
Unconventional Parallelization of
Nondeterministic Applications

Enrico A. Deiana
Northwestern University

ead@u.northwestern.edu

Vincent St-Amour
Northwestern University

stamourv@northwestern.edu

Peter A. Dinda
Northwestern University

pdinda@northwestern.edu

Nikos Hardavellas
Northwestern University

nikos@northwestern.edu

Simone Campanoni
Northwestern University

simonec@eecs.northwestern.edu

Abstract
The demand for thread-level-parallelism (TLP) on commodity
processors is endless as it is essential for gaining performance
and saving energy. However, TLP in today’s programs is lim-
ited by dependences that must be satisfied at run time. We
have found that for nondeterministic programs, some of these
actual dependences can be satisfied with alternative data that
can be generated in parallel, thus boosting the program’s TLP.
Satisfying these dependences with alternative data nonethe-
less produces final outputs that match those of the original
nondeterministic program. To demonstrate the practicality
of our technique, we describe the design, implementation,
and evaluation of our compilers, autotuner, profiler, and run-
time, which are enabled by our proposed C++ programming
language extensions. The resulting system boosts the perfor-
mance of six well-known nondeterministic and multi-threaded
benchmarks by 158.2% (geometric mean) on a 28-core Intel-
based platform.

Keywords dependences;parallelization;speculative execution

ACM Reference Format:
Enrico A. Deiana, Vincent St-Amour, Peter A. Dinda, Nikos Hardav-
ellas, and Simone Campanoni. 2018. Unconventional Parallelization
of Nondeterministic Applications . In ASPLOS ’18: 2018 Architec-
tural Support for Programming Languages and Operating Systems,
March 24–28, 2018, Williamsburg, VA, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3173162.3173181

1 Introduction
Increasing thread-level parallelism (TLP) is the chief way to
improve performance on multi-core systems. However, the
inter-thread data movements present in most programs con-
strain their TLP and hence their performance. These data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173181

movements are necessary for satisfying dependences, a taxon-
omy for which Figure 1 illustrates. Ideally, data movements
satisfy only actual dependences, i.e., those which are funda-
mental to the program. Unfortunately, they may also occur
to satisfy apparent dependences, i.e., those that are not in
fact necessary, but for which the compiler or developer were
unable to prove unnecessary.

The research community has had tremendous success using
techniques like thread-level speculation to reduce the impact
of apparent dependences [35, 43, 52, 54, 68, 70, 73, 77, 89,
90]. These achievements have been proven productive enough
to be implemented in both high-end [20, 37, 42, 49] and com-
modity processors [34]. Uncovering and ignoring apparent
dependences, however, has reached the point of diminishing
returns. To climb from this parallelism plateau, we must turn
our attention to actual dependences.

Figure 1. Taxonomy of dependences. State dependences are those
that can be satisfied with auxiliary code.

While all actual dependences must be satisfied to preserve
program semantics, strict semantics preservation is not al-
ways necessary. Prior work has shown that carefully selecting
which actual dependences to break can lead to performance
gains [16, 57, 69, 79, 81], but the output inaccuracies these
techniques introduce make them unsuitable for settings where
output quality must be preserved.

Nondeterministic applications naturally produce different
results from run to run given the same input. We see this as
an opportunity and we ask the question: can we exploit the
output variability of nondeterministic programs to liberate
additional TLP while preserving the output quality? This
paper aims to answer this question by considering alternative
ways of satisfying actual dependences.

Specifically, we identify a subset of actual dependences—
state dependences—that can be satisfied via alternative, per-
dependence code which we dub auxiliary code. Such aux-
iliary code aims to produce results that match the original
code, but much faster. This code is compiler-generated en-
abled by developer-supplied algorithm-specific information.
Auxiliary code runs in parallel with the source of its state

https://doi.org/10.1145/3173162.3173181
https://doi.org/10.1145/3173162.3173181

swaptions

streamclassifier

streamcluster

fluidanimate
bodytrack

canneal
facedet

10¡6

10¡4

10¡2

100

102

104

106

o
u
tp

u
t

v
a
ri

a
b
ili

ty
 (

lo
g
 s

ca
le

)

Output variability due
to race conditions

Output variability due
to random generators

Figure 2. Output variability of nondeterministic PARSEC bench-
marks. Several exhibit very high variability and are particularly
amenable to STATS.

dependence, which generates additional TLP. To preserve
the program’s original semantics, the auxiliary code’s exe-
cution is monitored by our runtime system, to check that its
speculative results match those expected from the original
nondeterministic code. To increase the probability of having a
match among speculative and original results, we take advan-
tage of the program’s nondeterminism and compute multiple
original results that we compare against the speculative one.
When these checks succeed, the additional TLP generated can
be safely used. When these checks fail, our runtime aborts
the computation that relied on the inadequate auxiliary code.
Then, the runtime reverts the execution satisfying that state
dependence the usual way, falling back to the original code
using the first generated original result. Our experiments show
that it is possible to generate auxiliary code such that these
checks generally succeed, with the TLP benefits that this
entails. This work is the first to automatically generate auxil-
iary code able to satisfy particular actual dependences while
preserving output quality.

Our work is embodied in a system named STATS (STAte
Transition Speculator) that takes advantage of state depen-
dences throughout its compilers, autotuner, profiler, and run-
time system. To assess the effectiveness of STATS, we evalu-
ated it using the nondeterministic programs of the PARSEC
suite [8] as well as the well-known, industrial-strength code-
base OpenCV [13]. Without loss in output quality (guaran-
teed via run-time checks), STATS increases their performance
by 158.2% on average (geometric mean) on a dual-socket
Intel-based platform with 14 cores per socket. Alternatively,
STATS can save 71.35% on average (geometric mean) of the
system-wide energy consumption.

The contributions of the paper are as follows. (1) We iden-
tify and describe the concept of state dependence. (2) We
identify a code pattern that is commonly found in nondeter-
ministic programs, and which corresponds to a state depen-
dence. (3) We describe a technique for determining whether a
state dependence can be satisfied with auxiliary code while
preserving the original output quality. (4) We analyze the
considerable opportunity for increasing TLP that state de-
pendences following this pattern offer. (5) We develop a
methodology for exploiting state dependences to increase
TLP in a nondeterministic program while preserving the out-
put quality. (6) We describe the design and implementation of
a system that embodies our methodology to further parallelize

swaptions

streamclassifier

streamcluster

fluidanimate
bodytrack

canneal
facedet

geo. mean
0
4
8

12
16
20
24
28

sp
e
e
d
u
p

Need for
scavenging
additional TLP

Sequential
execution

Figure 3. Highest speedup obtained by nondeterministic PARSEC
benchmarks on a 28 core Intel-based platform.

multi-threaded C++ programs. (7) We evaluate the system
on well-known, nondeterministic multi-threaded benchmarks.
Despite these benchmarks having been heavily parallelized
already, we obtained considerable gains in both performance
and energy.

2 Opportunity
The output of a deterministic program is determined solely
by its input. To preserve its output quality, all of its actual
dependences must be satisfied by generating and forwarding
the intermediate data according to these dependences. Some
programs, however, are nondeterministic by design. Such a
program may exhibit variation in its output across runs for
the same input. Figure 2 shows such variation over 100 runs
for six well-known benchmarks. 1

Output variations of nondeterministic programs originate
from variations in their program’s intermediate data. A given
intermediate datum generated by a producer and forwarded
to a consumer may vary across runs for the same input. This
suggests a degree of freedom (i.e., any of these data can be for-
warded to its consumer) in satisfying the related dependence.
This work is the first that takes advantage of this opportunity.

The rest of this section shows the performance limitations
of the considered nondeterministic benchmarks. Then, it uses
one of these benchmarks to demonstrate the described op-
portunity as well as to give the intuition behind our solution.
We end this section by describing a code pattern we found in
these programs that our approach targets to take advantage of
this opportunity.

2.1 Today’s Limits
To understand the need for additional parallelizations for
nondeterministic programs, we studied the PARSEC bench-
mark suite [8], which features multi-threaded implementa-
tions of emerging workloads, as well as the industrial-strength
codebase OpenCV [13]. These programs have been man-
ually parallelized extensively leaving no room for simple
additional parallelizations. We measure the performance of
only the nondeterministic benchmarks that successfully com-
piled with clang [48] (i.e., bodytrack, fluidanimate,
swaptions, streamcluster, streamclassifier,
canneal, and facedet) in a 28 cores, dual-socket, Intel-
based platform. 1

1Details about these experiments are in Section 4.

Figure 4. Code pattern that includes a state dependence.

All benchmarks considered have limited TLP. Figure 3
shows the highest speedup obtained by each benchmark com-
pared to their sequential execution. The distance from an
ideal speedup of 28× (number of cores) shows the need for
scavenging additional TLP.

2.2 Code Example
Benchmark. Let us consider the nondeterministic program
bodytrack. This program tracks a person’s body as cap-
tured by four cameras that target the same space (e.g., an
office). To do so, bodytrack analyzes the stream of four
pictures, called quadruples, one quadruple at a time.

The analysis of a quadruple generates a datum, which rep-
resents the current belief of where the body is in the 3D space.
This datum is consumed by the analysis of the next quadruple
to exploit that is likely that the person in quadruple i + 1 is
relatively close to where he/she was in quadruple i. The com-
putation performed to analyze quadruples is computationally
intensive (i.e., it consumes 97% of the total execution time)
and randomized (i.e., nondeterministic). This randomization
is responsible for the generation of slightly different positions
of the body parts for the same quadruple over multiple and
independent runs, any of which are acceptable.

The TLP, and therefore performance, of bodytrack is
constrained by a single sequential chain of dependences. The
analysis of the quadruple i + 1 can start only when the datum
generated by the analysis of the quadruple i is available.

Opportunity. This limiting dependence chain between quadru-
ples can be broken by injecting an alternative producer for
the forwarded datum. The intuition is that where a human
is at quadruple i is likely to be independent of where he/she
was in the quadruple i − k with high k . This can be exploited
as follows: rather than blocking the analysis of i until the
analysis of all previous quadruples ends, we can overlap it
with them. To preserve the output quality, however, we per-
form extra computation before analyzing the quadruple i. This
extra computation aims to be an alternative producer of the
datum required by the quadruple i and, therefore, it needs to
consume (only) a few previous quadruples of the ith one. We
call the alternative producer auxiliary code because we use
it as a substitute in case of need—when there is not enough
TLP for the target platform.

Safeguard. The assumption under which the auxiliary code
can safely substitute the original producer of the related datum
is that the last few inputs (how many is determined by STATS)
are enough for this goal. This assumption is checked at run
time to preserve the original output quality by comparing
the datum generated by the auxiliary code with the ones

(a) Execution serialization due to a state dependence

(b) Additional TLP generated by auxiliary code

Figure 5. Alternative execution model obtained by using auxiliary
code to satisfy a state dependence.

generated by the original producer. In more detail, when all
quadruples before i are analyzed by the original code, an
actual datum that the auxiliary code aims to reproduce is now
available. These two data are compared to check whether
the analysis of the quadruple i (and therefore the next ones)
matches the original semantic. If not, then we can either
generate another datum from the non-deterministic original
producer and repeat the checks or we abort the analysis of
i (and the subsequent ones) restarting it using the correct
datum. Our hypothesis (confirmed by STATS) is that often
the auxiliary code generates an acceptable datum, therefore,
liberating additional TLP.

2.3 State Dependences
The dependence chain described earlier between quadruples
in bodytrack is an example of state dependence. State
dependences are the actual dependences related to a piece
of computational state used in the code pattern shown in
Figure 4. A piece of code (e.g., a basic block, a loop iteration,
a loop, a hammock [25], or an entire function) computes an
output O from a given input I, consulting some local state
S. As part of computing O, the code also updates S which
then feeds forward to the next invocation of the code. Hence,
there is a dependence between invocation i’s write of S and
invocation i+1’s read of S, which serializes invocations of the
code. This is shown in Figure 5a where multiple invocations
of the code pattern of Figure 4 run sequentially because of the
state dependence between the producer of an S (invocation i)
and its consumer (invocation i + 1).

3 The STATS Solution
The STATS tool-chain increases the TLP (and thus perfor-
mance or energy efficiency) of nondeterministic C++ pro-
grams that exhibit the pattern of Figure 4. It does so relying

Figure 6. STATS includes three compilers, a runtime, an autotuner, and a profiler to optimize a nondeterministic C++ program for which the
developer has identified state dependences via the STATS Interface.

on additional algorithm-specific information and training in-
puts from the developer. These inputs are only used to explore
the design space described by state dependences and find a
configuration of the program with the best profile (e.g., high-
est performance). Our runtime preserves the output quality
regardless of the representativeness of training inputs, but the
more representative of actual workloads they are, the more
performant STATS’s output program will be in production.
The rest of this section describes the execution model gener-
ated by STATS and its compilation flow.

3.1 Execution Model
STATS extracts additional TLP by grouping inputs of the
code pattern shown in Figure 4 in ordered blocks and by
overlapping their computations. This additional TLP can be
exploited only when auxiliary code can satisfy the related
state dependence. In other words, when the auxiliary code
generates a datum that matches one of the many possible
outputs (due to the non-determinism) that can be generated
by the original producer.

For example, consider the original execution shown in Fig-
ure 5a. Here, all inputs are sequentially processed. STATS,
in this example, generates the execution model shown in Fig-
ure 5b. Inputs are grouped in pairs (e.g., I0, I1 and I2, I3)
and each group is processed in parallel (STATS automatically
decides what is the most convenient group cardinality). The
first invocation of the first group starts with the initial state
S0 to process its first input (e.g., I0). Instead, the first invoca-
tion of each subsequent group starts with the state generated
by its auxiliary code (e.g., S2’), which we call speculative
because it is based on the assumption it will match the one
that will be generated by the original producer (e.g., S2). The
auxiliary code generates its speculative state (e.g., S2’) start-
ing from the initial state S0 and by using a few (decided
by STATS) previous inputs (e.g., I1 in our example). When
the last invocation of the previous group of inputs ends (the
second invocation in the example shown in Figure 5b), the
runtime compares its final state (e.g., S2) with the specula-
tive state used by the first invocation of the subsequent input
group (e.g., S2’). If these states match (like in the example
shown in Figure 5b), then the computation of the subsequent

group stops being speculative and its outputs can be used. If
these states do not match, then the execution of the previous
group of inputs goes back a few inputs (STATS decides how
many inputs to go back) and it repeats the computation. This
new computation might lead to a different final state (e.g., a
new S2) because of the non-determinism of the target code
(i.e., computeOutput() of Figure 4). If the new final state
matches the speculative state (e.g., S2’), then the computa-
tion of the subsequent group stops being speculative and its
outputs can be used. Otherwise, either the execution of the
previous group of inputs goes back a few inputs one more time
and checks again the final state (STATS decides how many
times the execution of the previous group can be repeated)
or the computation of all subsequent groups of inputs aborts.
If the computation aborts, then all the outputs generated by
processing subsequent inputs (e.g., input I2 and after) are
squashed, the execution restarts from the first not-speculative
state generated by the previous group of inputs (e.g., S2), and
no other speculation is performed until all the current inputs
are processed.

3.2 Architecture
STATS enforces the execution model described in Section 3.1
via its architecture shown in Figure 6. Developers provide de-
scriptions of state dependences, as well as algorithm-specific
tradeoffs needed to generate auxiliary code, through the STATS
interface implemented as C++ extensions.

The front-end compiler translates extended C++ codebases
to standard C++ source, encoding STATS-specific informa-
tion in APIs calls understood by the other STATS compilers.
The middle-end compiler translates the output of the front-
end to our intermediate representation (IR), which represents
the design space explicitly, which we call state space.

The description of the state space is used by the autotuner,
which explores it by choosing the next configuration to test. A
configuration describes which state dependences to consider
to satisfy with auxiliary code and its parameters. Parame-
ters include the inputs to each auxiliary code, how to set the
auxiliary-code tradeoffs, how many times the original pro-
ducer of a state dependence can re-execute, and how far back
the original execution needs to go.

1void estimateLocations () {
2vector< i n t > frameIds (numFrames) ;
3vector<Particle> model (numParticles) ;
4vector<BodyPart> positions ;
5f o r (auto frameId : frameIds) {
6Frame f = getFrame (frameId) ;
7model = updateModel (numAnnealingLayers ,
8model , f) ;
9positions = getPositions (model) ;
10}
11}

Figure 7. Original code of bodytrack.

The back-end compiler translates our IR to the binary that
corresponds to a configuration chosen by the autotuner. The
back-end also embeds the STATS runtime into the binary after
having specialized it for each state dependence that will be
satisfied by auxiliary code. The runtime determines whether
to accept the speculative state and enforces the execution
model described in Section 3.1.

The profiler runs the binary generated by the back-end
using the provided training inputs, measuring its energy con-
sumption and performance. It provides such information to
the autotuner. The autotuner then decides whether or not to
test other configurations. When enough information has been
obtained, the autotuner generates the most performant binary.
Finally, the autotuner stores the results of its exploration in
the description of the state space, which allows them to be
reused should the specific optimization objective change (e.g.,
changing the optimization goal from performance to energy).

3.3 The STATS Interface
The STATS Interface enables developers to describe state
dependences and algorithm-specific tradeoffs.

State Dependence Interface (SDI). Identifying state depen-
dences requires algorithmic knowledge that is beyond the
purview of automatic tools. Hence, developers provide STATS
with a set of state dependences. It may turn out that auxil-
iary code cannot satisfy some of them; STATS automatically
detects and discards such cases.

The SDI allows developers to encode instances of the pat-
tern in Figure 4, thereby asserting that the inter-invocation
dependence on State is a state dependence. The STATS au-
totuner will decide whether or not such state dependence can
be satisfied with auxiliary code. The SDI encoding replaces
the corresponding pattern instance in the program. The API
for the SDI is shown in Figure 9. Developers need to cre-
ate classes corresponding to Input, State, and Output,
then instantiate a state dependence object parameterized with
these classes. The start() method of a state dependence
object begins the execution model described in Section 3.1 in
parallel with the invoking thread. The join() method waits
until all inputs provided to the state dependence object are
correctly processed.

Making state dependence patterns explicit has two main
advantages. First, the STATS compilers immediately identify

1c l a s s Input { i n t frameId ; } ;
2c l a s s Output { vector<BodyPart> positions ; } ;
3c l a s s State {
4vector<Particle> model ;
5State& operator =(State&) ;
6bool doesSpecStateMatchAny (set<State* >) ;
7} ;
8Output* computeOutput (Input *i , State *s) {
9Frame f = getFrame (i−>frameId) ;
10s−>model = updateModel (TO_numAnnealingLayers ,
11s−>model , f) ;
12Output *o = new Output () ;
13o−>positions = getPositions (s−>model) ;
14re turn o ;
15}
16void estimateLocations () {
17vector<Input*> i (numFrames) ;
18vector<Particle> model (numParticles) ;
19State s ; s .model = model ;
20StateDependence<Input , State , Output>
21stateDep(&i,&s ,computeOutput) ;
22stateDep .start () ; stateDep .join () ;
23}

Figure 8. Use of SDI in bodytrack.

that the inter-invocation dependence on State is actually
a state dependence. Second, it allows the compilers to en-
force a rigid dependence structure, which they then exploit.
Specifically, they need to enforce that computing Output
only depends on Input and State, and that the only inter-
invocation dependence in this code is that on State. Most
importantly, STATS explicitly manages which values of State
each invocation sees, which makes it possible to execute mul-
tiple instances of computeOutput() (that contains the
computation related to the state dependence) in parallel. This
involves privatizing State for each thread by cloning it,
the code for which is provided by developers by overrid-
ing State’s assignment method (operator=()). With
the SDI encoding, the STATS runtime thus clones State
whenever necessary.

Finally, developers need to provide the state comparison
method (doesSpecStateMatchAny()). This function
compares the speculative state coming from the auxiliary
code with a set of original states, and returns whether the
speculative state should be considered equivalent to an orig-
inal state. This API allows developers to decide how strict
the matching between speculative and original states needs to
be. We describe how the state comparison method is used in
Section 3.4.

Figure 8 shows how a state dependence in bodytrack is
encoded using the SDI. Figure 7 shows the original version
of the benchmark.

Tradeoff Interface (TI). TI is used to describe tradeoffs
specific to an algorithm, which are used to balance quality
and performance in auxiliary code. Identifying such tradeoffs
requires knowledge beyond the reach of automatic tools.

1template < c l a s s Input , c l a s s State , c l a s s Output>
2c l a s s StateDependence {
3StateDependence (
4vector<Input*> *inputs ,
5State *initialState ,
6function<Output* (Input* , State*) >
7computeOutput
8) ;
9void start (void) ;
10void join (void) ;
11} ;

Figure 9. The State Dependence Interface makes the pattern of
Figure 4 explicit to the compiler.

A tradeoff is a piece of program text (constant, data type,
function) whose value is chosen from a range supplied by
developers. Tradeoff values are sorted by their index (e.g., first
value, second value). A tradeoff example from bodytrack
is the number of annealing layers to use when computing
an estimation of the human body position. The higher the
tradeoff value, the better the estimation, but at the cost of a
longer computation time. Tradeoffs (and the ranges of values
that they can assume) are specific to particular algorithms.

Figure 10 shows this tradeoff described using the TI. A
tradeoff provides three methods: getMaxIndex() returns
the number of possible values; getValue(), given a valid
index i, returns the i-th possible value; and, finally, the method
getDefaultIndex() returns the index to use when the
tradeoff is used outside auxiliary code. To obtain the original
version of the program (our baseline), we set all tradeoffs to
their default value and satisfy all state dependences conven-
tionally (i.e., no auxiliary code).

The target of a state dependence requires State to com-
pute its output (c.f. Figure 4). The auxiliary code computes at
run time an alternative (State') of State for that purpose.
Tradeoffs are used to strike the right balance between the
quality of State' and its computational cost. The better
State' is, the more likely it will match State.

The state space. The state space is defined by all tradeoffs,
by how often a state dependence is satisfied with auxiliary
code, by the number of previous inputs an auxiliary code
will consider, by the maximum number of times the STATS
runtime can execute an original producer of a given state
dependence, and by the number of threads to dedicate to
the TLP already available in the original program. We found
natural to express all of these using TI and SDI.

Each of these aspects represent one dimension of the state
space. A program configuration, therefore, corresponds to
picking one value for each of these dimensions. STATS ex-
plores this space to find the most performant configuration,
using the developer-provided training inputs.

3.4 Compilers and Runtime
STATS includes three compilers called the front-end, the
middle-end, and the back-end compilers.

1c l a s s AnnealingLayers_options :Tradeoff_options{
2int64_t getMaxIndex () { re turn 1 0 ; }
3auto getValue (int64_t i) { re turn i+1; }
4int64_t getDefaultIndex () { re turn 4 ; }
5} ;
6t r a d e o f f TO_numAnnealingLayers {
7{AnnealingLayers_options } ;
8} ;

Figure 10. Use of TI in bodytrack.

Generating standard C++ code. The front-end compiler trans-
lates C++ with the SDI and TI extensions to standard C++
code which includes a description of the tradeoffs. Figure 11
shows the code generated from Figures 8 and 10, which gets
#included by all source files. Each tradeoff is described
with an entry in the array (TO), which includes the name
of the C++ functions generated from the relevant TI (e.g.,
T_42_size), and the name of the function used as a place-
holder for a tradeoff value (e.g., T_42). 2

Generating IR with auxiliary code. The middle-end com-
piler translates the C++ code generated by the front-end to
LLVM IR extended with extra metadata, which encodes the
information in the extra header file generated by the front-end.
This solution is inspired by the DotNET compilation frame-
work, which encodes source level information in metadata ta-
bles included in CIL bytecode files [29]. This is implemented
as a new compilation pass in clang.

After translating C++ code to the IR, and before producing
its output, the middle-end compiler generates auxiliary code.
For each state dependence d , the middle-end compiler clones
d’s computeOutput() (c.f., Figure 8) and links it to d’s
metadata entry. The compiler also clones the included trade-
offs (to distinguish them from the original ones) by creating
new entries (one per cloned tradeoff) in the metadata. Cloning
tradeoffs allows STATS to control the quality of the auxiliary
code’s results independently from the rest of the code.

Finally, the middle-end sets the tradeoffs that are outside
auxiliary code to their default value, by scanning the trade-
off descriptions in the metadata, then deletes their metadata
entries. The resulting IR is the middle-end’s output, which
includes only tradeoffs that are part of auxiliary code.

Generating a binary. The back-end compiler takes as input
the IR generated by the middle-end and a configuration (from
the autotuner) in the state space. This configuration lists the
state dependences to be satisfied using auxiliary code and
how to set their tradeoffs. The back-end compiler uses the
following algorithm for each state dependence. First, it reads
the metadata to find the auxiliary code specific to the current
state dependence as well as its related runtime (described
next), then links them. Second, it sets the tradeoffs left in the
IR based on their index in the input state space configuration.

2These names are generated to avoid conflicts with the rest of the code.

1#pragma once
2int64_t T_42 (int64_t p) { re turn p ; }
3# d e f i n e TO_numAnnealingLayers T_42 (4 2)
4char *TO [] = { " T_42_getValue T_42_s i ze
5T _ 4 2 _ g e t D e f a u l t I n d e x T_42 " }
6auto T_42_getValue (int64_t i) { re turn i+1; }
7int64_t T_42_size () { re turn 1 0 ; }
8int64_t T_42_getDefaultIndex () { re turn 8 ; }

Figure 11. C++ code generated by the front-end compiler from
Figures 8 and 10.

Setting a tradeoff. Setting a tradeoff t requires two compile-
time steps: fetching the value v identified by an index i, and
setting references of t to v.

We rely on LLVM’s dynamic compiler for the former. We
generate machine code from the IR code of the function
getValue() related to t , then invoke it with input i. Finally,
we store v and its type for the next step.

A tradeoff reference (e.g., TO_numAnnealingLayers,
line 10 of Figure 8) is set to a value v depending on the
tradeoff type of v. If v is a constant (e.g., number of layers in
bodytrack), the tradeoff reference is a call to a placeholder
(e.g., T_42()); setting this tradeoff replaces that call with the
constantv. Ifv is a type (e.g., float), setting a tradeoff changes
the type of the related variable accordingly. When needed,
extra casts are added according to the variable’s uses. Finally,
if v refers to a function (e.g., a specific implementation of
sqrt), a tradeoff reference is a call to a placeholder function;
setting this tradeoff replaces its callee with v.

Runtime. The execution of code that leverages state depen-
dences relies on the STATS runtime. Its main goal is to imple-
ment efficiently the execution model described in Section 3.1.
To do so, it includes low-level implementations of thread syn-
chronization primitives. It also includes an efficient thread
pool implementation (shared with all state dependences) to
minimize thread creation overhead.

Design choices. Next we describe the main compiler-related
design choices we made.

We divided the translation from the extended C++ lan-
guage to the IR in two compilers (front-end and middle-end)
for engineering reasons. We preferred to avoid adding com-
plexity to the already-complex C++ parser in clang. Note
also that C++ is a moving target (C++11, 14, 17); modify-
ing the mainline parser would also introduce maintenance
costs. Our solution does not modify the clang C++ parser and
avoids these extra costs. The middle-end compiler uses the
unmodified parser. Finally, the front-end compiler only needs
to partially parse C++ programs, which made it possible to
use a simple implementation based on Racket [30].

We decoupled the generation of the IR code that describes
the state space (middle-end) from instantiation of a given
configuration (back-end) to reduce the overall compilation

time. As it evaluates the state space, the autotuner must in-
stantiate the same IR to multiple configurations, which makes
it necessary for instantiation to be efficient. We achieve this
by leaving only simple code changes to the back-end.

The middle-end performs deep cloning of the function
computeOutput() of a state dependence. It balances the
amount of extra code generated (lower is better) with the num-
ber of degrees of freedom (i.e., number of tradeoffs cloned)
available in auxiliary code (higher is better). In more detail, it
clones functions reachable by computeOutput() only if
they, or some of their callees, include a tradeoff (found using
a bottom-up analysis of the call graph). The middle-end stops
cloning when it reaches a maximum number of instructions
per computeOutput().

3.5 Autotuner
The goal of our autotuner is to find a performant (or energy
efficient) configuration for the developer-provided training in-
puts. The state space is composed, on average, of 1.3 million
points in our benchmarks, which makes exhaustive explo-
ration impossible. Therefore, we use OpenTuner 0.7 [6] to
explore this space using a set of statistical analyses already
available in this framework. We describe each tradeoff in
OpenTuner extending its class “IntegerParamsTuner” as the
values of a tradeoff can always be enumerated.

4 Evaluation
Our evaluation tests the hypothesis behind our work: state
dependences can be satisfied with carefully-generated aux-
iliary code creating additional TLP. Next we show that this
additional TLP generates significant performance and en-
ergy efficiency improvements. We also compare to related
approaches; thanks to the generation of auxiliary code, STATS
is the only approach that gains performance while preserving
output quality for complex benchmarks. We also relate the
benefits obtained by STATS with the number of tradeoffs en-
coded by a developer. We show that most benefits are already
obtained with only two tradeoffs, which suggests developers
gain most of the benefits with a minimum effort. Finally, we
show that only a small fraction of performance improvements
is lost if the training inputs are not representative of the ones
used in production.

4.1 Experimental Setup
Platform. Our evaluation is done on a dual socket Dell Pow-
erEdge R730 server with two Intel Xeon E5-2695 v3 Haswell
processors running at 2.3GHz and capable of 9.60GT/s on the
QPI interface. Each processor has 14 cores with 2-way hyper-
threading, 35MB of last-level cache and has a peak power
consumption of 120W. The cores are supported by 256GB of
main memory in 16 dual rank RDIMMs at 2133MHz. The
OS is Red Hat Enterprise Linux Server 6.7 (kernel 2.6.32-
573.18.1), with no CPU frequency governors enabled (all
cores run at maximum frequency). Hyper-Threading is turned
off for all experiments unless explicitly specified. Moreover,
Turbo Boost is disabled. We evaluate the energy consumption

Benchmark Original State Lines of code modified/added per tradeoff LOC for the state LOC generated Binary size Extra committed
LOC dependences 1 2 3 4 5 6 7 8 9 comparison code by compilers increase x86_64 instructions

swaptions 1120 1 10 / 15 20 / 120 3/9 3/9 < 5 45066 715% 3.4%
streamclassifier 1770 2 70 / 180 10 / 20 60 / 130 0 / 15 0 / 15 0 / 15 0 / 15 < 5 62414 1073% < 0.1%
streamcluster 1770 2 80 / 215 10 / 20 60 / 174 0 / 15 0 / 15 0 / 15 0 / 15 < 5 62969 1076% < 0.1%
fluidanimate 4350 1 5 / 10 5 / 10 100 / 130 0 / 10 0 / 30 0 / 10 0 / 15 0 / 10 0 / 10 < 5 61619 880% < 0.1%
bodytrack 16430 1 60 / 95 5 / 10 0 / 15 0 / 10 0 / 10 19 87844 50% 7.1%
facedet 606472 1 70 / 150 5 / 10 5 / 10 3 / 10 0 / 10 0 / 10 29 44993 189% 1.4%

Table 1. Most code changes required to take advantage of static dependences are automatically performed by STATS compilers. The lines of
code (LOC) modified/added by a developer through the STATS interface is negligible compared to the ones automatically generated by STATS
compilers. Moreover, the auxiliary code and the STATS runtime add only a small amount of extra instructions at run-time (≤ 7.1%).

using a Watts Up Pro energy monitor measuring the (120 V /
60 Hz) AC-side total system power consumption at 1-second
intervals. STATS is built on top of LLVM 3.9.1 [48], Racket
6.8 [30], and OpenTuner 0.7 [6].

Statistics and convergence. Each data point we show is an
average of repeated runs. We run the relevant configuration as
many times as necessary to achieve tight confidence intervals
where 95% of the measurements are within 5% of the mean.

4.2 Benchmarks
We considered the POSIX multi-threaded versions of the
PARSEC version 3.0 benchmarks as well as their sequen-
tial version. The only benchmarks we could not consider
are vips and dedup because they did not compile using
the vanilla clang compiler. Moreover, the binary generated
by clang for ferret produced incorrect outputs. We con-
sidered only the remaining benchmarks that exhibit non-
determinism: bodytrack, canneal, fluidanimate,
swaptions, and two variants of streamcluster (clus-
tering, called streamcluster, and classification, which
we called streamclassifier). Moreover, to test STATS
in a large codebase, we considered OpenCV [13] for detecting
faces in a video stream (facedet). Out of these benchmarks,
we could not find a state dependence that STATS can target
only in canneal and, as our technique does not apply, we
do not consider it in the rest of this section. In more detail,
STATS needs to know the number of inputs that the code
pattern of Figure 4 has to process at run time just before the
first invocation of this code pattern. This information is unfor-
tunately unavailable in the canneal benchmark: the number
of inputs depends on the evolution of the computation state.

Inputs. We used the native inputs provided by the PARSEC
suite for our evaluation. In some cases native inputs are too
small to properly test performance scalability on today’s plat-
forms. This has been already observed by prior work [46]; we
thus extended the native inputs in the same fashion. swap-
tions, on the other hand, has native inputs large enough to
show performance bottlenecks only after 128 cores. There-
fore, we decreased the swaptions inputs (34 swaptions rather
than 128) to allow bottlenecks in the program to manifest
that would otherwise have remained hidden. For stream-
classifier, we used the inputs from [72]. For facedet,
we used a 40 seconds video of a person moving in front of a
camera. Finally, we used a fraction of the evaluation inputs to
compile our benchmarks.

Output quality. We used well-known domain-specific output
quality metrics to measure output variability. These metrics
(next described) were computed against an oracle. The oracle
was computed using a benchmark version generated by setting
its tradeoffs to maximize output quality. The generated output
is significantly more accurate than what is obtained by the
(significantly faster) unmodified benchmark versions.
bodytrack’s metric is the relative mean square error

of the body parts vectors [58]. fluidanimate’s metric
is the average Euclidean distance between the position of
the particles. streamcluster’s metric is the difference of
the Davies-Bouldin indices of the clusterings [27]. stream-
classifier’s metric is the difference in B3 metrics [58].
swaptions uses the average relative difference between the
prices generated [38]. facedet uses the average Euclidean
distance between the faces detected.

Nondeterminism. While the actual programs from which the
PARSEC benchmarks are drawn are nondeterministic, some
of them have been made deterministic to facilitate experi-
ments. 3 This was accomplished via the use of pseudo random
value generators (PRVG) with constant and predefined seeds.
Therefore, the outputs of such generators are deterministic
and constant across runs with the same inputs. To properly
study the effect of nondeterminism in these programs, we
restored the use of PRVGs with random seeds as it is done in
a real scenario. We also adapted the benchmarks to use the
STATS interface.

State dependences, tradeoffs, and state comparison meth-
ods. We now describe the state dependences we found, the
tradeoffs we encoded in auxiliary code, and the state com-
parison functions we implemented for every benchmark. The
tradeoffs described next do not include the number of original
threads and the number of threads to use for state depen-
dences, which all benchmarks naturally have.
bodytrack accesses a model of the location of human

body parts in a frame, updates this model with the results
for the current frame, and passes it to the computation for
the next frame. Frame i thus depends on the model update of
frame i − 1, which serializes the execution. The state is the
model of the human body in the 3D space, which includes
the position of the body parts. The state dependence is on the
updates of this model. Tradeoffs are the number of simulated
annealing layers, the data type (and therefore precision) of one

3This is common practice, for result reproducibility reasons.

2 4 6 8 10 12 14 16 18 20 22 24 26 28
hardware threads

0

4

8

12

16

20

24

28

sp
e
e
d
u
p

Original

Seq. STATS

Par. STATS

(a) swaptions

2 4 6 8 10 12 14 16 18 20 22 24 26 28
hardware threads

0

4

8

12

16

20

24

28

sp
e
e
d
u
p

Original

Seq. STATS

Par. STATS

(b) streamclassifier

2 4 6 8 10 12 14 16 18 20 22 24 26 28
hardware threads

0

4

8

12

16

20

24

28

sp
e
e
d
u
p

Original

Seq. STATS

Par. STATS

(c) streamcluster

2 4 6 8 10 12 14 16 18 20 22 24 26 28
hardware threads

0

4

8

12

16

20

24

28

sp
e
e
d
u
p

Original

Seq. STATS

Par. STATS

(d) fluidanimate

2 4 6 8 10 12 14 16 18 20 22 24 26 28
hardware threads

0

4

8

12

16

20

24

28

sp
e
e
d
u
p

Original

Seq. STATS

Par. STATS

(e) bodytrack

2 4 6 8 10 12 14 16 18 20 22 24 26 28
hardware threads

0

4

8

12

16

20

24

28

sp
e
e
d
u
p

Original

Seq. STATS

Par. STATS

(f) facedet

Figure 12. For most benchmarks, STATS generates a significant amount of extra parallelism that saturates the hardware resources of our
platform. “Original” is the out-of-the-box benchmark that has been parallelized by traditional means. “Seq. STATS” (“Par. STATS”) is the
binary generated by STATS starting from the sequential (multi-threaded) version of a benchmark. The bar graphs show maximum speedup.

2 4 6 8 10 12 14 16 18 20 22 24 26 28
hardware threads

0

4

8

12

16

20
sp

e
e
d
u
p

Original

Par. STATS

Figure 13. Geometric mean of speedups shown in Figure 12.

variable used for this simulation, and the number of particles.
The state comparison function computes the distances of
the speculative state with the given set of original states,
and the distances among all the original states. The distance
measure we use is the sum of the absolute differences of
every body part position between two states. If the distance
of the speculative state S’ with an original state S is less or
equal the distance of another original state and S, then we
consider the speculative state as valid and commit the results
of the auxiliary code computation. In other words, if the body
positions encoded in S’ are between (in the 3D space) two
original states, then we accept and commit S’.
fluidanimate simulates a fluid in time frames. The

state is the condition of the fluid during the simulation (i.e.,
the position and velocity of the particles that compose the
fluid). The state dependence is on the updates of the fluid
condition between frames. Tradeoffs are the version of sqrt
(different accuracies for different versions), the data type for
three variables used for the simulation, and the x, y, and z
dimensions of the per-thread prism where the simulation hap-
pens. The state comparison function behaves like the body-
track one, but the distance measure is the average Euclidean
distance among the position of the particles.
facedet updates the position of the detected faces at

each frame. To do so, it takes advantage of the position of the

faces found in the previous frame by applying a randomized
particle filter. This create a dependence where the state is
the position of the human face on a frame. Tradeoffs are the
number of particles and the number of times Gaussian noise is
added to the particles. The state comparison function operates
as described in the previous benchmarks, but the distance
measure is the average Euclidean distance of the four points
of the box that contains the person’s face.
streamcluster and streamclassifier consider

adding the candidate centroids one by one depending on the
status of the current solution. They update the current solution
if the current centroid is added; these updates serialize the
execution. The state dependence is on updating the status
of the current solution. Tradeoffs are the data type of three
variables used to estimate the quality of the current solution,
and both the maximum and minimum number of clusters.
swaptions executes Monte Carlo simulations for each

swaption. The simulation of a swaption is performed sequen-
tially. The state dependence is on updating the price of a
swaption during the simulation. Tradeoffs are the data type
of two values used during the Monte Carlo simulation.

These last three benchmarks do not require a state compari-
son function because, by construction of the state dependence,
the speculative state could have already been generated by an
execution of the original program.

4.3 Taking Advantage of State Dependences
Exploiting multiple cores. Satisfying state dependences with
auxiliary code liberates important additional TLP. Figure 12
compares the scalability and peak speedup of three approaches
to parallelizing the benchmarks. The first, “Original”, is the
out-of-the-box benchmark that has been parallelized by tradi-
tional means. The second, “Seq. STATS”, uses only the TLP
obtained by satisfying state dependences with auxiliary code.
The third, “Par. STATS”, combines these two sources of TLP

swaptions

streamclassifier

streamcluster

fluidanimate
bodytrack

facedet
geo. mean

0
4
8

12
16
20
24
28

sp
e
e
d

u
p

Original

Original w/ HT

Par. STATS

Par. STATS w/ HT

+32%
+13%

Figure 14. The performance obtained by STATS using a single
socket with Hyper-Threading is constrained by hardware resources
and not by low TLP.

by performing a state space search for a number of cores,
the default mode of operation for STATS. On the left is the
speedup graph, while on the right, the adjoining bar graph
compares the maximum speedups of the three approaches. All
speedup values were computed using the single-threaded ver-
sion of the out-of-the-box benchmark as baseline. Figure 12
shows that taking advantage of state dependences doubles
the performance of the considered benchmarks (the geomet-
ric mean speedup increases from 7.75× to 20.01×) on a 28
core platform. This empirically supports our hypothesis: state
dependences can be satisfied with auxiliary code.

Both sources of TLP (“Original” and “Seq. STATS”) are
important. Figure 12 shows that, with the only exception of
bodytrack and facedet, none of the two sources of TLP
is enough to fulfill the parallelism requirements alone. It is
necessary, instead, to properly combine them considering,
therefore, the state space. Our work is the first to do so.
swaptions and bodytrack exhibit interesting behav-

ior. In the former, at low core counts, Seq. STATS underper-
forms the original code. At 10 cores, the original achieves a
respectable 8.7× speedup, while Seq. STATS achieves only
6.8×. Par. STATS, on the other hand, does not suffer from this
drawback and produced a version of swaptions that out-
performs the other two. This indicates that considering both
sources of TLP is necessary. In bodytrack, on the other
hand, the TLP generated by satisfying state dependences with
auxiliary code generates higher performance than the original
TLP. This is because the latter requires more frequent inter-
thread synchronizations creating a bottleneck that the former
does not have. While this was the case for our platform, we
expect to see STATS to combine both TLPs when more cores
are available.

The original parallelism available in facedet is used to
aggressively vectorize the code (performed for the baseline as
well). When possible, vectorization is preferred compared to
TLP because it is more energy efficient. A significant amount
of TLP is extracted from facedet by STATS thanks to its
state dependence. Combining the aggressive vectorization per-
formed in the original code and the significant TLP extracted
by STATS led to a highly performant code.

STATS obtains speedups higher than the number of cores
for streamclassifier (Figure 12b) from 2 to 22 cores
as well as for streamcluster (Figure 12c) for 6, 8, and
12 cores. This is because of the following two effects. First,
the threads generated by STATS better take advantage of
the multiple L1s of the multiple cores; instead, the original

swaptions

streamclassifier

streamcluster

fluidanimate
bodytrack

facedet
geo. mean

0

20

40

60

80

100

e
n
e
rg

y
 c

o
n
su

m
p
ti

o
n

Original energy consumption Performance

Energy

Figure 15. The binaries generated by STATS use considerably less
energy compared to the original benchmarks.

multi-threaded code distributes the computation differently
leading to a worse L1 hit rate. Second, the state dependences
of these benchmarks are in a loop that ends when the current
clustering solution is above a threshold. Satisfying these state
dependences with auxiliary code leads both benchmarks to
consider the potential centroids that compose a solution in a
different order. This led the program to converge to the final
solution faster.

Finally, fluidanimate (Figure 12d) shows little/no im-
provement with STATS. The auxiliary code for this bench-
mark almost always aborted at profiling time leading the
STATS autotuner to prefer the original TLP rather than the
one generated by state dependences. This is because flu-
idanimate is the only benchmark we considered where
the state that the auxiliary code needs to generate requires all
previous inputs (the result of a simulation of a fluid at time t
requires the simulation of all previous time steps).

Exploiting Intel Hyper-Threading (HT). To study the im-
pact of HT on STATS binaries, we constrained their execution
to stay within a single socket of our platform. Figure 14 shows
the extra performance obtained by STATS using HT.

We consider the additional speedup obtained by STATS
using HT to be a success. The speedup (geometric mean) in-
creased from 12.18× to 16.13×. Due to sharing computational
and storage resources, Intel suggests that a successful use of
HT should generate an extra performance of 30% [19, 82].
STATS obtained a 32% performance improvement. Hence, the
performance obtained by STATS is constrained by hardware
resources and not by low TLP.

The multi-socket effect. fluidanimate, swaptions,
and streamcluster exhibited near-linear speedup within
a single socket. STATS continues to improve performance
on two sockets, but sub-linearly. An Intel VTune analysis
demonstrated that this is due to the NUMA memory system—
a common problem whose known solutions [11, 50, 62, 74,
75] apply to STATS, but go beyond the scope of this paper.

In more detail, when an application uses a single socket, the
system tends to allocate memory pages served by the memory
controllers within the chip, exhibiting low memory latency.
However, when the application is spread over two sockets,
memory references often have to cross from one socket to an-
other to get to the relevant memory controller. This increases
the latency for memory accesses and obstructs further per-
formance improvements. Nonetheless, STATS continues to
deliver increasing performance.

swaptions

streamclassifier

streamcluster

fluidanimate
bodytrack

facedet
0
5

10
15
20
25
30
35

o
u
tp

u
t

im
p
ro

v
e
m

e
n
t

Original

Figure 16. STATS can increase the original output quality by
spending the saved time to iterate more over the same dataset.

Saving energy. So far we have used STATS only to decrease
the execution time. STATS can also be used to decrease the
energy consumption. In this case, STATS autotuner minimizes
energy rather than time leading to a different binary. To com-
pare the energy reduction in these two operating modes, we
used two sockets of our platform.

Figure 15 compares the system-wide energy consumption
obtained in these two modes relative to the energy consumed
by the peak-performing original version. When targeting time,
STATS saves 61.98% of the baseline energy as a direct result
of finishing the execution earlier. Moreover, STATS saves
even more energy (71.35%) in energy mode by avoiding using
extra cores if the additional performance obtained by them is
not significant.

Improving output quality. For nondeterministic applications
where speed of computation or energy is of utmost impor-
tance, the developer may decide to use STATS as described
so far. However, for applications where quality matters most,
STATS can also be used to improve the output. By making
the computation several times faster than the original, STATS
allows the application to spend the saved time to iterate more
over the same dataset, thereby increasing the final output’s
quality. Figure 16 shows the quality improvements from run-
ning the STATS versions for the same amount of time as the
original versions. Three benchmarks show quality increases
from 6.84× to 33.27×.

4.4 STATS and its Related Work
We implemented related approaches able to target the consid-
ered benchmarks on our infrastructure and configured them
to target only the state dependences we identified. Both prior
work and STATS can generate TLP starting from both sequen-
tial and multi-threaded versions of a program. We applied
them to both versions, exploring their configurations (e.g., de-
pendences to break, how to break them) and kept the highest
speedups obtained without exceeding the original output vari-
ability (Figure 2). Figure 17 shows the results we obtained.

Prior approaches were only able to take advantage of the
state dependence in swaptions. Its producer and consumer
are single instructions and the state (a register) is implicitly
cloned by running them on different cores. Every other state
dependence has larger producers and consumers and their
states must be explicitly cloned. They also require auxiliary
code to preserve output quality. No prior work either explicitly
clones the state of actual producer-consumer dependences or

swaptions

streamclassifier

streamcluster

fluidanimate
bodytrack

facedet
geo. mean

0
4
8

12
16
20
24
28

sp
e
e
d

u
p

Seq. ALTER like

Seq. QuickStep like

Seq. HELIX-UP like

Seq. Fast Track

Seq. STATS

Par. ALTER like

Par. QuickStep like

Par. HELIX-UP like

Par. Fast Track

Par. STATS

Best speedup of
original benchmark

Sequential
execution

Impact of using auxiliary code
to satisfy state dependences

Impact of additional TLP
generated by STATS

Figure 17. Only STATS takes advantage of non-trivial state de-
pendences: they require the auxiliary code only STATS generates.

produces auxiliary code. Hence, only STATS is able to take
advantage of non-trivial state dependences (Figure 17).

The “ALTER like” approach [81] breaks dependences to
execute loop iterations out-of-order with optional stale reads.
It also exploits reduction variables whose values at the end
of the broken-dependence computation are guaranteed to
be the same as those produced by a serial execution. In
our case, these variables represent the state of the parallel
computation when a dependence is broken. The reduction
variables can only be updated using a limited number of
operators and the update instruction must be of the form:
variable = variable operator value. swaptions is the
only benchmark we considered where “ALTER like” was
applicable. All state dependences of the other benchmarks
have more complicated states (i.e., complex data structures
and objects with methods) and update operations on the state
variables for the “ALTER like” approach to be applicable.

Both “QuickStep like” [57] and “HELIX-UP like” [16]
broke several state dependences. They improved performance
only for swaptions; other benchmarks require both state
cloning and auxiliary code (not generated by either technique)
to preserve output quality.

“Fast Track” [44] applied code transformations that broke
state dependences speculating no changes in the final state. Its
runtime evaluates this speculation comparing the so-generated
final state with the (single) unspeculative state loosing, there-
fore, the opportunity created by the nondeterminism of the
original code that could have created (multiple) different un-
speculative states. For these reasons, “Fast Track” always
aborted its speculations in our experiments.

4.5 Developer Effort
Identifying and encoding tradeoffs requires developer effort,
but we consider the amount of work reasonable for two rea-
sons. First, the number of lines of code (LOC) edited when
encoding a tradeoff is reasonably low. Table 1 shows, for each
benchmark, the LOC in the original program and the LOC
modified and added for each tradeoff.

Second, our approach yields benefits even when we encode
only a subset of the tradeoffs we identified, which suggests
that our approach is “pay as you go”. Figure 18 shows the
geometric mean of speedups as additional tradeoffs are en-
coded. The first point after 0 is the mean speedup across all
benchmarks after encoding one tradeoff for each of them, the

0 1 2 3 4 5 6 7 8 9
#tradeoff used

0

20

40

60

80

100

re
la

ti
v
e
 s

p
e
e
d
u
p

Maximum speedup of the original code

Figure 18. Developers gain most of the STATS benefits with a
minimum effort (by encoding only two tradeoffs). This figure shows
the average performance (geo. mean) relative to the best STATS
speedup, by number of tradeoffs encoded.

second, two, and so on. We picked the orderings of tradeoffs
starting with the ones for which we expected the highest pay-
off; just as a developer using STATS would. The orderings
in Figure 18 correspond to the ones in Table 1. On average,
encoding a single tradeoff yields around 55% of the speedup
of encoding all, and encoding two yields around 95%.

For all benchmarks considered, the first two tradeoffs that
yield most benefits are the most obvious ones to target. In
other words, it is unlikely that a reasonable developer would
encode the third (or next ones) tradeoffs before the first two.

4.6 Non-representative Inputs
STATS relies on training inputs at compile time. The represen-
tativeness of these inputs, however, only affects performance;
correctness is guaranteed by the STATS runtime.

When its training inputs are not representative, STATS
looses only a small fraction of the performance obtained
when representative inputs are used. To estimate the loss in
performance from non-representative training inputs, we gen-
erated non-representative training data for each benchmark.
Specifically, the subject does not move across quadruples for
bodytrack, points overlap in the multidimensional space
for both streamcluster and streamclassifier, un-
realistic swaption parameters like market strikes and maturity
dates for swaptions, the detected face in facedet does
not move. We used these as training inputs and tested the
resulting binaries using the same evaluation inputs used in
the previous experiments. Figure 19 shows the lowest per-
formance among the binaries generated by STATS using the
least-representative training inputs we could find.

4.7 Auto-tuning in STATS
The autotuner consistently and rapidly converges to the best
program. Figure 20 shows that evaluating 88 configurations
(less than 1%) is sufficient to find the best binary (in less than
20 minutes on our platform), which is used in Figure 12 for
28 cores. 2,000 additional evaluations (and 15 hours of addi-
tional time in our platform) did not improve it. The autotuner
uses nondeterminism for better exploration; different searches
for the same program may find different best configurations.
Figure 20 shows that the variance in best speedups disappears
after exploring 46 configurations.

4.8 When STATS Should Be Used
Invocation i of computeOutput() of Figure 4 depends
on the previous invocation i − 1. This generates a chain of

swaptions

streamclassifier

streamcluster

fluidanimate
bodytrack

facedet
geo. mean

0
4
8

12
16
20
24
28

sp
e
e
d
u
p

Original Par. STATS Par. STATS w/ "bad" training inputs

Figure 19. STATS looses only a small amount of performance
when not representative inputs are used.

dependences from the first invocation to the last one. We
observed that some nondeterministic computations have the
following property: an invocation of computeOutput()
requires only a few previous invocations to generate a correct
output. In other words, the computation converges to a cor-
rect state after processing a window of inputs that starts in
the middle of this dependence chain. The auxiliary code is
responsible to converge to a correct state.

The computation performed by the bodytrack bench-
mark, for example, has this property. The position of a human
body at quadruple i can be computed by detecting where the
body was in the last few quadruples (rather than all previ-
ous ones). We found that some computations, however, do
not have the property required by STATS. For example, the
main state dependence we found in fluidanimate does
not have this property — the simulation of a fluid at instant
i requires the simulation of it in all previous instants. This
is perhaps not surprising given the properties of the Navier-
Stokes equations underlying fluidanimate’s model [9].

We included fluidanimate to test the limits of STATS.
We wanted to see what happen when a developer uses the
SDI interface to describe a state dependence that does not
have the property STATS needs. Results show that the STATS
autotuner empirically finds that every time the main state
dependence of fluidanimate was satisfied with auxiliary
code, the STATS runtime aborted the speculative execution.
Hence, the STATS autotuner chose a configuration where
such dependence is always satisfied with the original code
(rather than with the auxiliary code).

More broadly, we believe time-step simulations like flu-
idanimate are not good fit for STATS. A better fit for
STATS are applications that analyze a long stream of data
(e.g., bodytrack, facedet, streamcluster) where
the information about inputs that is automatically computed
(e.g., 3D location of bodies, 2D location of faces, centroids
of multi-dimensional points) has the “short memory” depen-
dence property described above.

10 20 30 40 50 60 70 80
#configurations of the state space evaluated by the profiler

0

20

40

60

80

100

re
la

ti
v
e
 s

p
e
e
d
u
p
 o

b
ta

in
e
d

STATS best binary generated

The more points,
the less variance
the autotuner shows

For all of our experiments,
88 points were enough
to obtain the best
configuration we found
(i.e., red line of Figure 12)

Figure 20. Average performance (geo. mean) of the binary found
by the STATS autotuner after a number of configurations explored.

5 Related Work
STATS is related to prior work that either extracts TLP from
programs or uses search to optimize program configurations.

5.1 Extracting TLP
Automatic TLP extraction from sequential programs has a
rich history, in which we identify two relevant categories.

TLP Extraction with Cost-reduced Actual Dependences
Earlier work addresses the cost of actual dependences by
accelerating data exchanges or by avoiding some altogether.

Multiple techniques [12, 14, 15, 68, 70, 71, 86] attempt
to reduce the cost of actual dependences by making them
cheaper individually, while still preserving all of them. Such
techniques include hardware support to accelerate data ex-
changes between threads running on parallel cores. While
these techniques reduce the costs of data transfer, they still
force synchronization between threads for all actual depen-
dences. Our approach, instead, avoids the producer-consumer
synchronizations related to state dependences altogether.

Some techniques break actual dependences [3, 16, 57, 66,
67, 81]. These approaches do not generate auxiliary code and
they do not take advantage of developers’ algorithm-specific
knowledge. This limits their applicability to simple depen-
dences and Figure 17 measures empirically this limit for some
of them. One of these approaches generates compensation
code [67], which is executed after the code involved in a
dependence. While compensation code can avoid high inaccu-
racies, it does not preserve the output quality. Our approach
generates auxiliary code, which is executed before the code
involved in a dependence, taking advantage of algorithm-
specific knowledge, which makes it more broadly applicable.
STATS is the first system to do so.

Other approaches have been proposed that break depen-
dences for specific class of algorithms [23, 55, 56, 83] These
approaches do not generate auxiliary code because it is not
required thanks to the characteristics of the specific class
of algorithms they target. However, our benchmarks require
auxiliary code to preserve the output quality.

Galois [47, 63] introduces TLP by optimistically assuming
that ignoring an actual dependence will not lead to an invalid
execution, then dynamically checks whether that is the case,
and aborts the erroneous computation if not. This approach
does not cover the state dependences we identified in the
PARSEC benchmarks, which are not related to the kind of
data-parallelism Galois targets.

Fast Track [44] generates TLP by creating an unsafe opti-
mization of a program, which runs in parallel with the safely
optimized code. The system checks whether the results of
the unsafe execution match the results of the safe one. This
technique does not take advantage of the nondeterminism of
a program. It does not compute multiple results to increase
the probability of a match.

TLP Extraction With Complete Dependence Preservation
Approaches that preserve all dependences can be considered
along two axes: speculative/not, and manual/automatic.

Automatic non-speculative approaches: The many ap-
proaches in this category [2, 17, 18, 21, 22, 28, 39, 40, 51, 53,
59, 65, 80, 88] all rely on accurate data dependence analyses
to identify code regions that can run safely in parallel. These
systems preserve all the dependences they find. In contrast,
our work relies on algorithm-specific knowledge provided
by developers to satisfy actual dependences with auxiliary
code. Moreover, STATS automatically combines the TLP that
arises from state dependences with that already present in the
program, leading to more TLP overall.

Automatic speculation-based approaches: Several par-
allelizing compilers rely on thread-level speculation tech-
niques to reduce the cost of dependences that turn out to be
false at run time [1, 35, 36, 43, 52, 64, 76, 77, 85, 89, 90].
These approaches, while effective, only address the cost of
apparent dependences—not the cost of actual dependences,
as we do in this work. Finally, some techniques speculate on
data values [32, 33]. However, they do not rely on algorithm-
specific knowledge and are limited to simple data depen-
dences of scalar values.

Manual approaches: In many multi-threaded programs
(including those of PARSEC), TLP has been introduced man-
ually using parallel programming APIs [26, 60, 78]. These
programs preserve all Read-After-Write actual dependences
(including state dependences of Figure 4), which constrains
TLP and overall program performance (as shown by the black
lines of Figure 12). STATS goes beyond this limit.

5.2 Autotuning/Search-based Optimization
Considerable effort has gone into the general area of auto-
tuning. A number of systems focus on tuning libraries in
specific domains [4, 10, 31, 41, 45, 84, 87]. Others are de-
signed as general auto-tuning frameworks [5–7, 24, 61]. The
STATS autotuner is built on top of the most recent one, Open-
Tuner, and it is used for the specific task performed by STATS,
i.e., combining the original TLP with the one generated by
targeting state dependences.

6 Conclusion
Actual dependences have been either satisfied or broken by
prior work. This paper proposes a middle ground for non-
deterministic programs: satisfying state dependences with
auxiliary code. This work is the first step in exploiting state
dependences. It demonstrates that it is possible to achieve
large performance gains, energy savings, or output quality
increases by doing so within a prototype system. We have
focused on using state dependences to optimize a particular
code pattern that is common within the benchmarks we con-
sidered. More generally, we believe that actual dependences
should be studied more carefully by our community to find
other subsets that might yield important benefits.

Acknowledgments
This project is made possible by support from the US NSF
through grants CCF-1453853, CCF-1533560, and the DOE’s
Sandia National Laboratories through the Hobbes Project.

References
[1] Wonsun Ahn, Shanxiang Qi, M Nicolaides, Josep Torrellas, J-W Lee,

Xing Fang, S Midkiff, and David Wong. 2009. BulkCompiler: high-
performance sequential consistency through cooperative compiler and
hardware support. In International Symposium on Microarchitecture
(MICRO).

[2] Alexander Aiken and Alexandru Nicolau. 1988. Perfect Pipelining:
A New Loop Parallelization Technique. In European Symposium on
Programming (ESOP).

[3] Riad Akram, Mohammad Mejbah Ul Alam, and Abdullah Muzahid.
2016. Approximate Lock: Trading off Accuracy for Performance by
Skipping Critical Sections. In International Symposium on Software
Reliability Engineering (ISSRE).

[4] Ayaz Ali, Lennart Johnsson, and Jaspal Subhlok. 2007. Scheduling
FFT Computation on SMP and Multicore Systems. In International
Conference on Supercomputing (ICS).

[5] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. 2009. PetaBricks: A Lan-
guage and Compiler for Algorithmic Choice. In Programming Lan-
guage Design and Implementation (PLDI).

[6] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. OpenTuner: An Extensible Framework for Program Autotuning.
In Parallel Architectures and Compilation Techniques (PACT).

[7] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edel-
man, and Saman Amarasinghe. 2011. Language and Compiler Support
for Auto-tuning Variable-accuracy Algorithms. In Code Generation
and Optimization (CGO).

[8] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
2008. The PARSEC benchmark suite: Characterization and architec-
tural implications. In Parallel Architectures and Compilation Tech-
niques (PACT).

[10] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel.
1997. Optimizing Matrix Multiply Using PHiPAC: A Portable, High-
performance, ANSI C Coding Methodology. In International Confer-
ence on Supercomputing (ICS).

[11] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali
Kamali. 2010. A case for NUMA-aware contention management on
multicore systems. In Parallel Architectures and Compilation Tech-
niques (PACT).

[12] Shekhar Borkar, Robert Cohn, George Cox, Sha Gleason, Thomas
Gross, H. T. Kung, Monica Lam, Brian Moore, Craig Peterson, John
Pieper, Linda Rankin, P. S. Tseng, Jim Sutton, John Urbanski, and Jon
Webb. 1988. iWarp: An Integrated Solution to High-Speed Parallel
Computing. In International Conference on Supercomputing (ICS).

[13] Gary Bradski and Adrian Kaehler. 2008. Learning OpenCV: Computer
vision with the OpenCV library. "O’Reilly Media, Inc.".

[14] Scott E. Breach, T. N. Vijaykumar, and Gurindar S. Sohi. 1994. The
Anatomy of the Register File in a Multiscalar Processor. In Interna-
tional Symposium on Microarchitecture (MICRO).

[15] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones,
Gu-Yeon Wei, and David Brooks. 2014. HELIX-RC: An Architecture-
compiler Co-design for Automatic Parallelization of Irregular Programs.
In International Symposium on Computer Architecuture (ISCA).

[16] Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks.
2015. HELIX-UP: Relaxing Program Semantics to Unleash Paralleliza-
tion. In Code Generation and Optimization (CGO).

[17] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa
Reddi, Gu-Yeon Wei, and David Brooks. 2012. HELIX: Automatic
Parallelization of Irregular Programs for Chip Multiprocessing. In Code
Generation and Optimization (CGO).

[18] S. Campanoni, T. M. Jones, G. Holloway, G. Y. Wei, and D. Brooks.
2012. HELIX: Making the Extraction of Thread-Level Parallelism
Mainstream. In International Symposium on Microarchitecture (MI-
CRO).

[19] Shawn D. Casey. 2011. How to Determine the Effectiveness of Hyper-
Threading Technology with an Application. https://goo.gl/ycuL6E.
(2011). Accessed: 2018-01-14.

[20] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karls-
son, Anders Landin, Sherman Yip, Håkan Zeffer, and Marc Tremblay.
2009. Rock: A high-performance sparc cmt processor. In International
Symposium on Microarchitecture (MICRO).

[21] Ding-Kai Chen and Pen-Chung Yew. 1996. On Effective Execution
of Nonuniform DOACROSS Loops. In Transactions on Parallel and
Distributed Systems (TPDS).

[22] Ding-Kai Chen and Pen-Chung Yew. 1999. Redundant Synchronization
Elimination for DOACROSS Loops. In Transactions on Parallel and
Distributed Systems (TPDS).

[23] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik
Kalyanaraman. 2014. Project Adam: Building an Efficient and Scalable
Deep Learning Training System.. In Operating Systems Design and
Implementation (OSDI).

[24] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. 2002.
Active Harmony: Towards Automated Performance Tuning. In Super-
computing Conference (SC).

[25] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and
F Kenneth Zadeck. 1991. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems (TOPLAS) (1991).

[26] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-
Standard API for Shared-Memory Programming. In IEEE Comput. Sci.
Eng.

[27] D. L. Davies and D. W. Bouldin. 1979. A Cluster Separation Measure.
In IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI).

[28] Kemal Ebcioglu and Alexandru Nicolau. 1989. A Global Resource-
constrained Parallelization Technique. In International Conference on
Supercomputing (ICS).

[29] ECMA 2005. Standard ECMA-335 Common Language Infras-
tructure (CLI) (3rd ed.). ECMA, Rue du Rhone 114 CH-
1204 Geneva. http://www.ecma-international.org/publications/
standards/Ecma-335.htm

[30] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Kr-
ishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt.
2015. The Racket Manifesto. In Summit on Advances in Programming
Languages (SNAPL).

[31] Matteo Frigo and Steven G. Johnson. 2005. The design and implemen-
tation of FFTW3. In International Symposium on Microarchitecture
(MICRO).

[32] Chao-Ying Fu, Matthew D Jennings, Sergei Y Larin, and Thomas M
Conte. 1998. Value speculation scheduling for high performance pro-
cessors. In Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[33] José González and Antonio González. 1998. The potential of data value
speculation to boost ILP. In International Conference on Supercomput-
ing (ICS).

[34] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor, H.
Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne, R.
Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty,
S. Jourdan, S. Gunther, T. Piazza, and T. Burton. 2014. Haswell: The
fourth-generation intel core processor. In International Symposium on
Microarchitecture (MICRO).

[35] Lance Hammond, Benedict A. Hubbert, Michael Siu, Manohar K.
Prabhu, Michael K. Chen, and Kunle Olukotun. 2000. The Stanford
Hydra CMP. In International Symposium on Microarchitecture (MI-
CRO).

[36] Liang Han, Wei Liu, and James M. Tuck. 2010. Speculative Par-
allelization of Partial Reduction Variables. In Code Generation and
Optimization (CGO).

[37] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Suga-
vanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara,
G. Chiu, P. Boyle, N. Chist, and C. Kim. 2012. The IBM Blue Gene/Q
Compute Chip. In International Symposium on Microarchitecture (MI-
CRO).

https://goo.gl/ycuL6E
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm

[38] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. 2011. Dynamic Knobs for Respon-
sive Power-aware Computing. In Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS).

[39] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han
Hung, and David I. August. 2010. Decoupled Software Pipelining
Creates Parallelization Opportunities. In Code Generation and Opti-
mization (CGO).

[40] A.R. Hurson, Joford T., LimKrishna M., and KaviBen Lee. 1997. Paral-
lelization of DOALL and DOACROSS Loops - A Survey. In Advances
in Computers.

[41] Eun-Jin Im and Katherine A. Yelick. 2001. Optimizing Sparse Ma-
trix Computations for Register Reuse in SPARSITY. In International
Conference on Computational Sciences (ICCS).

[42] Christian Jacobi, Timothy Slegel, and Dan Greiner. 2012. Transac-
tional memory architecture and implementation for IBM System z. In
International Symposium on Microarchitecture (MICRO).

[43] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. 2007.
Speculative Thread Decomposition Through Empirical Optimization.
In Principles and Practice of Parallel Programming (PPoPP).

[44] K. Kelsey, T. Bai, C. Ding, and C. Zhang. 2009. Fast Track: A Software
System for Speculative Program Optimization. In Code Generation and
Optimization (CGO).

[45] C. Kessler and W. Löwe. 2012. Optimized Composition of Performance-
aware Parallel Components. In Concurr. Comput. : Pract. Exper.

[46] Hanjun Kim, Nick P Johnson, Jae W Lee, Scott A Mahlke, and David I
August. 2012. Automatic speculative DOALL for clusters. In Code
Generation and Optimization (CGO).

[47] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. 2007. Optimistic Par-
allelism Requires Abstractions. In Programming Language Design and
Implementation (PLDI).

[48] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Code Genera-
tion and Optimization (CGO).

[49] Hung Q Le, GL Guthrie, DE Williams, Maged M Michael, BG Frey,
William J Starke, Cathy May, Rei Odaira, and Takuya Nakaike. 2015.
Transactional memory support in the IBM POWER8 processor. In IBM
Journal of Research and Development.

[50] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread
and Memory Placement on NUMA Systems: Asymmetry Matters.. In
USENIX Annual Technical Conference (USENIX ATC).

[51] Duo Liu, Zili Shao, Meng Wang, Minyi Guo, and Jingling Xue. 2009.
Optimal Loop Parallelization for Maximizing Iteration-level Paral-
lelism. In Compilers, Architecture, and Synthesis for Embedded Systems
(CASES).

[52] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose
Renau, and Josep Torrellas. 2006. POSH: A TLS Compiler That
Exploits Program Structure. In Principles and Practice of Parallel
Programming (PPoPP).

[53] Kathryn S. McKinley. 1994. Evaluating Automatic Parallelization for
Efficient Execution on Shared-memory Multiprocessors. In Interna-
tional Conference on Supercomputing (ICS).

[54] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. 2009.
Parallelizing Sequential Applications on Commodity Hardware Using a
Low-cost Software Transactional Memory. In Programming Language
Design and Implementation (PLDI).

[55] Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan. 2009.
Best-effort parallel execution framework for recognition and mining
applications. In International Symposium on Parallel and Distributed
Processing (IPDPS).

[56] Jiayuan Meng, Anand Raghunathan, Srimat T. Chakradhar, and Suren-
dra Byna. 2010. Exploiting the forgiving nature of applications for
scalable parallel execution. In International Symposium on Parallel and
Distributed Processing (IPDPS).

[57] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2013. Paralleliz-
ing Sequential Programs with Statistical Accuracy Tests. In ACM Trans.

Embed. Comput. Syst. (TECS).
[58] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Ri-

nard. 2010. Quality of Service Profiling. In International Conference
on Software Engineering (ICSE).

[59] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August.
2005. Automatic Thread Extraction with Decoupled Software Pipelin-
ing. In International Symposium on Microarchitecture (MICRO).

[60] Chuck Pheatt. 2008. Intel&Reg; Threading Building Blocks. In J.
Comput. Sci. Coll.

[61] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-
Kelley, and Saman Amarasinghe. 2013. Portable Performance on
Heterogeneous Architectures. In Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS).

[62] Guilherme Piccoli, Henrique N Santos, Raphael E Rodrigues, Chris-
tiane Pousa, Edson Borin, and Fernando M Quintão Pereira. 2014.
Compiler support for selective page migration in NUMA architectures.
In Parallel Architectures and Compilation Techniques (PACT).

[63] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prount-
zos, and Xin Sui. 2011. The Tao of Parallelism in Algorithms. In
Programming Language Design and Implementation (PLDI).

[64] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and
David I. August. 2010. Speculative Parallelization Using Software
Multi-threaded Transactions. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[65] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges,
and David I. August. 2008. Parallel-stage Decoupled Software Pipelin-
ing. In Code Generation and Optimization (CGO).

[66] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi
Nair, and Daniel Prener. 2012. Programming with relaxed synchroniza-
tion. In Relaxing synchronization for multicore and manycore scalabil-
ity (RACES).

[67] Martin C Rinard. 2007. Using early phase termination to eliminate
load imbalances at barrier synchronization points. In Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA).

[68] Behnam Robatmil, Dong Li, Hadi Esmaeilzadeh, Sibi Govindan, Aaron
Smith, Andrew Putnam, Doug Burger, and Stephen W. Keckler. 2013.
How to Implement Effective Prediction and Forwarding for Fusable
Dynamic Multicore Architectures. In High-Performance Computer
Architecture (HPCA).

[69] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati,
and Scott Mahlke. 2013. Sage: Self-tuning approximation for graphics
engines. In International Symposium on Microarchitecture (MICRO).

[70] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu,
Changkyu Kim, Jaehyuk Huh, Nitya Ranganathan, Doug Burger,
Stephen W. Keckler, Robert G. McDonald, and Charles R. Moore. 2004.
TRIPS: A polymorphous architecture for exploiting ILP, TLP, and DLP.
In Transactions on Architecture and Code Optimization (TACO).

[71] Steven L. Scott. 1996. Synchronization and Communication in the T3E
Multiprocessor. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[72] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin Rinard. 2011. Managing Performance vs. Accuracy Trade-offs
with Loop Perforation. In European Conference on Foundations of
Software Engineering (ESEC/FSE).

[73] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. 1995. Multi-
scalar Processors. In International Symposium on Computer Architec-
ture (ISCA).

[74] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. 2015. Data
Sharing or Resource Contention: Toward Performance Transparency on
Multicore Systems. In USENIX Annual Technical Conference (USENIX
ATC).

[75] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. 2016. Co-
herence stalls or latency tolerance: informed CPU scheduling for socket
and core sharing. In USENIX Annual Technical Conference (USENIX
ATC).

[76] J. Steffan and T Mowry. 1998. The Potential for Using Thread-Level
Data Speculation to Facilitate Automatic Parallelization. In High-
Performance Computer Architecture (HPCA).

[77] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C.
Mowry. 2005. The STAMPede Approach to Thread-level Speculation.
In Transactions on Computer Systems (TOC).

[78] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A
Parallel Programming Standard for Heterogeneous Computing Systems.
In IEEE Des. Test.

[79] Xin Sui, Andrew Lenharth, Donald S. Fussell, and Keshav Pingali. 2016.
Proactive Control of Approximate Programs. In Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[80] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P.
O’Boyle. 2009. Towards a Holistic Approach to Auto-parallelization:
Integrating Profile-driven Parallelism Detection and Machine-learning
Based Mapping. In Programming Language Design and Implementa-
tion (PLDI).

[81] Abhishek Udupa, Kaushik Rajan, and William Thies. 2011. ALTER:
Exploiting Breakable Dependences for Parallelization. In Programming
Language Design and Implementation (PLDI).

[82] Antonio Valles, M Gillespie, and G Drysdale. 2009. Per-
formance Insights to Intel® Hyper-Threading Technology.
http://software.intel.com/en-us/articles/performance-insights-to-
intel-hyper-threading-technology. (2009). Accessed: 2017-07-01.

[83] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. 2014. ASPIRE: Ex-
ploiting asynchronous parallelism in iterative algorithms using a relaxed
consistency based DSM. In Object-oriented Programming, Systems,

Languages, and Applications (OOPSLA).
[84] Yevgen Voronenko, Frédéric de Mesmay, and Markus Püschel. 2009.

Computer Generation of General Size Linear Transform Libraries. In
Code Generation and Optimization (CGO).

[85] Cheng Wang, Youfeng Wu, Edson Borin, Shiliang Hu, Wei Liu, Dave
Sager, Tin-fook Ngai, and Jesse Fang. 2009. Dynamic Paralleliza-
tion of Single-threaded Binary Programs Using Speculative Slicing. In
International Conference of Supercomputing (ICS).

[86] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce
Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F.
Brown, III, and Anant Agarwal. 2007. On-Chip Interconnection Archi-
tecture of the Tile Processor. In International Symposium on Microar-
chitecture (MICRO).

[87] R. Clint Whaley and Jack J. Dongarra. 1998. Automatically Tuned
Linear Algebra Software. In Supercomputing Conference (SC).

[88] Cheng-Zhong Xu and Vipin Chaudhary. 2001. Time Stamp Algo-
rithms for Runtime Parallelization of DOACROSS Loops with Dynamic
Dependences. In Transactions on Parallel and Distributed Systems
(TPDS).

[89] Antonia Zhai, J. Gregory Steffan, Christopher B. Colohan, and Todd C.
Mowry. 2008. Compiler and Hardware Support for Reducing the Syn-
chronization of Speculative Threads. In Transactions on Architecture
and Code Optimization (TACO).

[90] Hongtao Zhong, Mojtaba Mehrara, Steven A. Lieberman, and Scott A.
Mahlke. 2008. Uncovering hidden loop level parallelism in sequential
applications. In High-Performance Computer Architecture (HPCA).

	Abstract
	1 Introduction
	2 Opportunity
	2.1 Today's Limits
	2.2 Code Example
	2.3 State Dependences

	3 The STATS Solution
	3.1 Execution Model
	3.2 Architecture
	3.3 The STATS Interface
	3.4 Compilers and Runtime
	3.5 Autotuner

	4 Evaluation
	4.1 Experimental Setup
	4.2 Benchmarks
	4.3 Taking Advantage of State Dependences
	4.4 STATS and its Related Work
	4.5 Developer Effort
	4.6 Non-representative Inputs
	4.7 Auto-tuning in STATS
	4.8 When STATS Should Be Used

	5 Related Work
	5.1 Extracting TLP
	5.2 Autotuning/Search-based Optimization

	6 Conclusion
	Acknowledgments
	References

