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Memory Analysis limits applicability of optimizations

insufficiently precise in practice [Hind, PASTE’01]
especially for languages like C/C++.

undecidable in theory [Landi, LPLS’92]
For any fixed analysis algorithm, there is a counter-example input 
for which the algorithm is imprecise.

conservatively respects all possible inputs
Many real dependences rarely occur in practice.
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to i2

Memory analysis and speculation
combined can assert its absence.
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Proposed Approach: Composition by Collaboration



Proposed Approach is both Modular & Collaborative

Approaches

Supported Forms of Collaboration
Memory Analysis 
Decoupled from 

Speculation
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Speculative Techniques
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Memory Analysis and 
Speculative Techniques
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Integration 

[1,2,3]

Composition by 
Confluence 

[4,5,6,7]

Composition by 
Collaboration  
(This Work)
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    Analysis result might be predicated on speculative assertions

New Query Parameters:
    Control-flow parameter in the form of dominance information

  Desired result parameter for quick bail-out
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Empirically Evaluated Claim
SCAF reduces the need for memory speculation

Benchmarks
16 C/C++ benchmarks from SPEC CPU

1Johnson et al., PLDI ’12  2Kim et al., CGO ’12  3Mehrara et al., PLDI ‘09  4Vachharajani et al., PACT ‘07

State-of-art Baseline
Composition by Confluence: analysis results are the confluence of 
results of individual components [1,2,3,4]
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SCAF enables various Forms of Beneficial Collaboration

Benchmark
Coverage

Loop
Coverage

Among Speculation 
Modules 87.5% 53.6%

Between Memory Analysis 
and Speculation Modules 93.8% 42.9%

All 100.0% 66.1%

Beneficial Collaboration:
two or more modules 
collaboratively resolve 
more queries than in 
isolation

20



New Desired Result Parameter
reduces Query Latency
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28 % geomean reduction



Conclusion

SCAF is essential for memory analysis sensitive clients 
and a necessary step toward robust automatic parallelization

SCAF is a modular and collaborative dependence analysis framework 
that computes the full impact of speculation on memory dependence 
analysis

SCAF dramatically reduces, compared to the state-of-the-art, 
the need for expensive-to-validate memory speculation.

22

Artifact available: https://doi.org/10.5281/zenodo.3751586
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