
Unified Cache: A Case for Low-Latency Communication
Khalid Al-Hawaj Simone Campanoni Gu-Yeon Wei David Brooks

{hawajkm, xan, guyeon, dbrooks}@eecs.harvard.edu

Harvard University

1. INTRODUCTION
Increasing computational demand on mobile devices calls for
energy-friendly solutions for accelerating single programs. In
the multicore era, thread level parallelism (TLP) can acceler-
ate single-threaded programs without requiring power-hungry
cores. HELIX-RC, a recently proposed co-design between the
HELIX parallelizing compiler and its target architecture, shows
that substantial TLP can be extracted from loops with small
bodies by optimizing core-to-core communication. Previously,
the effectiveness of the HELIX-RC approach has been demon-
strated through simulation. In this paper, we evaluate a HELIX-
RC-like solution on a real platform.

We have developed a simplified version of the HELIX-RC ar-
chitecture that we call unified cache, and we have implemented
it on an FPGA board. Our design augments a multicore plat-
form with a simplified ring cache—the architectural component
of the HELIX-RC co-design. With the aid of microbenchmarks,
our FPGA prototype confirms the HELIX-RC findings.

After describing both the ring cache and the parallel code gener-
ated by the HELIX compiler, we sketch the design of the unified
cache and we evaluate its implementation on a Xilinx VC707
FPGA board.

2. BACKGROUND
The HELIX compiler automatically parallelizes sequential pro-
grams by distributing their loop iterations around a ring of
cores. On conventional commodity platforms, dependences be-
tween loop iterations are satisfied through the memory hierar-
chy. The resulting high latency severely limits performance on
such systems. In HELIX-RC, we proposed architectural support
called ring cache to lower communication latency and enable
more parallelization.

2.1 Helix Execution Model
HELIX [3, 4] accelerates programs by finding the most promis-
ing loops to parallelize. Successive iterations of each parallelized
loop run on adjacent cores. For each data dependence between
loop iterations, the compiler produces a sequential segment of
code. The instances of a sequential segment running on sepa-
rate cores must be executed in the same order as in the original
sequential loop. So the compiler brackets each sequential seg-
ment with synchronization operations: signal ends the segment
by signaling other cores that is has finished, and wait begins a
segment by waiting for such a signal.

2.2 Conventional Inter-Core Communication
In commodity processors, cores communicate through memory.
A core that needs data from another one uses the cache coher-
ence protocol [5], which locates the data and moves it to the
requesting core. Because coherence protocols are reactive, each
request incurs a heavy overhead, on the order of a hundred
cycles.

2.3 Ring Cache
To reduce communication latency between the cores of a con-
ventional multicore processor, HELIX-RC [2] introduces ring

Figure 1: General overview of the unified cache design.

cache: a light-weight architectural enhancement. HELIX-RC
adds a ring node to each core and connects these nodes in a
ring. When a ring node receives program data or synchroniza-
tion signals, it passes them immediately to its successor node.
This proactive communication around the ring of cores lowers
latency and thereby enables loop parallelization that would oth-
erwise be infeasible.

3. UNIFIED CACHE
To quantify the advantages of adding ring cache to a real plat-
form, we implemented a simplification of it called unified cache.

3.1 Overview
Unified Cache is a customized shared cache in a chip multi-
processor. It has an input port from each core. During each
sequential segment of a parallelized loop, a core uses this shared
cache instead of its private first-level data cache (DL1). Code
at the start of a parallelized loop primes the unified cache for
the loop’s sequential segments. Termination of the loop triggers
a flush operation that writes unified cache data back to DL1.

3.2 Implementation
The unified cache handles core-to-core communication both for
sharing data and synchronizing parallel execution.

Data. Data coming into the unified cache from cores enters
queues that buffer and order the data by its core of origin. The
queues are needed because the unified cache has a multiport
RAM block that can perform multiple data reads, but only
one write at a time. As the queues hold in-flight data, they
are searched for every read request, which minimizes the delay
between a store and a subsequent load.

Synchronization. Signals are connected to a bank called the
signals bank, which performs n reads and n writes in a single
cycle, where n is the number of input ports. This enables the



Parallel-to-Serial Section Ratio
1 5 10 15 20 25 30

S
p
e
e
d
u
p

0

1

2

3

4

Uni-ed cache

Spinlocks
Small loops

Uni-ed cache reduces the
communication overhead
enabling the parallelization
of small loops

Figure 2: LinkedList with different loop body sizes.

unified cache to handle intensive synchronization requests from
cores without stalls.

4. EXPERIMENT AND RESULTS
We implemented the unified cache on a LEON3 platform. Our
results reinforce those of the HELIX-RC simulations: Lowering
core-to-core communication latency to fewer than 10 clock cy-
cles enables parallelization of small loops that would otherwise
be infeasible.

4.1 Platform
We synthesized our LEON3 [1] platform with the parameters
shown in Table 1. Each core in the LEON3 CMP has its own
DL1 cache. Because there is no last-level cache, cache coherence
is maintained through the DDR3 RAM. When unified cache is
not in use, cores are interconnected through a shared AMBA
bus, where they snoop memory requests to maintain coherence.

4.2 Benchmarks
To quantify the effects of adding unified cache to the system,
we created two benchmarks: LinkedList and SCAN. Each is
implemented in three ways: as a sequential program and as
parallelized in two ways. The first parallelization relies on tra-
ditional spin locks, based on load and store instructions. The
second parallelization relies on unified cache. Performance of
each parallelized version is normalized to the respective sequen-
tial version.

LinkedList. This benchmark traverses a linked list of ele-
ments. After accessing an element e in the list, the benchmark
calls a function f(e) that takes n cycles, where n is passed as a
parameter to the benchmark. This benchmark has one sequen-
tial segment, which implements retrieval of the current list link
from a previous iteration. Its parallel segment is the computa-

Parameter Value
Platform LEON3
ISA SPARC-v8e
Number of Cores 4
Cache Configuration 16 kByte, 4 ways
TLB Entries 16 Entries
FPGA Platform Xilinx VC707
Main Memory 1GByte DDR3-RAM
Operating System GNU Linux 2.6.8
Number of Unified Cache Ports 4
Size of Unified Cache Queues 1 Entry
Unified Cache Signal Banks 64 Signals
Unified Cache Data Cache 4 kByte, 1 way

Table 1: LEON3 platform configuration.

Scan benchmark parallel function f(e)

nop

1 i
nt m

ul

1 f
p m

ul

1 f
p m

ul, 1
 fp

 d
iv

3 f
p m

ul, 1
 fp

 d
iv

6 f
p m

ul, 7
 fp

 d
iv

S
p
e
e
d
u
p

0

1

2

3

4
Uni-ed cache

Spinlocks

Figure 3: Scan with different loop bodies

tion of f(e). We sweep the ratio between the number of cycles
required by the parallel segment and the number required by
the sequential segment.

Scan. The Scan benchmark [6] also traverses a linked list of
elements e, accumulating

∑
e

f(e) and replacing each element

in the list with the sum that its contribution produces. As a
result, it has two sequential segments: retrieval of the current
list link from a previous iteration, and reading and updating
the accumulator.

4.3 Results
Characterization. Adding the unified cache to the platform
requires the modification of two crucial paths in the processor:
memory operations and exception handling. Therefore, adding
the unified cache might degrade platform frequency and add
area and routing overhead. After synthesizing the system, we
found that the addition of the unified cache did not incur a
heavy penalty. Moreover, unified cache lowers the communica-
tion latency between cores from 58 cycles to 3 cycles. (Three cy-
cles is the ISA defined minimum for one load and one store [7].)
Finally, as incoming data to the unified cache is being queued,
we expect store instructions to take longer than the two cycles
that the ISA specifies [7]. Our measurements show that even in
the worst case, when the queues for every port are fully utilized,
store latency increases to only 4 cycles.

Unified cache increases parallelism. To show the impor-
tance of low-latency communication between cores, we ran the
LinkedList benchmark on our platform sweeping parallel-to-
serial ratio from 1× to 30× (Figure 2). As shown in this figure,
unified cache soon outstrips the traditional spin lock solution.
Therefore, unified cache allows parallelization of small loops
that tend to have small parallel-to-serial ratios.

Testing Scan leads to the same conclusion as for LinkedList.
We compiled Scan with 6 different functions f(e). Figure 3
shows that, compared to traditional spin locks, the unified cache
helps parallelized Scan achieve higher performance with mini-
mal f(e). Scan’s spin lock version struggles to improve perfor-
mance even when compared to the spin-lock version of LinkedList.
Hence, even for Scan, proactive inter-core communication is es-
sential for accelerating the performance of small loops through
parallelization.



5. REFERENCES
[1] Aeroflex Gaisler, “GRLIB IP Library User’s Manual –

version grlib-gpl-1.3.7-b4144,”
http://www.gaisler.com/products/grlib/grlib.pdf, 2014.

[2] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y.
Wei, and D. Brooks, “HELIX-RC: An
Architecture-Compiler Co-Design for Automatic
Parallelization of Irregular Programs,” in ISCA, 2014.

[3] S. Campanoni, G. Holloway, G.-Y. Wei, and D. Brooks,
“Helix: Automatic parallelization of irregular programs for
chip multiprocessing,” in CGO, 2012.

[4] S. Campanoni, T. M. Jones, G. H. Holloway, G.-Y. Wei,
and D. M. Brooks, “HELIX: Making the extraction of
thread-level parallelism mainstream,” IEEE Micro, 2012.

[5] L. Choi and P.-C. Yew, “Compiler and hardware support
for cache coherence in large-scale multiprocessors: Design
considerations and performance study,” SIGARCH
Comput. Archit. News, 1996.

[6] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, ser.
GPGPU workshop, 2010.

[7] SPARC International Inc., “The SPARC Architecture
Manual Version 8,” http://gaisler.com/doc/sparcv8.pdf.

http://www.gaisler.com/products/grlib/grlib.pdf
http://gaisler.com/doc/sparcv8.pdf

	Introduction
	Background
	Helix Execution Model
	Conventional Inter-Core Communication
	Ring Cache

	Unified Cache
	Overview
	Implementation

	Experiment and Results
	Platform
	Benchmarks
	Results

	References

