
SCAF: A Speculation-Aware Collaborative
Dependence Analysis Framework

Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Greg Chan,  
Simone Campanoni , and David I. August †

†

PLDI 2020

OptimizationsSource
Code

Optimized
Code

Compiler

2

Optimizations

Program
Analysis

Source
Code

Optimized
Code

Compiler

2

3

Memory Analysis limits applicability of optimizations

3

Memory Analysis limits applicability of optimizations

undecidable in theory [Landi, LPLS’92]
For any fixed analysis algorithm, there is a counter-example input
for which the algorithm is imprecise.

3

Memory Analysis limits applicability of optimizations

insufficiently precise in practice [Hind, PASTE’01]
especially for languages like C/C++.

undecidable in theory [Landi, LPLS’92]
For any fixed analysis algorithm, there is a counter-example input
for which the algorithm is imprecise.

3

Memory Analysis limits applicability of optimizations

insufficiently precise in practice [Hind, PASTE’01]
especially for languages like C/C++.

undecidable in theory [Landi, LPLS’92]
For any fixed analysis algorithm, there is a counter-example input
for which the algorithm is imprecise.

conservatively respects all possible inputs
Many real dependences rarely occur in practice.

Speculation enables optimization of the expected case

4

Source
Code

Optimized
Code

Program
Analysis

Profile-Based
Speculative
Assertions

Compiler

Optimizations

Speculation enables optimization of the expected case

4

Source
Code

Optimized
Code

Compiler

Optimizations

State-of-the-art [1,2,3,4] does not fully leverage speculation

5

Profile-Based
Speculative
Assertions

Program
Analysis

1 Johnson et al., PLDI ’12 2 Kim et al., CGO ’12 3 Mehrara et al., PLDI ’09 4 Vachharajani et al., PACT ’07

Source
Code

Optimized
Code

Compiler

Optimizations

State-of-the-art [1,2,3,4] does not fully leverage speculation

5

Profile-Based
Speculative
Assertions

Program
Analysis

1 Johnson et al., PLDI ’12 2 Kim et al., CGO ’12 3 Mehrara et al., PLDI ’09 4 Vachharajani et al., PACT ’07

Source
Code

Optimized
Code

Compiler

Optimizations

State-of-the-art [1,2,3,4] does not fully leverage speculation

5

Composition by Confluence

Profile-Based
Speculative
Assertions

Program
Analysis

1 Johnson et al., PLDI ’12 2 Kim et al., CGO ’12 3 Mehrara et al., PLDI ’09 4 Vachharajani et al., PACT ’07

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

i1:
i2:

i3:

6

Motivating Example

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

i1:
i2:

i3:

6

Motivating Example

i1: // no writes to a
. . .

rare

a = . . .

truefalse

foo(a)
. . .
a = . . .

i2:

i3:

Control Flow
Graph

Hot path
Rarely taken
path

. . .

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

i1:
i2:

i3:

6

Motivating Example

i1: // no writes to a
. . .

rare

a = . . .

truefalse

foo(a)
. . .
a = . . .

i2:

i3:

Control Flow
Graph

Hot path
Rarely taken
path

. . .

Is there a
cross-iteration
data flow
from i3 to i2?

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

i1:
i2:

i3:

7

Motivating Example

i1: // no writes to a
. . .

rare

a = . . .

truefalse

foo(a)
. . .
a = . . .

i2:

i3:

Control Flow
Graph

Hot path
Rarely taken
path

. . .

Is there a
cross-iteration
data flow
from i3 to i2?

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

i1:
i2:

i3:

7

Motivating Example

i1: // no writes to a
. . .

rare

a = . . .

truefalse

foo(a)
. . .
a = . . .

i2:

i3:

Control Flow
Graph

Hot path
Rarely taken
path

. . .

Is there a
cross-iteration
data flow
from i3 to i2?

Composition by Confluence
cannot assert its absence.

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

i1:
i2:

i3:

8

Motivating Example

i1: // no writes to a
. . .

a = . . .

truefalse

foo(a)
. . .
a = . . .

i2:

i3:

Hot path
Rarely taken
path

. . .

Is there a
cross-iteration
data flow
from i3 to i2?

rare
Control Flow

Graph

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

i1:
i2:

i3:

8

Motivating Example

i1: // no writes to a
. . .

a = . . .

truefalse

foo(a)
. . .
a = . . .

i2:

i3:

Hot path
Rarely taken
path

. . .

Is there a
cross-iteration
data flow
from i3 to i2?

rare
Control Flow

Graph

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

i1:
i2:

i3:

8

Motivating Example

i1: // no writes to a
. . .

a = . . .

truefalse

foo(a)
. . .
a = . . .

i2:

i3:

Hot path
Rarely taken
path

. . .

Is there a
cross-iteration
data flow
from i3 to i2?

rare
Control Flow

Graph

kills flow
from i3
to i2

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

i1:
i2:

i3:

8

Motivating Example

i1: // no writes to a
. . .

a = . . .

truefalse

foo(a)
. . .
a = . . .

i2:

i3:

Hot path
Rarely taken
path

. . .

Is there a
cross-iteration
data flow
from i3 to i2?

rare
Control Flow

Graph

kills flow
from i3
to i2

Memory analysis and speculation
combined can assert its absence.

Source
Code

Optimized
Code

Compiler

Optimizations

Speculation-Aware
Dependence Analysis

Monolithic Integration [1,2,3]

9
1 Apostolakis et al., ASPLOS ’20 2 Devecsery et al., ASPLOS ’18 3 Fernandez et al., PACT ’02

10

Proposed Approach: Composition by Collaboration

Proposed Approach is both Modular & Collaborative

Approaches

Supported Forms of Collaboration
Memory Analysis
Decoupled from

Speculation
Among

Speculative Techniques
Between

Memory Analysis and
Speculative Techniques

Monolithic
Integration

[1,2,3]

Composition by
Confluence

[4,5,6,7]

Composition by
Collaboration  
(This Work)

1 Apostolakis et al., ASPLOS ’20 2 Devecsery et al., ASPLOS ’18 3 Fernandez et al., PACT ’02
4 Johnson et al., PLDI ’12 5 Kim et al., CGO ’12 6 Mehrara et al., PLDI ’09 7 Vachharajani et al., PACT ’07

11

CAF* SCAF

CAF*: Collaborative Dependence Analysis Framework

* Nick P. Johnson et al., Collaborative Dependence Analysis Framework in CGO ‘17

Collaborative resolution of
analysis queries by
simple analysis algorithms

12

CAF* SCAF

CAF*: Collaborative Dependence Analysis Framework

* Nick P. Johnson et al., Collaborative Dependence Analysis Framework in CGO ‘17

Isolate propositions beyond
ones module's logic as
premise queries.

Premise
Queries Collaborative resolution of

analysis queries by
simple analysis algorithms

12

Premise
Queries

SCAF: Speculation-Aware Collaborative
Dependence Analysis Framework

CAF* SCAF
* Nick P. Johnson et al., Collaborative Dependence Analysis Framework in CGO ‘17 13

Premise
Queries

SCAF: Speculation-Aware Collaborative
Dependence Analysis Framework

CAF* SCAF
* Nick P. Johnson et al., Collaborative Dependence Analysis Framework in CGO ‘17 14

Premise
Queries Premise

Queries

SCAF’s Query Language

15

SCAF’s Query Language

15

Query Response:
 Analysis result might be predicated on speculative assertions

SCAF’s Query Language

15

Query Response:
 Analysis result might be predicated on speculative assertions

New Query Parameters:
 Control-flow parameter in the form of dominance information

SCAF’s Query Language

15

Query Response:
 Analysis result might be predicated on speculative assertions

New Query Parameters:
 Control-flow parameter in the form of dominance information

 Desired result parameter for quick bail-out

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

16

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

16

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

1
modref(i3,i2,ci,dt)

16

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

1
modref(i3,i2,ci,dt)

16

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

1
modref(i3,i2,ci,dt)

16

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

1
modref(i3,i2,ci,dt)

16

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

1
modref(i3,i2,ci,dt)

16

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

1
modref(i3,i2,ci,dt)

16

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

1
modref(i3,i2,ci,dt)

2

Kill Flow
Module

modref(i3,i2,ci,dt)

16

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

1
modref(i3,i2,ci,dt)

2

Kill Flow
Module

modref(i3,i2,ci,dt)

3(ModRef, ∅)

16

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Kill Flow
Module

1
modref(i3,i2,ci,dt)

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Control
Spec

4
modref(i3,i2,ci,dt)

Kill Flow
Module

1
modref(i3,i2,ci,dt)

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Control
Spec

4
modref(i3,i2,ci,dt)

Kill Flow
Module

1
modref(i3,i2,ci,dt)

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Control
Spec

4
modref(i3,i2,ci,dt)

Kill Flow
Module

5
modref(i3,i2,ci,specdt)

premise query

spec-dt encodes
assertion that

branch never taken

1
modref(i3,i2,ci,dt)

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Control
Spec

4
modref(i3,i2,ci,dt)

6

Kill Flow
Module

modref(i3,i2,ci,specdt)

Kill Flow
Module

5
modref(i3,i2,ci,specdt)

premise query

spec-dt encodes
assertion that

branch never taken

1
modref(i3,i2,ci,dt)

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Control
Spec

4
modref(i3,i2,ci,dt)

6

Kill Flow
Module

modref(i3,i2,ci,specdt)

loop L:
 a = …
 foo(a)
 …

 a = …

i1:
i2:

i3:

View of loop based on spec-dt

Kill Flow
Module

5
modref(i3,i2,ci,specdt)

premise query

spec-dt encodes
assertion that

branch never taken

1
modref(i3,i2,ci,dt)

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Control
Spec

4
modref(i3,i2,ci,dt)

7
(NoModRef, ∅)

6

Kill Flow
Module

modref(i3,i2,ci,specdt)

loop L:
 a = …
 foo(a)
 …

 a = …

i1:
i2:

i3:

View of loop based on spec-dt

Kill Flow
Module

5
modref(i3,i2,ci,specdt)

premise query

spec-dt encodes
assertion that

branch never taken

1
modref(i3,i2,ci,dt)

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Control
Spec

4
modref(i3,i2,ci,dt)

7
(NoModRef, ∅)

6

Kill Flow
Module

modref(i3,i2,ci,specdt)

loop L:
 a = …
 foo(a)
 …

 a = …

i1:
i2:

i3:

View of loop based on spec-dt

8
(NoModRef, ∅)

Kill Flow
Module

5
modref(i3,i2,ci,specdt)

premise query

spec-dt encodes
assertion that

branch never taken

1
modref(i3,i2,ci,dt)

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Control
Spec

4
modref(i3,i2,ci,dt)

7
(NoModRef, ∅)

6

Kill Flow
Module

modref(i3,i2,ci,specdt)

loop L:
 a = …
 foo(a)
 …

 a = …

i1:
i2:

i3:

View of loop based on spec-dt

8
(NoModRef, ∅)

Kill Flow
Module

5
modref(i3,i2,ci,specdt)

premise query

spec-dt encodes
assertion that

branch never taken

1
modref(i3,i2,ci,dt)

9 (NoModRef, {A})

Speculation assertion A:
branch never taken

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

loop L:
 if (rare)
 // no writes to a
 ...  
 else
 a = ...
 foo(a)
 ...
 a = ...

SCAF in action

Orchestrator

Control
Spec

4
modref(i3,i2,ci,dt)

7
(NoModRef, ∅)

6

Kill Flow
Module

modref(i3,i2,ci,specdt)

loop L:
 a = …
 foo(a)
 …

 a = …

i1:
i2:

i3:

View of loop based on spec-dt

8
(NoModRef, ∅)

Kill Flow
Module

5
modref(i3,i2,ci,specdt)

premise query

spec-dt encodes
assertion that

branch never taken

1
modref(i3,i2,ci,dt) 10

Final outcome:
(NoModRef, {A})

9 (NoModRef, {A})

Speculation assertion A:
branch never taken

17

Client

Is there a
cross-iter
data flow
from i3 to i2?

i1:
i2:

i3:

SCAF’s Evaluation Methodology

18

SCAF’s Evaluation Methodology

18

Empirically Evaluated Claim
SCAF reduces the need for memory speculation

SCAF’s Evaluation Methodology

18

Empirically Evaluated Claim
SCAF reduces the need for memory speculation

Benchmarks
16 C/C++ benchmarks from SPEC CPU

SCAF’s Evaluation Methodology

18

Empirically Evaluated Claim
SCAF reduces the need for memory speculation

Benchmarks
16 C/C++ benchmarks from SPEC CPU

1Johnson et al., PLDI ’12 2Kim et al., CGO ’12 3Mehrara et al., PLDI ‘09 4Vachharajani et al., PACT ‘07

State-of-art Baseline
Composition by Confluence: analysis results are the confluence of
results of individual components [1,2,3,4]

SCAF reduces need for expensive memory speculation

19

SCAF reduces need for expensive memory speculation

19

SCAF enables various Forms of Beneficial Collaboration

Benchmark
Coverage

Loop
Coverage

Among Speculation
Modules 87.5% 53.6%

Between Memory Analysis
and Speculation Modules 93.8% 42.9%

All 100.0% 66.1%

Beneficial Collaboration:
two or more modules
collaboratively resolve
more queries than in
isolation

20

New Desired Result Parameter
reduces Query Latency

21

28 % geomean reduction

Conclusion

SCAF is essential for memory analysis sensitive clients
and a necessary step toward robust automatic parallelization

SCAF is a modular and collaborative dependence analysis framework
that computes the full impact of speculation on memory dependence
analysis

SCAF dramatically reduces, compared to the state-of-the-art,
the need for expensive-to-validate memory speculation.

22

Artifact available: https://doi.org/10.5281/zenodo.3751586

https://doi.org/10.5281/zenodo.3751586

