D mesh network.
(Running microbenchmarks in our testbed, we found that Intel
Ivy Bridge is 75 cycles, Intel Sandy Bridge is 95 cycles, and Intel
Nehalem is 110 cycles.) We only use this low-latency model

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

IN
T Geo

mea
n

0

2

4

6

8

10

12

14

16

P
ro

gr
am

sp
ee

du
p

B
en

efi
to

fd
ec

ou
pl

in
g

m
em

or
y

co
m

m
un

ic
at

io
n

Benefits of
decoupling
synchronization

HCCv2
decoupled reg. communication
decoupled reg. comm. and synch.
decoupled reg. and memory comm.
HELIX-RC (decoupled all communication)

Figure 8: Breakdown of benefits of decoupling communication
from computation.

to simulate conventional hardware, and later (Section 6.2) show
that low latency alone is not enough to compensate for the lazy
nature of its coherence protocol.

Simulated ring cache. We extended XIOSim to simulate the
ring cache as described in Section 5. Unless otherwise noted, it
has the following configuration: a 1KB 8-way associative array
size, one-word data bandwidth, five-signal bandwidth, single-
cycle adjacent core latency, and two cycles of core-to-ring-node
injection latency to minimally impact the already delay-critical
path from the core to the L1 cache. We use a simple bit mask as
the hash function to distribute memory addresses to their owner
nodes. To avoid triggering the cache coherence protocol, all
words of a cache line have the same owner. Lastly, XIOSim
simulates changes made to the core to route memory accesses
either to the attached ring node or to the private L1.

Benchmarks. We use 10 out of the 15 C benchmarks from
the SPEC CPU2000 suite: 4 floating point (CFP2000) and 6
integer benchmarks (CINT2000). For engineering reasons, the
data dependence analysis that HCCv3 relies on [13] requires
either too much memory or too much time to handle the rest.
This limitation is orthogonal to the results described in this paper.

Compiler. We extended the ILDJIT compilation frame-
work [5], version 1.1, to use LLVM 3.0 for backend machine
code generation. We generated both single- and multi-threaded
versions of the benchmarks. The single-threaded programs are
the unmodified versions of benchmarks, optimized (O3) and
generated by LLVM. This code outperforms GCC 4.8.1 by 8%
on average and underperforms ICC 14.0.0 by 1.9%.6 The multi-
threaded programs were generated by HCCv3 and HCCv2 to run
on ring-cache-enhanced and conventional architectures, respec-
tively. Both compilers produce code automatically and do not
require any human intervention. During compilation, they use
SPEC training inputs to select the loops to parallelize.

Measuring performance. We compute speedups relative to

6As an aside, automatic parallelization features of ICC led to a geomean
slowdown of 2.6% across SPEC CINT2000 benchmarks, suggesting ICC cannot
parallelize non-numerical programs.

224

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

IN
T Geo

mea
n

0
20
40
60
80

100
120
140
160
180

%
E

xe
cu

tio
n

Ti
m

e
510

C

C C C

C C
C

R
R R R R R R

Slow
down

Speed
up

Communication Computation

Figure 9: While code generated by HCCv3 speeds up with a ring
cache (R), it slows down on conventional hardware (C).

sequential simulation. Both single- and multi-threaded runs use
reference inputs. To make simulation feasible, we simulate mul-
tiple phases of 100M instructions as identified by SimPoint [14].

6.2. Speedup Analysis

In our 16-core processor evaluation system, HELIX-RC boosts
the performance of sequentially-designed programs (CINT2000),
assumed not to be amenable to parallelization. Figure 7 shows
that HELIX-RC raises the geometric mean of speedups for these
benchmarks from 2.2× for HCCv2 without ring cache to 6.85×.

HELIX-RC not only maintains the performance increases of
HCCv2 (compared to HCCv1) on numerical programs (SPEC
CFP2000), but also increases the geometric mean of speedups
for CFP2000 benchmarks from 11.4×7 to almost 12×.

We now turn our attention to understanding where the
speedups come from.

Communication. Speedups obtained by HELIX-RC come
from decoupling both synchronization and data communication
from computation in loop iterations, which significantly reduces
communication overhead, allows the compiler to split sequential
segments into smaller blocks, and cuts down the critical path
of the generated parallel code. Figure 8 compares the speedups
gained by multiple combinations of decoupling synchroniza-
tion, register-, and memory-based communication. As expected,
fast register transfers alone do not provide much speedup since
most in-register dependences can be satisfied by re-computing
the shared variables involved (Section 2). Instead, most of the
speedups come from decoupling communication for both syn-
chronization and memory-carried actual dependences. To the
best of our knowledge, HELIX-RC is the only solution that
accelerates all three types of transfers for actual dependences.

In order to assess the impact of decoupling communication
from computation for CINT2000 benchmarks, we executed the
parallel code generated by HCCv3—assuming a decoupling ar-
chitecture like a ring cache—on a simulated conventional system
which does not decouple. The loops selected under this assump-
tion do require frequent communication (every 24 instructions
on average). Figure 9 shows that such code, running on a conven-

7These speedups are possible even with a cache coherence latency of conven-
tional processors (e.g., 75 cycles).

0
2
4
6
8

10
12
14
16

P
ro

gr
am

sp
ee

du
p

4-way OoO
2-way OoO

2-way IO

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

IN
T Geo

mea
n

0

1

S
eq

.

Figure 10: Speedup obtained by changing the complexity of the
core from a 2-way in-order to a 4-way out-of-order.

tional multicore (left bars), performs no better than sequential
execution (100%), even with the optimistic 10-cycle core-to-core
latency. These results further stress the importance of selecting
loops based on the core-to-core latency of the architecture.

Sequential segments. While more splitting offers higher TLP
(more sequential segments can run in parallel), more splitting
also requires more synchronization at run time. Hence, the high
synchronization cost for conventional multicores discourages
aggressive splitting of sequential segments.8 In contrast, the ring
cache enables aggressive splitting to maximize TLP.

To analyze the relationship between splitting and TLP, we
computed the number of instructions that execute concurrently
for the following two scenarios: (i) conservative splitting con-
strained by a contemporary multicore processor with high syn-
chronization penalty (100 cycles) and (ii) aggressive splitting for
HELIX-RC with low-latency communication (<10 cycles) pro-
vided by the ring cache. In order to compute TLP independent of
both the communication overhead and core pipeline advantages,
we used a simple abstracted model of a multicore system that
has no communication cost and is able to execute one instruction
at a time. Using the same set of loops chosen by HELIX-RC
and used in Figure 7, TLP increased from 6.4 to 14.2 instruc-
tions with aggressive splitting. Moreover, the average number
of instructions per sequential segment dropped from 8.5 to 3.2
instructions.

Coverage. Despite all the loop-level speedups possible via de-
coupling communication and aggressively splitting of sequential
segments, Amdahl’s law states that program coverage dictates
the overall speedup of a program. Prior parallelization tech-
niques have avoided selecting loops with small bodies because
communication would slow down execution on conventional
processors [6, 39]. Since HELIX-RC does not suffer from this
problem, the compiler can freely select small hot loops to cover
almost the entirety of the original program. Table 1 shows that
HELIX-RC achieves >98% for all of the benchmarks evaluated.

6.3. Sensitivity to Architectural Parameters

Speedup results so far assumed the default configuration (in
Section 6.2) for the ring cache. We now investigate the impact of
different architectural parameters on speedup. In the next set of

8This is the rationale behind DOACROSS parallelization [10].

225

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

0

2

4

6

8

10

12

14

16

P
ro

gr
am

sp
ee

du
p 16 cores

8 cores
4 cores
2 cores

(a) Core count.

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

0

2

4

6

8

10

12

14

16

1 cycle
4
8

16
32

(b) Adjacent node link latency.

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

0

2

4

6

8

10

12

14

16

Unbounded
4 Signals

2
1

(c) Signal bandwidth.

16
4.g

zip

17
5.v

pr

19
7.p

ar
se

r

30
0.t

wolf

18
1.m

cf

25
6.b

zip
2

0

2

4

6

8

10

12

14

16

Unbounded
32 KB

1 KB
256 B

(d) Node memory size.

Figure 11: Sensitivity to core count and ring cache parameters. Only SPEC CINT benchmarks are shown.

HELIX-RC
Speedup

Additional
Instructions

Wait/Signal
Instructions

MemoryIteration
Imbalance

Low Trip
Count

CommunicationDependence
Waiting

177.mesa
188.ammp

179.art
183.equake

256.bzip2
181.mcf

300.twolf
197.parser

175.vpr
164.gzip

29.3% 0.9% 3.7% 58.4% 7.3% 0.0% 0.3% 15.1x
64.1% 8.0% 6.3% 7.4% 8.9% 2.2% 3.1% 12.5x
0.2% 0.0% 47.7% 24.8% 16.1% 0.0% 11.3% 10.5x
0.2% 0.0% 9.1% 1.5% 87.7% 0.0% 1.5% 10.1x
3.4% 3.4% 51.6% 0.1% 1.1% 19.7% 20.7% 12.0x
37.7% 10.4% 5.5% 1.2% 3.2% 20.9% 21.2% 8.7x
0.1% 0.2% 41.8% 1.4% 31.8% 0.0% 24.6% 7.6x
31.3% 24.3% 15.3% 5.0% 0.3% 11.6% 12.2% 7.3x
11.9% 0.4% 74.2% 12.4% 0.0% 0.5% 0.5% 6.1x
40.8% 8.1% 9.6% 4.5% 0.0% 18.1% 18.8% 3.0x

Figure 12: Breakdown of overheads that prevent achieving ideal speedup.

experiments we sweep one parameter of the ring cache at a time
while keeping all others constant at the default configuration.

Core type. While HELIX-RC successfully improves TLP for
in-order cores, one may ask how ILP provided by more com-
plex cores impacts speedups. Figure 10 (upper) plots speedups
for two additional core types—4-way and 2-way out-of-order
(OoO) cores—in addition to the default 2-way in-order core
(IO) for CINT2000 benchmarks. The lower graph plots the se-
quential execution time normalized to that of the 4-way OoO
core. Although the OoO cores can extract more ILP for the same
workloads (the 4-way OoO core is on average 1.9× faster than
the default 2-way IO core), HELIX-RC speeds up most of the
benchmarks except for 164.gzip. Thoroughly characterizing and
accounting for this tradeoff between HELIX-RC-extracted TLP
and ILP with different architectures is the subject of future work.

Core count. Figure 11a shows that HELIX-RC efficiently
scales parallel performance with core count, from 2 to 16.

Link latency. Figure 11b shows the speedups obtained versus
the minimum communication latency between adjacent ring
nodes. As expected, HELIX-RC performance degrades for
longer latencies for most of the benchmarks. It is important
to note that current technologies can satisfy single-cycle adja-
cent core latencies, confirmed by commercial designs [46] and
CACTI [24] wire models of interconnect lengths for dimensions
in modern multicore processors.

Link bandwidth. A ring cache uses separate dedicated wires
for data and signals to simplify design. Simulations confirm that
a minimum data bandwidth of one machine word (hence, single
write port) sufficiently sustains more than 99.9% of the perfor-
mance obtained by a data link with unbounded bandwidth for all
benchmarks. In contrast, reducing signal bandwidth can degrade
performance, as shown in Figure 11c, due to synchronization
stalls. However, the physical overhead of adding additional

signals (up to 4) is negligible.
Memory size. Figure 11d shows the impact of memory size.

The finite-size cases assume LRU replacement. Reducing cache
array size within the ring node only impacts 197.parser, which
has the largest ring cache working set.

6.4. Analysis of Overhead

To understand areas for improvement, we categorize every over-
head cycle (preventing ideal speedup) based on a set of simulator
statistics and the methodology presented by Burger et al. [4]. Fig-
ure 12 shows the results of this categorization for HELIX-RC,
again implemented on a 16-core processor.

Most importantly, the small fraction of communication over-
heads suggests that HELIX-RC successfully eliminates the core-
to-core latency for data transfer in most benchmarks. For several
benchmarks, notably 175.vpr, 300.twolf, 256.bzip2, and 179.art,
the major source of overhead is the low number of iterations
per parallelized loop (low trip count). While many hot loops
are frequently invoked, low iteration count (ranging from 8 to
20) leads to idle cores. Other benchmarks such as 164.gzip,
197.parser, 181.mcf, and 188.ammp suffer from dependence wait-
ing due to large sequential segments. Finally, HCCv3 must
sometimes add a large number of wait and signal instructions
(i.e., many sequential segments) to increase TLP, as seen for
164.gzip, 197.parser, 181.mcf, and 256.bzip2.

7. Related Work

To compare HELIX-RC to a broad set of related work, Table 2
summarizes different parallelization schemes proposed for non-
numerical programs organized with respect to the types of com-
munication decoupling implemented (register vs. memory) and
the types of dependences targeted (actual vs. false). HELIX-RC

226

Actual dependences False dependences
Register HELIX-RC, Multiscalar, TRIPS, T3 HELIX-RC, Multiscalar, TRIPS, T3
Memory HELIX-RC HELIX-RC, TLS-based approaches,

Multiscalar, TRIPS, T3

Table 2: Only HELIX-RC decouples communication for all types
of dependences.

covers the entire design space and is the only one to decouple
memory accesses from computation for actual dependences.

Multiscalar register file. Multiscalar processors [38] extract
both ILP and TLP from an ordinary application. While a ring
cache’s structure resembles a Multiscalar register file, there are
fundamental differences. For the Multiscalar register file, there
is a fixed and relatively small number of shared elements that
must be known at compile time. Furthermore, the Multiscalar
register file cannot handle memory updates by simply mapping
memory to a fixed number registers without a replacement mech-
anism. In contrast, the ring cache does not require compile-time
knowledge to handle an arbitrary number of elements shared
between cores (i.e., memory locations allocated at runtime) and
can readily handle register updates by deallocating a register to
a memory location. In other words, HELIX-RC proposes to use
a distributed cache to handle both register and memory updates.

Cache coherence protocols. The ring cache addresses an en-
tirely different set of communication demands. Cache coherence
protocols target relatively small amounts of data shared infre-
quently between cores. Hence, cores can communicate lazily,
but the resulting communication almost always lies in the critical
sequential chain. In contrast, the ring cache targets frequent and
time-critical data sharing between cores.

On-chip networks. While on-chip-networks (OCNs) can
take several forms, they commonly implement reactive co-
herence protocols [34, 37, 41, 44, 46] that do not fulfill the
low-latency communication requirements of HELIX-RC. Scalar
operand networks [12, 42] somewhat resemble a ring cache to
enable tight coupling between known producers and consumers
of specific operands, but they suffer from the same limitations
as the Multiscalar register file. Hence, HELIX-RC implements
a relatively simple OCN, but supported by compiler guarantees
and additional logic to implement automatic forwarding.

Off-chip networks. Networks that improve bandwidth be-
tween processors have been studied extensively [36, 46]. While
they work well for CMT parallelization techniques [9, 28] that
require less frequent data sharing, there is less overall parallelism.
Moreover, networks that target chip-to-chip communication do
not meet the very different low-latency core-to-core communica-
tion demands of HELIX-RC [17]. Our results show HELIX-RC
is much more sensitive to latency than to bandwidth.

Non-commodity processors. Multiscalar [38], TRIPS [35],
and T3 [32] are polymorphous architectures that target paral-
lelism at different granularities. They differ from HELIX-RC in
that (i) they require a significantly larger design effort and (ii)
they only decouple register-to-register communication and/or
false memory dependence communication by speculating.

An iWarp system [2] implements special-purpose arrays that

execute fine- and coarse-grained parallel numerical programs.
However, without an efficient broadcast mechanism, iWarp’s fast
communication cannot reach the speedups offered by HELIX-
RC.

Automatic parallelization of non-numerical programs.
Several automatic methods to extract TLP have demonstrated
respectable speedups on commodity multicore processors for
non-numerical programs [6, 16, 27, 29, 30, 43, 49]. All of these
methods transform loops into parallel threads. Decoupled soft-
ware pipelining (DSWP) [27] reduces sensitivity to communica-
tion latency by restructuring a loop to create a pipeline among the
extracted threads with unidirectional communication between
pipeline stages. Demonstrated both on simulators and on real sys-
tems, DSWP performance is largely insensitive to latency. How-
ever, significant restructuring of the loop makes speedups diffi-
cult to predict and generated code can sometimes be slower than
the original. Moreover, DSWP faces the challenges of selecting
appropriate loops to parallelize and keeping the pipeline bal-
anced at runtime. While DSWP-based approaches focus more on
restructuring loops to hide communication latency [16, 27, 30],
HELIX-RC proposes an architecture-compiler co-design strategy
that selects the most appropriate loops for parallelization.

Combining DSWP with HELIX-RC has the potential to yield
significantly better performance than either alone. DSWP cannot
easily scale beyond four cores [31] without being combined with
approaches that exploit parallelism among loop iterations [16]
(e.g., DOALL [22]). While DSWP + DOALL can scale be-
yond several cores, DOALL parallelism is not easy to find in
non-numerical code. Instead, DSWP + HELIX-RC presents an
opportunity to parallelize a much broader set of loops.

Several TLS-based techniques [15, 18, 20, 39, 48, 49], includ-
ing STAMPede, Stanford Hydra, and POSH, combine hardware-
assisted thread-level speculation (TLS) with compiler optimiza-
tions to manage dependences between loop iterations execut-
ing in different threads. When the compiler identifies sources
and destinations of frequent dependences, it synchronizes us-
ing wait and signal primitives; otherwise, it uses speculation.
HELIX-RC, on the other hand, optimizes code assuming all
dependences are actual. While we believe adding speculation
may help HELIX-RC, Figure 7 shows decoupled communica-
tion already yields significant speedups without misspeculation
overheads.

8. Conclusion

Decoupling communication from computation makes non-
numerical programs easier to parallelize automatically by compil-
ing loop iterations as parallel threads. While numerical programs
can often be parallelized by compilation alone, non-numerical
programs greatly benefit from a combined compiler-architecture
approach. Our HELIX-RC prototype shows that a minimally-
invasive architecture extension co-designed with a parallelizing
compiler can liberate enough parallelism to make good use of
16 cores for non-numerical benchmarks commonly thought not
to be parallelizable.

227

Acknowledgements

We thank the anonymous reviewers for their feedback on nu-
merous manuscripts. Moreover, we would like to thank Glenn
Holloway for his invaluable contributions to the HELIX project.
This work was possible thanks to the sponsorship of the Royal
Academy of Engineering, EPSRC and the National Science
Foundation (award number IIS-0926148). Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of our sponsors.

References
[1] Randy Allen and Ken Kennedy. Optimizing compilers for modern archi-

tectures. Morgan Kaufmann, 2002.
[2] Shekhar Borkar, Robert Cohn, George Cox, Sha Gleason, Thomas Gross,

H. T. Kung, Monica Lam, Brian Moore, Craig Peterson, John Pieper, Linda
Rankin, P. S. Tseng, Jim Sutton, John Urbanski, and Jon Webb. iWarp: An
integrated solution to high-speed parallel computing. In Supercomputing,
1988.

[3] Matthew J. Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and
David I. August. Revisiting the sequential programming model for multi-
core. In MICRO, 2007.

[4] Doug Burger, James R. Goodman, and Alain Kägi. Memory bandwidth
limitations of future microprocessors. In ISCA, 1996.

[5] Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi, and An-
drea Di Biagio. A Highly Flexible, Parallel Virtual Machine: Design and
Experience of ILDJIT. In Software: Practice and Experience, 2010.

[6] Simone Campanoni, Timothy M. Jones, Glenn Holloway, Vijay
Janapa Reddi, Gu-Yeon Wei, and David Brooks. HELIX: Automatic
Parallelization of Irregular Programs for Chip Multiprocessing. In CGO,
2012.

[7] Simone Campanoni, Timothy M. Jones, Glenn Holloway, Gu-Yeon Wei,
and David Brooks. HELIX: Making the Extraction of Thread-Level Paral-
lelism Mainstream. In IEEE Micro, 2012.

[8] Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. Relevant
Context Inference. In POPL, 1999.

[9] Lynn Choi and Pen-Chung Yew. Compiler and hardware support for
cache coherence in large-scale multiprocessors: Design considerations and
performance study. In ISCA, 1996.

[10] Ron Cytron. DOACROSS: Beyond vectorization for multiprocessors. In
ICPP, 1986.

[11] Alain Deutsch. A storeless model of aliasing and its abstractions using
finite representations of right-regular equivalence relations. In ICCL, 1992.

[12] Paul Gratz, Changkyu Kim, Karthikeyan Sankaralingam, Heather Hanson,
Premkishore Shivakumar, Stephen W. Keckler, and Doug Burger. On-Chip
Interconnection Networks of the TRIPS Chip. In IEEE Micro, 2007.

[13] Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ottoni,
Easwaran Raman, and David I. August. Practical and accurate low-level
pointer analysis. In CGO, 2005.

[14] Greg Hamerly, Erez Perelman, and Brad Calder. How to use simpoint to
pick simulation points. In ACM SIGMETRICS Performance Evaluation
Review, 2004.

[15] Lance Hammond, Benedict A. Hubbert, Michael Siu, Manohar K. Prabhu,
Michael K. Chen, and Kunle Olukotun. The Stanford Hydra CMP. In
IEEE Micro, 2000.

[16] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han Hung,
and David I. August. Decoupled software pipelining creates parallelization
opportunities. In CGO, 2010.

[17] Natalie Enright Jerger and Li-Shiuan Peh. On-Chip Networks. Synthesis
Lectures on Computer Architecture. Morgan & Claypool, 2009.

[18] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Speculative
thread decomposition through empirical optimization. In PPoPP, 2007.

[19] Svilen Kanev, Gu-Yeon Wei, and David Brooks. XIOSim: power-
performance modeling of mobile x86 cores. In ISLPED, 2012.

[20] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau,
and Josep Torrellas. POSH: A TLS compiler that exploits program structure.
In PPoPP, 2006.

[21] Gabriel H Loh, Samantika Subramaniam, and Yuejian Xie. Zesto: A
cycle-level simulator for highly detailed microarchitecture exploration. In
ISPASS, 2009.

[22] Stephen F. Lundstrom and George H. Barnes. A controllable MIMD
architecture. In Advanced computer architecture, 1986.

[23] Milo M. K. Martin. Token coherence. PhD thesis, University of Wisconsin-
Madison, 2003.

[24] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi.
CACTI 6.0: A tool to model large caches. Technical Report 85, HP
Laboratories, 2009.

[25] Alexandru Nicolau, Guangqiang Li, and Arun Kejariwal. Techniques for
efficient placement of synchronization primitives. In PPoPP, 2009.

[26] Alexandru Nicolau, Guangqiang Li, Alexander V. Veidenbaum, and Arun
Kejariwal. Synchronization optimizations for efficient execution on multi-
cores. In ICS, 2009.

[27] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Au-
tomatic thread extraction with decoupled software pipelining. In MICRO,
2005.

[28] David K. Poulsen and Pen-Chung Yew. Data prefetching and data forward-
ing in shared memory multiprocessors. In ICPP, 1994.

[29] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and
David I. August. Speculative parallelization using software multi-threaded
transactions. In ASPLOS, 2010.

[30] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges,
and David I. August. Parallel-stage decoupled software pipelining. In
CGO, 2008.

[31] Ram Rangan, Neil Vachharajani, Guilherme Ottoni, and David I. August.
Performance scalability of decoupled software pipelining. In ACM TACO,
2008.

[32] Behnam Robatmil, Dong Li, Hadi Esmaeilzadeh, Sibi Govindan, Aaron
Smith, Andrew Putnam, Doug Burger, and Stephen W. Keckler. How
to Implement Effective Prediction and Forwarding for Fusable Dynamic
Multicore Architectures. In HPCA, 2013.

[33] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A Cy-
cle Accurate Memory System Simulator. In IEEE Computer Architecture
Letters, 2011.

[34] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. Flexible archi-
tectural support for fine-grain scheduling. In ASPLOS, 2010.

[35] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu,
Changkyu Kim, Jaehyuk Huh, Nitya Ranganathan, Doug Burger,
Stephen W. Keckler, Robert G. McDonald, and Charles R. Moore. TRIPS:
A polymorphous architecture for exploiting ILP, TLP, and DLP. In ACM
TACO, 2004.

[36] Steven L. Scott. Synchronization and Communication in the T3E Multi-
processor. In ASPLOS, 1996.

[37] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert
Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.
Larrabee: a many-core x86 architecture for visual computing. In ACM
Transactions on Graphics, 2008.

[38] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In ISCA, 1995.

[39] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C.
Mowry. The STAMPede approach to thread-level speculation. In ACM
Transactions on Computer Systems, 2005.

[40] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C.
Mowry. Improving value communication for thread-level speculation. In
HPCA, 2002.

[41] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae
Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee,
Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman,
Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant Ararwal.
The RAW microprocessor: A computational fabric for software circuits
and general-purpose programs. In IEEE Micro, 2002.

[42] Michael Bedford Taylor, Walter Lee, Saman P. Amarasinghe, and Anant
Agarwal. Scalar Operand Networks. In IEEE Transactions on Parallel
Distributed Systems, 2005.

[43] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F. P.
O’Boyle. Towards a holistic approach to auto-parallelization. In PLDI,
2009.

[44] Rob F. van der Wijngaart, Timothy G. Mattson, and Werner Haas. Light-
weight communications on Intel’s single-chip cloud computer processor.
In SIGOPS Operating Systems Review, 2011.

[45] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. The paralax
infrastructure: Automatic parallelization with a helping hand. In PACT,
2010.

[46] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce
Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown,
III, and Anant Agarwal. On-chip interconnection architecture of the tile
processor. In IEEE Micro, 2007.

[47] Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C.
Mowry. Compiler optimization of scalar value communication between
speculative threads. In ASPLOS, 2002.

[48] Antonia Zhai, J. Gregory Steffan, Christopher B. Colohan, and Todd C.
Mowry. Compiler and hardware support for reducing the synchronization
of speculative threads. In ACM TACO, 2008.

[49] Hongtao Zhong, Mojtaba Mehrara, Steve Lieberman, and Scott Mahlke.
Uncovering hidden loop level parallelism in sequential applications. In
HPCA, 2008.

228

