
Breaking Cyclic-Multithreading Parallelization with XML
Parsing

Simone Campanoni
Harvard University

xan@eecs.harvard.edu

Svilen Kanev
Harvard University

skanev@eecs.harvard.edu

Kevin Brownell
Harvard University

brownell@eecs.harvard.edu

Gu-Yeon Wei
Harvard University

guyeon@eecs.harvard.edu

David Brooks
Harvard University

dbrooks@eecs.harvard.edu

1. INTRODUCTION
HELIX-RC, a modern re-evaluation of the cyclic-multithreading
(CMT) compiler technique [6], extracts threads from sequen-
tial code automatically. As a CMT approach, HELIX-RC gains
performance by running iterations of the same loop on differ-
ent cores in a multicore. It successfully boosts performance for
SPEC CINT benchmarks previously considered unparalleliz-
able (Table 1), assuming 16 Intel Atom cores with a special-
purpose interconnect [3]. However, this paper shows there are
workloads with different characteristics, which even idealized
CMT cannot parallelize.

We identify how to overcome an inherent limitation of CMT
for these workloads. CMT techniques only run iterations of a
single loop in parallel at any given time. We propose exploit-
ing parallelism not only within a single loop, but also among
multiple loops. We call this execution model Multiple CMT
(MCMT), and show that it is crucial for auto-parallelizing a
broader class of workloads.

To highlight the need for MCMT, we target a workload that is
naturally hard for CMT – parsing XML-structured data. XML
parsing has been characterized as highly input-dependent, with
a complex callgraph structure [4]. The particular implemen-
tation that we used (libxml2 [11]) adds further characteristics
that complicate blindly applying a CMT approach. First, it
spends a significant amount of execution in recursive calls or
in non-natural loops, limiting the application scope of CMT
(which exploits natural loop iterations). Second, it spends a
rather small fraction of execution in small loops (which are
preferred by HELIX-RC) – libxml2: 15%, SPEC CINT on av-
erage: 90%.

The rest of the paper starts by describing the importance of

Benchmark LOC HELIX-RC
Speedup [3]

Parallel loop
coverage (%)

CFP2000 177.mesa 42,491 15.1× 99%
179.art 1,036 10.5× 99%

183.equake 1,042 10.1× 99%
188.ammp 9,805 12.5× 99%

CINT2000 164.gzip 5,630 3.0× 98.2%
175.vpr 11,300 6.1× 99%
181.mcf 1,482 8.7× 99%

197.parser 7,763 7.3× 98.7%
256.bzip2 3,235 12.0× 99%
300.twolf 17,875 7.6× 99%

libxml2 170,893 1.02× 48%

Table 1: Code complexity (approximated by # lines
of code) and achieved speedup between SPEC2000 and
libxml2.

xmlParseElement

xmlParseContent

xmlParseCharData xmlParseStartTag2

recursion

Figure 1: Simplified libxml2 parsing callgraph.

XML parsing and the code characteristics of libxml2. Then,
after showing that HELIX-RC comes short for this library, we
demonstrate that even idealized CMT-like techniques are not
effective. On the other hand, an MCMT prototype speeds up
the parsing task by up to 3.9× on 4 cores.

2. XML PARSING
XML has established itself as the de facto standard for ex-
changing semi-structured data in an interoperable and stan-
dardized way, leading to several efforts to speed up parsing by
manual parallelization [7, 12, 13], or even by hardware accel-
eration [8]. Mobile browsers also spend considerable resources
on the very similar task of HTML parsing and DOM tree con-
struction. As an example, on the Exynos 5410 SoC, Chromium
spends 17% of its execution time and 16% of its energy on this
task [15].

In order to understand why CMT performs poorly on XML
parsing, the rest of this section takes a closer look at the parser
implementation in libxml2 (Figure 1). We find code proper-
ties that limit the amount of parallelism between iterations of
the same loop – recursion, non-natural loops and loops with a
single iteration.

Code characteristics.
The parser has a very commonly executed recursive cycle (be-
tween the functions xmlParseElement and xmlParseContent)
for inspecting XML subelements. It builds up significant exe-
cution time without any loops whatsoever, limiting the amount
of parallelism that loop-centric CMT can extract. Further-
more, not all hot loops are natural, and easily identifiable by a
compiler. Such non-natural loops are the result of heavy man-
ual optimization with goto statements (mostly in the function
xmlParseStartTag2), some of which jump in the middle of a
loop body. These jumps violate the property that a compiler
uses to to identify a loop: the header of the loop must pre-
dominate the loop body. Similarly to recursion, this renders
CMT ineffective.

The balance between the functions described above (and hence

Program Speedup

dblp-flat

dblp

treebank

1.2x1x0x

Parallel Loop Speedup

4x3x2x1x0x

Oracle

Figure 2: Even oracle analyses cannot compensate for
the lack of loop iteration parallelism exploited by CMT.

the quality of CMT parallelization) is strongly dependent on
the shape of the input XML tree1. The more deeply nested
the tree is, the more time is spent on the recursion between
xmlParseElement and xmlParseContent, and therefore, less
time is spent in CMT-targetable code. Similarly, the more ele-
ments a tree has, the more time is spent in xmlParseStartTag2,
including in its non-natural loops. On the contrary, XML with
more leaf data causes more invocations of xmlParseCharData,
whose callees contain tens of natural loops, leading to poten-
tially better parallelization.

Based on these insights, we use three inputs with different
shapes of the XML tree. The first two, treebank and dblp [9],
have trees with average nesting levels of 7.9 and 2.9. The
last one, dblp-flat, is explicitly flattened, with all elements
being direct children of the root. We expect to obtain best
performance for dblp-flat and worst for treebank.

Profiling data indicates that the code characteristics described
above significantly limit the program coverage of natural loops.
Even in the best-case input (dblp-flat, no recursion), 28% of
execution time is spent in the non-natural loops of
xmlParseStartTag2, which are not considered by CMT (in ad-
dition to 7% in initialization and de-initialization code). As
expected, recursion for deeply nested XML causes lower cover-
age – time in natural loops goes down from 65% for dblp-flat
through 60% for dblp to only 48% for treebank. Surprisingly,
most loops that cover this 48-65% only have a single itera-
tion each. For example, some iterate over namespaces and
attributes, which are not abundant in our inputs.

3. LIMITATIONS OF CMT
HELIX-RC does not extract enough parallelism from libxml2.
We ran HELIX-RC (as fully described previously [3]) on the
libxml2 parser, assuming a four-core Atom-like platform. We
model speedup at the compiler intermediate representation
(IR) level, modelling the cost of IR instructions. Although
the speedup within parallel loops gets up to 3.5×, they only
cover between 9% and 12% of execution, resulting in low over-
all program speedups (1.02×–1.08×) shown in Figure 2. The
low coverage is due to recursion, non-natural loops, and single-
iteration loops. Therefore, other CMT techniques, like HE-
LIX [1, 2], STAMPede [10], Stanford Hydra [5], DOACROSS,
and DOALL [6, 14], cannot succeed in parallelizing libxml2 as
well.

Even idealized CMT results in low performance. To estimate
the potential of ideal CMT, we measure performance gained by
HELIX-RC after replacing conservative code analyses with ora-
cle information. The code analyses that get replaced by oracles
are: data dependence, control dependence, induction variable,
and function pointer. Therefore, the only code in loops that
runs sequentially consists of unpredictable read-after-write de-
pendence chains. The oracle bars in Figure 2 show virtually
no improvement over using realistic analyses simply because of

1Similar dependences have been observed for manual paral-
lelization, leading to a pre-parsing step to discover the XML
structure [7, 13].

 treebank dblp dblp-flat
0

1

2

3

4

P
ro

g
ra

m
 s

p
e
e
d
u
p

Static DDG Dynamic DDG + Recursive Loops

Figure 3: Exploiting parallelism among multiple loops
is essential to gain performance.

the lack of loop iteration parallelism.

4. BEYOND CMT
To overcome the inherent limitation of CMT, Multiple CMT
(MCMT) distributes iterations of multiple loops among cores.
MCMT runs multiple loops concurrently on different cores by
spreading each loop’s iterations on a different core subset. A
prototype runtime that implements MCMT achieves speedup
between 3.0 and 3.9× on libxml2 parsing, assuming a four-core
platform (Figure 3, third column).

In more detail, MCMT includes a runtime which starts execut-
ing non-loop code serially. Once it encounters a natural loop,
it dispatches its iterations among a subset of cores. Without
waiting for these iterations to complete, the runtime contin-
ues executing subsequent code. If this code contains another
loop, its iterations are also dispatched on different cores, con-
currently with those of the first loop. For correctness, data
and control dependences are satisfied through normal synchro-
nization. Finally, we optimistically assume zero overhead for
the dispatch decisions.

While MCMT has potential, it requires run time support for
accurate data dependence information. This is confirmed by
the large difference between the first two sets of bars in Figure 3
– using static and dynamic data dependence graph (DDG).
This is expected because obtaining high accuracy on data de-
pendence analysis is a challenge on a large codebase. More-
over, because MCMT explicitly targets multiple loops, its DDG
analysis cannot look into single loops in isolation, and must po-
tentially address the entirety of a large codebase. This makes
static analyses impractical for codes the size of libxml2 (Ta-
ble 1). Hence the need for a run time approach potentially
based on speculative multithreading [10].

One last optimization for MCMT allows it to capture recur-
sion better. In this more general model, iterations of different
invocations of the same loop can also run in parallel. The ef-
fect of this optimization is stronger on more recursive inputs –
Figure 3, the gap between the second and the third column.

5. REFERENCES
[1] S. Campanoni et al., “Helix: Automatic parallelization of

irregular programs for chip multiprocessing,” in CGO,
2012.

[2] S. Campanoni et al., “HELIX: Making the extraction of
thread-level parallelism mainstream,” IEEE Micro, 2012.

[3] S. Campanoni et al., “HELIX-RC: An
Architecture-Compiler Co-Design for Automatic
Parallelization of Irregular Programs,” in ISCA, 2014.

[4] T. Cheung et al., “XML Document Parsing: Operational
and Performance Characteristics.” IEEE Computer,
2008.

[5] L. Hammond et al., “The Stanford Hydra CMP,” in
IEEE Micro, 2000.

[6] A. R. Hurson et al., “Parallelization of DOALL and
DOACROSS Loops - A Survey,” Advances in Computers,
1997.

[7] W. Lu et al., “A parallel approach to xml parsing,”
ICGC, 2006.

[8] J. V. Lunteren et al., “XML accelerator engine,” in
International Workshop on High Performance XML
Processing, 2004.

[9] G. Miklau, “UW XML Repository,” 2006.

[10] J. G. Steffan et al., “The STAMPede approach to
thread-level speculation,” ACM Trans. Comput. Syst.,
2005.

[11] D. Veillard, http://xmlsoft.org.

[12] C.-H. You and S.-D. Wang, “A Data Parallel Approach
to XML Parsing and Query,” High Perf. Computing and
Communications, 2011.

[13] Y. Zhang et al., “Speculative p-DFAs for parallel XML
parsing,” in International Conference on High
Performance Computing, 2009.

[14] H. Zhong et al., “Uncovering hidden loop level
parallelism in sequential applications,” in HPCA, 2008.

[15] Y. Zhu et al., “WebCore: Architectural Support for
Mobile Web Browsing,” in ISCA, 2014.

http://xmlsoft.org

	Introduction
	XML parsing
	Limitations of CMT
	Beyond CMT
	References

