
Introducing the Pseudorandom Value Generator
Selection in the Compilation Toolchain

Michael Leonard
Northwestern University

USA
michaelleonard2018@u.northwestern.edu

Simone Campanoni
Northwestern University

USA
simonec@eecs.northwestern.edu

Abstract
As interest in randomization has grown within the comput-
ing community, the number of pseudorandom value genera-
tors (PRVGs) at developers’ disposal dramatically increased.
Today, developers lack the tools necessary to obtain optimal
behavior from their PRVGs. We provide the first deep study
into the tradeoffs among the PRVGs in the C++ standard,
finding no silver bullet for all programs and architectures.
With this in mind, we have built PRV Jeeves, the first fully
automatic PRVG selector. We demonstrate that when com-
piling widely-used, highly optimized programs with PRV
Jeeves, we are able to cut execution time by 34% on average.
This enhancement comes at no cost to developers.

CCS Concepts • Software and its engineering→Com-
pilers.

Keywords Code generation, pseudorandom value genera-
tors, code selection

ACM Reference Format:
Michael Leonard and Simone Campanoni. 2020. Introducing the
Pseudorandom Value Generator Selection in the Compilation
Toolchain. In Proceedings of the 18th ACM/IEEE International Sym-
posium on Code Generation and Optimization (CGO ’20), February
22–26, 2020, San Diego, CA, USA.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3368826.3377906

1 Introduction
Interest in randomized algorithms has steadily grown within
the computing community throughout the last several decades.
Randomization has pervaded nearly every subfield of com-
puter science, and is notably visible in encryption, machine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CGO ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7047-9/20/02. . . $15.00
https://doi.org/10.1145/3368826.3377906

learning, data analytics, robotics, and Internet of Things ap-
plications. Furthermore, there are no signs of reverting this
trend in the near future.

Pseudorandom value generators (PRVGs) are at the core of
most random programs. As their importance has grown, so
too has their variety. This growth has notably been reflected
in the widely adopted C++ programming language. Starting
in C++11, the C++ steering committee has added one com-
mon interface to several varied, templated, and composable
PRVGs as part of the language definition [2]. Today, C++
developers have dramatically more degrees of freedom to
choose PRVGs that best suit their needs.

With so many options, the knowledge and effort required
to construct the right PRVG goes beyond reasonable expec-
tation for most programmers. In order to choose the best
PRVG for an application, a developer needs to have a full
understanding of the many tradeoffs in performance, mem-
ory consumption, and quality of randomness of all available
PRVGs. This requires an understanding of the theoretical
background of each PRVG’s design, and while some select de-
velopers may have this knowledge, it is relatively uncommon.
Furthermore, this paper demonstrates that these tradeoffs
are architecture dependent. Hence, even if a developer does
have the right background, to make an application optimal
across platforms, he or she will have to write a PRVG that
adapts to each target micro-architecture. The result would
require hours of careful consideration into what is generally
a tiny fraction of the total lines of code for any codebase. As
such, the great majority of software relies on a single PRVG
for all situations: rand(). This approach completely gives up
on an immense opportunity to optimize program behavior
across many potential dimensions.
Currently, developers are stuck with these two choices:

use a simple, non-optimal PRVG, or take on the massive onus
to make the right choice. Therefore, we propose migrating
this decision to the compiler. Compilers have a long and suc-
cessful history of abstracting away some of the most difficult
decisions that developers originally had to make, such as
mapping program variables to architectural registers and se-
lecting the architectural instructions to perform higher-level
program tasks. We propose adding one more decision to this
compilation job list: the selection of PRVGs.

To explore the benefits possible from such a compiler ex-
tension, we have built the first fully automatic pseudorandom

https://doi.org/10.1145/3368826.3377906
https://doi.org/10.1145/3368826.3377906

CGO ’20, February 22–26, 2020, San Diego, CA, USA Michael Leonard and Simone Campanoni

0 50 100 150 200 250 300 350 400
Latency [Clock Cycles]

0

25000

50000

75000

100000

125000

150000

175000

200000

Ra
nd

om
ne

ss

ranlux48_base
ranlux24_base

minstd_rand0

knuth_b

mt19937_64
mt19937

Figure 1. The tradeoff space between randomness and latency of
PRVGs. The y-axis measures quality of random values generated
by each PRVG by fitness to the birthday spacings theorem, and
the x-axis measures average latency to obtain a single random
value CPU cycles. These results were measured across all PRVG
instantiations in C++11 on a 16-core Intel® Xeon® CPU with 32
GB DRAM. Visualizing the tradeoff reveals a pareto frontier, where
the ideal PRVG would be at the origin. Here, we have zoomed in
on the PRVGs near the inflection point of the pareto curve, which
shows that there is no clear winner across both dimensions.

value generator selector. Our PRVG selector is built as an
extension to the widely used Clang compiler, and as such,
our system targets generic, unmodified C++ code. Without
any added burden to the developers, our system analyzes
the program given as input to identify the uses of PRVGs
defined by standard libraries (e.g., rand()). Our compiler then
iteratively tests substituting various replacements, drawn
from a database of PRVGs, for each independent PRVG in
the original code, until it converges on an optimal selection.
Our autotuner drives this search, exploring the impact of
each PRVG for the specific target architecture.

Our compiler decreases the overall execution time of the
randomized PARSEC benchmarks by 34% on average, while
preserving the original output quality. This speedup comes at
no cost to developers, as it allows programmers to save time
and effort in both development and maintenance. With our
compiler, a developer may simply choose the first PRVG that
comes to mind (e.g., rand()) and obtain better performance
than even a carefully hand-tuned PRVG.

The rest of this paper is organized as follows. First, to mo-
tivate our problem, we dive into the complex tradeoff space
among the PRVGs available in C++11 (Section 2). To the best
of our knowledge, this is the first study of this kind. Then,
we describe the design and implementation of our compiler
and explain how it selects PRVGs (Section 3). Finally, we
detail how we evaluated our system and demonstrate the
performance benefits we have obtained on a widely adopted

0 500 1000 1500 2000 2500 3000 3500
Memory [Bytes]

0

25000

50000

75000

100000

125000

150000

175000

200000

Ra
nd

om
ne

ss

ranlux48_base
ranlux24_base

minstd_rand0

ranlux48
ranlux24

knuth_b

mt19937_64

Figure 2. The tradeoff space between randomness and memory
consumption of PRVGs. The setup is the same as Figure 1 except
for the x-axis, which here measures the median working set size
across several snapshots of program execution. Like Figure 1, there
is no clear winner for all needs. However, note certain stark depar-
tures from Figure 1, especially the presence of the ranlux48 and
ranlux24 generators on the inflection point of pareto curve. The op-
timal choices in the randomness-memory and randomness-latency
tradeoffs, respectively, may be very different.

benchmark suite through automatic PRVG selection (Sec-
tion 4). We conclude with an analysis of related work within
this space (Section 5).

2 Opportunity
As interest in randomness has grown, the sheer number of
PRVGs available to developers has skyrocketed. Unfortu-
nately, developers’ understanding of these PRVGs has not
kept up. To characterize the current state of the PRVG space,
we provide the first analysis of the various PRVGs available
in C++. In this section, we detail the criteria we used for
analyzing each PRVG, and we present a series of tradeoffs
that developers need to make when choosing a PRVG. Our
conclusion is that there is no silver bullet for PRVGs - the
right decision depends on the target program, the target
platform, and the user-specific constraints, and it is too time
consuming for most developers to make.

Modern C++ provides a plethora of PRVGs. Since C++11,
the <random> header [1] has provided three PRVG templates,
each with many degrees of freedom in instantiation. For
example, linear_congruential_engine and substract_-
with_carry_engine each have 3 template parameters, while
mersenne_twister_engine has 13. On top of these, the
header provides two numerical adaptors that can be com-
posed with any of the generators to provide further transfor-
mations to the random values produced. These adaptors are
themselves also templated: discard_block_engine with 2
parameters, and shuffle_order_engine with 1. Should a

Introducing the Pseudorandom Value Generator Selection in the Compilation Toolchain CGO ’20, February 22–26, 2020, San Diego, CA, USA

0 50 100 150 200 250 300 350 400
Latency [Clock Cycles]

0

25000

50000

75000

100000

125000

150000

175000

200000

Ra
nd

om
ne

ss

mt19937

ranlux24_base

minstd_rand0

knuth_b

ranlux48_base

mt19937_64

mt19937

minstd_rand0

knuth_b

mt19937_64

xeon
laptop

Figure 3. A comparison of the randomness-latency tradeoff
space across two different micro-architectures. The blue curve with
broader dashes is the same data shown in Figure 1, measured on
server-grade hardware. The purple curve with smaller dashes mea-
sures randomness vs latency on a Lenovo Thinkpad with a dual-
core Intel® Core® i5 CPU and 8 GB DRAM. Several differences are
immediately visible between the two platforms, such as the vast
latency disparity for the knuth_b generator, but note in particular
that both the ranlux24_base and ranlux48_base generators lie on
the pareto frontier for the server, whereas neither do for the laptop.

developer desire to compose both of these adaptors with a
mersenne_twister_engine, on a 64-bit machine, he or she
would have 26413+2+1 ≈ 1.8e308 distinct ways of instantiating
such a PRVG.

With somany options, programmers find themselves swim-
ming in an ocean of potential tradeoffs, and they therefore
currently tend to have a poor understanding of the behavior
of these PRVGs. Instead of using the PRVGs supplied by the
standard, programmers generally take one of two strategies
when they need pseudorandom values. Most programmers
still use the old, simple PRVGs provided by C, such as rand()
and drand48(). A few programmers with deeper knowledge
of pseudorandomness may opt to write their own custom
PRVGs for their specific program. This approach is of course
inaccessible to any developer without this knowledge, but
even those with the ability to write a custom PRVG often
end up writing one with behavior similar to one already pro-
vided by the C++ standard. For example, bodytrack from
the PARSEC benchmark suite comes with a custom PRVG
that exhibits behavior nearly identical to C++’s knuth_b en-
gine. Regardless of approach, C++ developers seem to lack
an understanding of the PRVGs at their disposal.
To gain a better understanding of the PRVG’s available

in C++, we created a series of simple micro-benchmarks to
help evaluating each PRVG along several dimensions. We use

these micro-benchmarks to characterize the latency, mem-
ory consumption, and quality of randomness of several C++
PRVGs. We perform this analysis across two very differ-
ent platforms. The results yield a complex tradeoff space,
with different behavior across different metrics and no clear,
architecture-independent, program-independent winners.

2.1 Micro-benchmarks
To gain a better understanding of the PRVG’s available in
C++, we created a series of simple micro-benchmarks to help
us evaluate each PRVG along several dimensions. Since it
would be infeasible to analyze every possible instantiation
of each PRVG template, we have decided to focus on the 9
default instantiations provided by the C++ standard. Each
micro-benchmark draws 1.1 billion random values using
one PRVG - a number large enough to guarantee significant
latency values and obscure any noise in latency due to setup
and cleanup code in the C++ runtime. We used these micro-
benchmarks to measure the latency, memory consumption,
and quality of random values produced by each PRVG.

Latency We measured the latency of each PRVG by using
the Linux program perf tomeasure the total number of cycles
for the program’s execution. We divide this number by the
total number of pseudorandom values drawn to obtain the
mean number of cycles to draw a single value.

Randomness We computed the quality of randomness of
the series of PRVGs our micro-benchmarks produce. We bor-
rowed thewell known birthday spacings test fromMarsaglia’s
Diehard Battery of Tests of Randomness [36] to evaluate qual-
ity of randomness, which hypothesizes that for any bag of
random numbers drawn from a large interval, the distances
between each pair of points should be exponentially dis-
tributed. We calculated these distances and measured the
chi-squared goodness of fit of each bag of distances to an
exponential curve.

Memory Consumption Finally, to measure memory con-
sumption, we usedmassif from the valgrind tool suite [42] to
take several snapshots of the working set size of each micro-
benchmark across its execution. Predictably, each PRVG had
a fairly constant working set size throughout the entire pro-
gram execution; however, we found that the C++ runtime in-
troduces a brief, significant memory overhead at the startup
of any C++ program. Therefore, we used median working
set size as our metric for memory consumption, which we
found more accurately characterizes the memory profile of
each micro-benchmark.

2.2 Platforms
To understand how PRVG behavior varies across micro-
architectures, we ran our micro-benchmarks on two different
platforms. The first, which we designate as server, is a 16-
core 16-core Intel® Xeon® CPU with 32 GB DRAM. The

CGO ’20, February 22–26, 2020, San Diego, CA, USA Michael Leonard and Simone Campanoni

second, which we designate as laptop, is a Lenovo Thinkpad
with a dual-core Intel® Core® i5 CPU and 8 GB DRAM. For
further information on each platform, see section 4.1.

2.3 Results
Latency vs Randomness Comparing the latency and ran-
domness metrics that we obtained for each PRVG, we found
a rich tradeoff space. We first collected data on our server;
plotting randomness vs latency, our PRVG’s roughly fit to
a pareto frontier. Figure 1 visualizes the inflection point of
the pareto curve, where a hypothetical PRVG with 0 latency
and perfect randomness would be at the origin. Generally,
PRVGs with higher latency have better randomness, while
those with lower latency have worse randomness. There is
no PRVG that appears to be a clear best choice for both high
performance and high quality of random values.

Memory vs Randomness Comparing the memory con-
sumption of each PRVG to its quality of randomness, we
found another, different tradeoff space. Figure 2 shows the
tradeoff between randomness and working set size on our
server. Like the tradeoff between randomness and latency,
this tradeoff forms a pareto frontier, where gaining qual-
ity of randomness generally requires a sacrifice in memory
consumption and vice versa. However, the pareto frontier
is clearly different from the randomness-latency frontier.
Note that, for example, both the ranlux48 and the ranlux24
PRVGs lie very close to the inflection point of this pareto
frontier. These PRVGs have, by far, the longest latency of any
in C++, and therefore lie nowhere near the inflection point
of the randomness-latency frontier. In general, the tradeoff
space between memory consumption and randomness dif-
fers significantly from the tradeoff space between latency
and randomness.

Memory vs LatencyAcrossArchitectures Finally, we found
that the tradeoff between latency and randomness varies sig-
nificantly across our two platforms. Figure 3 shows overlays
the randomness-latency pareto frontiers generated by both
our server and our laptop, showing clear differences. For
example, the ranlux24_base and ranlux48_base PRVGs both
lie on the pareto frontier for our server, but neither of them
appear on the pareto frontier for our laptop.

Conclusion To summarize, there is a rich tradeoff space
between latency and randomness of PRVGs, which varies
across differentmicro-architectures, andwhich differs greatly
from the equally-rich tradeoff space between memory con-
sumption and randomness. With so many potentially con-
flicting tradeoffs, the decision of the best PRVG to use even
for a specific micro-architecture requires an expert in pseu-
dorandomness who knows exactly the desired behavior for a
specific program to make an optimal decision. Furthermore,
even if a project has such an expert, there is no single PRVG
that will be optimal across platforms.

3 The PRV Jeeves Solution
Based on the results of our micro-benchmarks, we argue that
compilers should select the PRVGs that a program uses, not
developers. To substantiate this claim, we have built the first
fully automatic PRVG selector. Our compiler, implemented
on top of the LLVM framework [31], takes a standard C++
program as input, analyzes it to find all locations and uses
of PRVGs, and replaces each one with an optimal PRVG for
its specific use in the program and its behavior on the target
micro-architecture. We leverage state-of-the-art autotuning,
profiling, and alias analysis to select the best option from
an extensible database of PRVGs. Furthermore, we provide a
well-founded, custom statistical analysis to verify that the
binaries we generate maintain the original level of output
quality.

3.1 PRV Jeeves in a Nutshell
PRV Jeeves is a fully automatic compilation flow that takes
a generic C++ program and it generates a semantically-
equivalent binary for the target platform. The binary is gen-
erated by replacing the originally-used PRVGs with the goal
of minimizing a cost function (e.g., execution time) provided
by a developer. This is performed while maintaining the
same output quality of the original code.
To perform the described optimization, PRV Jeeves con-

sists of a feedback loop between LLVM passes, an autotuner,
and a profiler. This feedback loop is powered by a PRVG
database, and a set of application-specific output distortion
evaluators.

The front-end compiler. The input of PRV Jeeves is a
set of C++ source files. The front-end compiler of PRV Jeeves
translates the source files given as input into a single LLVM
bitcode file (IR in Figure 4). Merging all code into a single
bitcode file is important to obtain high accuracy from the
alias analyses that are later used.

The middle-end compiler. The LLVM bitcode gener-
ated by the front-end compiler is consumed by the middle-
end compiler. The middle-end compiler analyzes the bitcode
for all locations and uses of PRVGs (e.g., a call to rand()) and
computes the design space of valid PRVG options (e.g., using
drand48() rather than rand()). To do so, alias analyses is
used to track the states of the PRVGs used. The output of the
middle-end compiler is a new IR file generated by modifying
the input IR to make it amenable to selecting different PRVGs.
While not fundamental, these IR changes simplified the de-
sign of the back-end compiler of PRV Jeeves. Finally, the
middle-end compiler generates the design space composed
by all PRVG options that can be chosen.

The autotuning loop and the back-end compiler.The
rest of the system forms a closed feedback loop. The design
space generated by the middle-end compiler becomes the
input to our autotuner, which iteratively selects new config-
urations of PRVGs to test. The back-end compiler takes the

Introducing the Pseudorandom Value Generator Selection in the Compilation Toolchain CGO ’20, February 22–26, 2020, San Diego, CA, USA

Figure 4. The overall design of the PRV Jeeves compiler. Developers supply a C++ program, along with an application-specific output
distortion function and a ground-truth oracle output file. In addition to our middle-end, which analyzes the program for PRVGs, our core
contribution is highlighted by the red arrows: a feedback loop between our autotuner, which searches for the best set of PRVGs; our back-end
compiler, which instruments the code to use them; and our profiler, which measures the improvement for binary tested. The output is a
semantically equivalent but more performant binary.

PRVG locations computed by the middle-end compiler, the IR
of the program, and it transforms the code according to the
configuration chosen by the autotuner. Then, the back-end
compiler generates the binary of the target platform. Finally,
PRV Jeeves runs the code several times using training inputs
provided by the user. These runs profile the code accord-
ing to a cost function chosen by developers (e.g., execution
time), and we check to see how distorted its output is when
compared to an oracle output (provided by developers). The
end result is a binary semantically equivalent to the original
program, but more performant.

3.2 PRVG Database
Crucial to our design is a finite but extensible database of
PRVGs that our compiler can target. Because not all PRVGs
can replace all the others, the database is subdivided by both
the type of value that the PRVG produces and the underlying
distribution that the PRVG draws from. Furthermore, within
each of these sub-categories, the list of PRVGs is enumerated.
Currently, our design only seeks to characterize the behav-
ior of those PRVGs guaranteed by the standard in C++11
and later versions. Since C++ decouples distribution from
engine, we support several distributions, including uniform,
normal, and exponential. For each distribution, our database
currently contains 14 PRVGs that produce ints and 11 PRVGs
that produce doubles. For each of these PRVGs, the database
stores an LLVM bitcode file preprepared for integration into
an input bitcode program. Users of PRV Jeeves can easily
extend our database to also consider other PRVGs.

3.3 Middle-End Compiler
Our middle-end compiler is responsible for the required
program analyses. It takes an LLVM bitcode program as
input, logs the location of every PRVG allocation and use,
and computes the PRVG design space for the autotuner. It
consists of two passes: a first pass to compute a conservative

version of this design space, and a second pass to shrink it
and thereby shorten the search for an optimal configuration.

Pass 1: PRVG Identification This pass of the middle-end
compiler takes a program in LLVM bitcode and our PRVG
database, identifies the PRVGs used by the code, and it com-
putes the initial design space for the autotuner.

PRVGs need to be identified based on their states. A PRVG
is defined by a state (a state is used to generate a new random
value and then it is updated), its algorithm (e.g., knuth_b),
and its value distribution (e.g., uniform distribution). The
first task of this pass is to describe each PRVG found in the
code in these three dimensions.
This compilation pass is conservative: only PRVGs that

can be unambiguously and completely described are logged.
Hence, only these PRVGs will be considered in the optimiza-
tion performed by the autotuner. This pass of the middle-end
compiler could miss a PRVG if, for example, its state cannot
be detected precisely. This can happen if a pointer of a state
is read from memory and our alias analyses cannot define a
unique instruction that must have allocated it. This conser-
vativeness is necessary because when a PRVG is replaced,
its state allocation needs to be replaced accordingly (differ-
ent PRVGs have different memory allocators). Hence, this
is a safe code transformation only if the information about
which instruction have allocated the state is correct.

PRVGs can be divided into reentrant and non-reentrant.
Reentrant PRVGs allocate some state and modify this state
directly on each function call; in these cases, we log a tuple
containing the single allocation of each PRVG object and
each use of that object. Non-reentrant PRVGs are stand-alone
function calls which modify some global state that is hidden
to the programmer (e.g., rand()); in these cases, we simply
log the line number of each function call in the bitcode. The
output of this first pass of the middle-end compiler is this
list of unique PRVG locations.

CGO ’20, February 22–26, 2020, San Diego, CA, USA Michael Leonard and Simone Campanoni

Additionally, this compilation pass generates the design
space for our autotuner. We describe the design space as a tu-
ple of dimensions, with one dimension per unique PRVG. To
determine the cardinality of each dimension, we determine
the type of value that each PRVG produces (e.g. int, float),
and we refer to our database to find the total number of
candidate PRVGs to which we can transform it. For example,
if a program contains an invocation of rand() and no other
PRVGs, our first pass identifies such invocation, find that
it returns an int drawn from a uniform distribution, note
that our database currently stores 14 different PRVGs that
produce uniform ints, and output a design space of (14).

Pass 2: InvocationCounting The second compilation pass
in our middle-end compiler aims to shrink the design space
described by the previous pass. It does so by eliminating
points of this design space corresponding to PRVGs that
are never (or rarely) invoked at run time. Eliminating such
points have the only effect of reducing the set of possible
options that the autotuner has.

Our front-end compiler generates the IR by invoking clang
using its code optimizations (O3). Doing so, clang performs
aggressive optimizations such as function inlining and loop
peeling. Sometimes these code transformations lead to dead
code (a function that is not invoked anymore) or code that
is rarely executed.
The autotuner considers each point in the design space

when selecting configurations. So, if any PRVGs fall entirely
in dead regions of code or in one that is rarely executed, the
autotuner’s search for the optimal configuration will still
waste time trying to find the best PRVG that will never or
rarely be used. This observation led us designing the second
compilation pass of the middle-end compiler: delete PRVGs
that are never or rarely used. Our second compilation pass
removes such PRVGs from our design space by instrument-
ing our input program with counters for each PRVG. It adds
one global variable per each PRVG identified by the first
pass, increments this variable right after each invocation of
each PRVG, and invokes a function right before program exit
to dump all these invocation counts to an output file. We
compile this modified program to binary and run it to obtain
the invocation counts, and if any PRVG is never invoked (or
invoked less than 10 times), we remove its corresponding
point from the design space and its locations from our log.
The middle-end compiler runs only once the program

compiled. Once it has produced the design space to input
to the autotuner and the PRVG location log to input to the
back-end compiler, the compiler enters the phase at which
it spends most of its execution: a feedback loop between the
autotuner, the back-end compiler, and the profiler, each of
which is described next.

3.4 Autotuner
The autotuner of PRV Jeeves iteratively tries to select the
best configuration of the PRVGs identified by the middle-end
compiler. This autotuner is built on top of the OpenTuner
framework [6]. It takes two inputs, a description of the PRVG
design space and a cost function, and it tests various con-
figurations within that design space to try to optimize the
cost function. The default cost function is the end-to-end
execution time of the compiled program. However, other
cost functions are available (e.g., energy consumption, peak
memory).
Each time the autotuner is invoked, the design space de-

fines the legal set of configurations it can choose. As previ-
ously mentioned, we represent the design space as a tuple of
dimensions; each dimension is interpreted by the autotuner
as a set of independent switches, such that the selection of
one switch does not impact the selection of any other switch.
Each time the autotuner is invoked, for each dimension in
the design space, it selects a point less than the cardinality
of that dimension - in the previous example, if the autotuner
sees a design space of (14), it returns a tuple where each
point is some value between 0 and 13, such as (4) or (2).

Over iterative invocations of the autotuner, the autotuner
uses its own selection history and the cost function to at-
tempt to make better choices. In its first invocation, the
autotuner selects a random configuration. Later in the feed-
back loop, the profiler determines a cost of that execution.
The autotuner stores this cost in a database, and, in each
subsequent execution, it uses a suite of machine learning to
try to predict a configuration that will produce a cost more
optimal with respect to the cost function. For example, if a
developer chooses minimizing total memory footprint as a
cost function and objective, and the autotuner will analyze
trends across past runs to predict a configuration with a
lower memory footprint than any it has seen before.
The purpose of the autotuner is to accelerate the aver-

age time to find the ideal or near-ideal configuration for
the design space. The developer specifies the length of time
that the compiler executes, and if let run indefinitely, the
autotuner will eventually evaluate every point any design
space to find the best configuration. This is the only guar-
antee with respect to optimality; however, our experience
has been that it generally takes a small fraction of the total
possible configurations for the autotuner to find the optimal
selection.

3.5 Back-End Compiler
Once the autotuner has chosen a configuration to test, our
back-end compiler transforms each PRVG according to the
autotuner’s decision and compiles the bitcode program to
binary. This compiler interprets each point in the configura-
tion provided by the autotuner as the index of the PRVG in
our database within the target data type and distribution. In

Introducing the Pseudorandom Value Generator Selection in the Compilation Toolchain CGO ’20, February 22–26, 2020, San Diego, CA, USA

Figure 5. Ahistogram of output distortion levels of 100 executions
of bodytrack. The distribution appears to be exponential in nature,
making it hard to draw conclusions about the population of all
output distortions from a random sample.

lock step, the pass iterates over both the unique PRVGs in
the location log file produced by the middle end, as well as
the points in the configuration. If the PRVG is reentrant, then
the pass transforms the program to allocate the PRVG object
that the autotuner selected, and it transforms each associated
invocation to use that object. If the PRVG is non-reentrant,
unless the exact same PRVG has already been selected in
the same configuration, the pass allocates the corresponding
PRVG object as a global variable, and it transforms that func-
tion call to use that object. Should any subsequent points in
the configuration correspond to the same PRVG, they all use
the same object as the first one. Once all PRVGs have been
transformed, the back-end compiler uses an LLVM backend
to compile the resulting bitcode to binary.

3.6 Profiler
The profiler runs the binary and computes the cost of the
program according to the cost function specified to the au-
totuner. The profiler is extensible, and the choice of what
profiler to use depends on what the programmer wants to
optimize. This paper focuses on studying performance, so
we use the Linux program perf to compute the total number
of clock cycles needed to execute the binary. We run each
binary several times and try to minimize the total number of
cycles across all executions as our cost function. Future users
may use any profiler available to them, or potentially several
in combination, as long as they can produce some number
as a cost that the profiler can report to the autotuner.

3.7 Output Distortion Evaluator
One final, but equally critical component of our system is
the output distortion evaluator. This evaluator compares the
quality of the output produced by each binary we generate to
the quality of the output produced by the baseline program.
We reject any binary whose output is more distorted than
the baseline program.

Figure 6. A histogram of the mean output distortions across
several samples of 30 executions of bodytrack. Conforming to the
central limit theorem, despite the highly non-normal nature of each
sample, the means of the samples are roughly normally distributed
around the true mean output distortion, unblocking much more
insightful statistical analysis.

For each configuration, the output distortion evaluator
determines whether the corresponding program produced
acceptable output. Along with each benchmark we target,
we provide a file containing a ground-truth set of output
values. We also provide an application-specific module that
can compare any output from that program to ground-truth
and compute a metric representing output quality. Before tar-
geting a new benchmark, we run it many times, unmodified,
and we utilize this module to compute the output quality for
each of these program executions. We use the mean of these
output quality values as our threshold for our compiler.

In order to understand how we compare the output qual-
ity of a binary that we produce to output quality of the
unmodified program, one must understand how output qual-
ity varies. Next we use bodytrack as example, but similar
results are obtained with all the randomized benchmarks of
PARSEC. Figure 5 shows a histogram of the output quality
values computed from 100 executions of bodytrack, where
lower values correspond to higher quality. Output quality
tends to fit to an exponential distribution; most of the time,
output quality is very high, but fairly frequently, a binary
will produce much lower quality output.

Exponential distributions are typically very difficult to
characterize and compare. Conceptually, we seek to estimate
the output quality we should expect in the next program exe-
cution; in an exponential distribution, this is the mean value.
However, exponential distributions require extremely large
sample sizes to generalize information about the underlying
population.

To circumvent this difficulty, we utilize the Central Limit
Theorem to gain more insight from our data and decide
whether to accept a configuration. The Central Limit Theo-
rem states that for any distribution, there is some minimum
number of samples such that, with a large enough sample

CGO ’20, February 22–26, 2020, San Diego, CA, USA Michael Leonard and Simone Campanoni

size, the distribution of the means of all samples is normally
distributed. Therefore, in our system, we iteratively collect
samples of several executions of our generated binary, and
measure the mean output distortion of each of these samples.
The sample size is left to the developer, although we have
found 30 to be suitable. The system iteratively draws more
samples until the means of these samples pass D’Agostino
and Pearson’s test for normality [18]. The programmer se-
lects the alpha value for the normality test; here, we have
used 0.1. Figure 6 shows the histogram of the means from
one invocation of our compiler. The resulting near-normal
distribution is now amenable to a rich set of statistical infer-
encing techniques. We utilize a two-sample, one-tailed t-test
to evaluate whether the test binary generates a distribution
of overall greater output distortion than the baseline. If it is
greater, we reject this configuration.
In general, the output distortion evaluator is necessary

to ensure that we do not transform any program to use
worse-quality PRVGs than it originally uses. However, the
real power of the output distortion evaluator stems from
the fact that we can often greatly improve output quality
by improving the quality of the PRVGs used by a program.
In these cases, we can then tune other parameters to bring
output quality closer to baseline. These parameters are pro-
gram specific (e.g., annealing layers of canneal). We relied
on the same parameters used by the STATS compiler [19].
Sometimes such parameters are more influential to program
performance than just the PRVGs, so this process is crucial
to the performance improvements we obtain.

To summarize, our compiler takes a C++ source as input,
analyzes it for all PRVG uses and definitions, and iteratively
tests several possible substitutions for each PRVG until it
converges on an optimal solution. The resulting binary we
generate produces output with at least as high quality as
the original program, but does so more performantly. Next
section describes the empirical evaluation of PRV Jeeves.

4 Evaluation
To measure the impact that the choice of PRVG has on real
applications, we optimized all the PARSEC benchmarks that
are randomized [11]. The original version of one of these
benchmarks, bodytrack, uses a hand-written, domain spe-
cific PRVG, and yet we still observe that by selecting a higher
quality PRVG, we decrease their overall execution time with-
out sacrificing any output quality. This suggests that even ex-
pert knowledge of both PRVGs and a specific applicationmay
not be enough to select an optimal PRVG. Furthermore, we
observe that different architectures require different PRVGs
to produce optimal behavior, further solidifying the need
for an automatic, platform-aware PRVG selector. Finally, we
observe that the optimal decision differs when trying to op-
timize for performance, memory consumption, and output
quality. Our system easily adapts to whatever criteria the

programmer chooses to optimize, saving the programmer
from writing a custom PRVG for each situation.

4.1 Experimental Setup
Next we describe the testbed we use for our experiments.

Platforms Our primary platform for evaluation, which we
label server, consists of 16 Intel® Xeon® X5560 cores spread
across 2 sockets, each running at 2.79 GHz. Each core has 32
KB of both private L1d and L1i cache and 256 KB of private
L2 cache, each socket shares 8 MB of L3 cache, and the entire
machine has 32 GB of DRAM.

Benchmarks Due to their expert implementation, broad
community acceptance, and significant use of PRVG’s, we
benchmark our system on the randomized applications in
the PARSEC benchmark suite. Each benchmark is necessar-
ily coupled with an application-specific module to evaluate
its output quality. These benchmarks are bodytrack, fer-
ret, swaptions, canneal, and streamcluster and we used
the same output quality functions previously proposed for
them [19, 39]. The only benchmark that needs further dis-
cussion is bodytrack because of its custom PRVG.

Bodytrack takes a video in the form of a sequence of frames
as input and identifies where the human body is located
within each frame. To do this performantly, it subdivides
each frame into several particles. Each particle randomly
samples the pixels assigned to it and classifies each of those
pixels. At termination, bodytrack outputs a set of vectors,
one per frame, each containing the locations of the body in
its frame. Bodytrack depends on a single hand-tuned PRVG,
which is almost identical to the knuth_b generator from C++.
To make a valid comparison to the other C++ PRVGs that we
generate, we modify bodytrack to use knuth_b as its baseline
PRVG.

Software Our entire system is built on top of LLVM 5.0.1
and all experiments were run on Linux version 3.10.0. More-
over, we used OpenTuner 0.8 to build our autotuner. Finally,
we forced our autotuner to end its search in two hours.

Parameters and Inputs Our compiler presents several
parameters that the developer can tune.
For training, we use the simlarge input for every bench-

mark. When evaluating a configuration, we collect samples
of 30 iterations, and we continue to collect samples until our
test for the normality of the sample output quality means
returns a p-value of at least 0.1, indicating 90% confidence
that the underlying distribution is normal. For more precise
distributions, the developer should increase the sample size
and the critical p-value. After a group of sample means is
determined to be normally distributed, we accept a configu-
ration if the t-test comparing its output quality distribution
to the baseline returns a p-value of 0.05. Again, increasing
the critical p-value will result in greater certainty in the test
decision.

Introducing the Pseudorandom Value Generator Selection in the Compilation Toolchain CGO ’20, February 22–26, 2020, San Diego, CA, USA

bodytrack ferret

swaptions
canneal

stre
amcluster

geo. mean
0

20

40

60

80

100

Ti
m

e
[%

]

Baseline

Figure 7. Time saved by PRV Jeeves with respect to the time
spent by the original binaries (i.e., compiled with clang -O3
-march=native). When supplied with native input, PRV Jeeves
binaries use on average only 76% of the baseline time to gener-
ate an output of the same quality. This time reduction is obtained
automatically.

Once the training phase has selected an optimal configura-
tion, we test this configuration by running it 100 times under
the native input. We do the same with the baseline config-
uration, and we compare the execution times and output
qualities of iteration.

4.2 Performance Obtained by PRV Jeeves
Our compiler is able to automatically decrease the execu-
tion time of randomized programs without sacrificing their
output quality. This is done by choosing PRVGs that better
fit the specific needs of a compiled program. On average,
we decrease the overall execution time down to 76% of the
baseline (clang -O3 -march=native) (shown in Figure 7).
The source of this speedup is described next.

Randomized programs are often designed with an itera-
tive algorithm in it. This allows them to reach the minimum
output quality robustly because such output gets further
improved iteration after iteration (e.g., by trying different
centroids in a K-cluster benchmark while keeping the best
solution in memory: streamcluster). In randomized pro-
grams, like the PARSEC ones we target, there is a relation
between the number of iterations needed to reach the tar-
get output quality and the quality of the PRVGs. The better
PRVGs, the less iterations are needed. However, a PRVGwith
important randomness generates highly random values, but
it costs in terms of latency and memory consumption. On the
other hand, low quality PRVGs generate less quality random
values, but they leave a small memory footprint and they are
fast. PRV Jeeves finds the best sweet spot between quality of
PRVGs, and therefore algorithm iterations, and their costs.
This is what generated the time savings shown in Figure 7.

To further measure this relation between algorithm iter-
ations and time saved by PRV Jeeves, Figure 8 shows the
reduction in algorithm iterations for the target benchmarks.
It is interesting to notice swaptions. This benchmark sees

bodytrack ferret

swaptions
canneal

stre
amcluster

0

20

40

60

80

100

Al
go

rit
hm

 it
er

at
io

ns
 [%

] Baseline

Figure 8. Reduction obtained by PRV Jeeves to the number of
algorithm iterations needed to converge to the same output quality
of the baseline.

the biggest reduction of algorithm iterations because of the
choice of a PRVG that generates high quality random values
(knuth_b). However, because the latency of this PRVG is
much higher than the one of the baseline, the time saving
reduction shown in Figure 7, while significant, is less than
the algorithm iteration reduction.
Finally, it is important to mention that PRV Jeeves chose

different PRVGs for different benchmarks. So a simple static
solution that, for example, picks always the PRVG with the
highest amount of randomness is sub-optimal. For exam-
ple, PRV Jeeves selected the ranlux48_base PRVG for body-
track. Recalling Figure 1, this was the fastest PRVG on the
randomness-latency pareto frontier and near the inflection
point. On the other hand, PRV Jeeves selected the knuth_-
b PRVG for swaptions, which is a more balanced tradeoff
between randomness and latency.

4.3 Output Quality
To preserve the original output quality, PRV Jeeves imple-
ments the tests described in Section 3.7. These tests are used
during the autotuning loop to discard solutions that lead to
less quality outputs.
To evaluate this aspect of PRV Jeeves, we measure the

output quality of each benchmark over 100 runs. We do this
for two binaries for each benchmark: the one generated by
the baseline (i.e., clang -O3 -march=native) and the one
generated by PRV Jeeves. Notice that each run of a binary
generates a different output because of the randomness of
the compiled program. It is important to understand the dis-
tribution of these outputs and whether PRV Jeeves changed
such distribution.

Figure 9 shows the box plots of the output qualities of 100
iterations of both the baseline and our optimized version of
each benchmark. Each output is compared against the oracle
output, which defines the 100% output quality. The differ-
ences between the distributions of output qualities between
the baseline and PRV Jeeves are too small. In other words, a
t-test was unable to determine any significant difference in
the overall distributions of the output distortions.

CGO ’20, February 22–26, 2020, San Diego, CA, USA Michael Leonard and Simone Campanoni

bodytrack ferret

swaptions
canneal

stre
amcluster

0
20
40
60
80

100

Ou
tp

ut
 q

ua
lit

y
[%

]

Baseline PRV Jeeves

Figure 9. A comparison of the qualities of output produced by
the original, baseline binaries and by the ones generated by PRV
Jeeves. The two distributions are not significantly different.

4.4 Impact of Alias Analyses
PRV Jeeves relies on the alias analyses included in the latest
HELIX [14, 41] compiler to identify the states of the PRVGs
used by the input program. Our results were 2-15% worst
when the alias analysis of the earlier HELIX compiler [15, 16]
was used. Low accuracy in alias analyses translates into
less PRVGs identified and, therefore, less PRVGs targeted by
PRV Jeeves. Less PRVG targeted means less opportunities
to reduce the execution time of a program. To evaluate this
impact, we run PRV Jeeves substituting the alias analyses
with the oracle information. We generated such oracle with
a tool built in house, which is similar to [29].
The accuracy of the alias analyses used is good enough

for the benchmarks we targeted. This is shown by Figure 10.
Even a potentially overestimate of the best possible alias
analysis accuracy (i.e., oracle) does not increase significantly
the time saved by PRV Jeeves.

5 Related Work
Although this work provides the first deep study into PRVG
tradeoffs and the first automatic PRVG selector, PRV Jeeves is
indebted to various prior work in pseudorandomness, auto-
tuning, and instruction selection. We detail each as follows.

Pseudorandomness. PRV Jeeves can target several ex-
isting random value generators. C++ specifically draws on
influential research to use three basic classes of PRVGs: linear
congruential engines [35], mersenne twister engines [37],
and subtract with carry engines, which are a subset of a
more general class of PRVGs known as generalized Fibonacci
generators [25]. The same work that presented generalized
Fibonacci PRVGs also motivated the use for one of C++’s
adaptors, the discard block engine. The other adaptor, the
shuffle order engine, is drawn from an extensive study into
numerical techniques [53]

For evaluating PRVGs, the computing community is deeply
indebted to the seminal work of Geroge Marsaglia [36]. The
tests developed by Marsaglia are still the standard barom-
eters for PRVG quality, and this work specifically borrows
the birthday spacings test from the Diehard suite.

bodytrack ferret

swaptions
canneal

stre
amcluster

geo. mean
0

20

40

60

80

100

Ti
m

e
[%

]

Baseline AA Oracle

Figure 10. Impact of improving alias analysis in PRV Jeeves.
Current alias analyses are good enough to reach most opportunities
to select better PRVGs.

At a more meta-level, randomness is completely essential
to countless sub-domains of computing, including but not
limited to information theory [50], machine learning and
data analytics [26, 27, 40, 43, 46, 47, 49], computer vision [20,
21, 51], and quantum computing [30, 33, 34]. Furthermore,
although much of the work in cryptography has focused on
true randomness, PRVGs are still prevalent in cryptographic
applications [12, 13, 32, 48]. Randomness in both security
and consensus algorithms have significant implications to
large-scale distributed systems, such as the Internet of Things
[8, 9, 28, 38, 44].

Autotuning. PRV Jeeves relies on an ad-hoc autotuner
to accelerate the search for good configurations of PRVGs.
Our autotuner is built upon the OpenTuner framework [6].
This is similarly done by other projects [5, 7, 19, 45, 52].

Instruction Selection. One of the most important tasks
for any compiler is the optimal selection of instructions to
generate in the target language, subject to the semantic of
the original code. PRV Jeeves can be conceptualized as a
specific type of instruction selector - we select the best PRVG
instructions. However, more general instruction selection
has been an active and influential topic of research within the
compiler community since its inception [3, 4, 10, 17, 22–24].

6 Conclusion
Existing programs rarely get the most out of their pseudoran-
dom value generators. We have presented the first in-depth
study of PRVG’s in C++ and the first compiler with a fully
automatic PRVG selector. Through PRV Jeeves, we have
demonstrated that migrating the choice of which PRVGs to
use to a compiler comes with no cost; developers can stop
thinking about PRVGs entirely and get significant perfor-
mance improvements.

Acknowledgments
This project is made possible by support from the United
States National Science Foundation via the grant CNS1753743.

Introducing the Pseudorandom Value Generator Selection in the Compilation Toolchain CGO ’20, February 22–26, 2020, San Diego, CA, USA

References
[1] [n.d.]. <random> - C++ Reference. http://www.cplusplus.com/

reference/random/
[2] [n.d.]. Random Number Generation in C++11. https://isocpp.org/

files/papers/n3551.pdf
[3] A V Ah and S C Johnson. [n.d.]. Optimal Code Generation for Expres-

sion Trees. ([n. d.]), 14.
[4] Alfred V. Aho, Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K.

Tjiang. 1989. Code Generation Using Tree Matching and Dynamic
Programming. ACM Trans. Program. Lang. Syst. 11, 4 (Oct. 1989),
491–516. https://doi.org/10.1145/69558.75700

[5] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. [n.d.]. PetaBricks: A Lan-
guage and Compiler for Algorithmic Choice. ([n. d.]), 12.

[6] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.
O’Reilly, and S. Amarasinghe. 2014. OpenTuner: An extensible frame-
work for program autotuning. In 2014 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT). 303–315.
https://doi.org/10.1145/2628071.2628092

[7] J. Ansel, Y. L.Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amaras-
inghe. 2011. Language and compiler support for auto-tuning variable-
accuracy algorithms. In International Symposium on Code Generation
and Optimization (CGO 2011). 85–96. https://doi.org/10.1109/CGO.
2011.5764677

[8] James Aspnes. 2003. Randomized protocols for asynchronous con-
sensus. Distributed Computing 16, 2 (Sept. 2003), 165–175. https:
//doi.org/10.1007/s00446-002-0081-5

[9] James Aspnes and Maurice Herlihy. 1990. Fast randomized consensus
using shared memory. Journal of Algorithms 11, 3 (Sept. 1990), 441–461.
https://doi.org/10.1016/0196-6774(90)90021-6

[10] A. Balachandran, D. M. Dhamdhere, and S. Biswas. 1990. Efficient
retargetable code generation using bottom-up tree pattern matching.
Computer Languages 15, 3 (Jan. 1990), 127–140. https://doi.org/10.
1016/0096-0551(90)90006-B

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
2008. The PARSEC benchmark suite: characterization and architectural
implications. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques - PACT ’08. ACM Press,
Toronto, Ontario, Canada, 72. https://doi.org/10.1145/1454115.1454128

[12] L. Blum, M. Blum, and M. Shub. 1986. A Simple Unpredictable Pseudo-
Random Number Generator. SIAM J. Comput. 15, 2 (May 1986), 364–
383. https://doi.org/10.1137/0215025

[13] M. Blum and S. Micali. 1984. How to Generate Cryptographically
Strong Sequences of Pseudorandom Bits. SIAM J. Comput. 13, 4 (Nov.
1984), 850–864. https://doi.org/10.1137/0213053

[14] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones,
Gu-Yeon Wei, and David Brooks. 2014. HELIX-RC: An Architecture-
compiler Co-design for Automatic Parallelization of Irregular Pro-
grams. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA,
217–228. http://dl.acm.org/citation.cfm?id=2665671.2665705

[15] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa
Reddi, Gu-Yeon Wei, and David Brooks. 2012. HELIX: Automatic
Parallelization of Irregular Programs for Chip Multiprocessing. In
Proceedings of the Tenth International Symposium on Code Generation
and Optimization (CGO ’12). ACM, New York, NY, USA, 84–93. https:
//doi.org/10.1145/2259016.2259028

[16] Simone Campanoni, Timothy Jones, Glenn Holloway, Gu. Y. Wei, and
David Brooks. 2012. The HELIX project: Overview and directions. In
DAC Design Automation Conference 2012. 277–282. https://doi.org/10.
1145/2228360.2228412

[17] D. R. Chase. 1987. An Improvement to Bottom-up Tree Pattern Match-
ing. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL ’87). ACM, New York,

NY, USA, 168–177. https://doi.org/10.1145/41625.41640 event-place:
Munich, West Germany.

[18] Ralph B. D’Agostino. 1971. An Omnibus Test of Normality for Mod-
erate and Large Size Samples. Biometrika 58, 2 (1971), 341–348.
https://doi.org/10.2307/2334522

[19] Enrico A. Deiana, Vincent St-Amour, Peter A. Dinda, Nikos Hardav-
ellas, and Simone Campanoni. 2018. Unconventional Parallelization
of Nondeterministic Applications. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’18). ACM, New York, NY, USA,
432–447. https://doi.org/10.1145/3173162.3173181

[20] J. Deutscher, A. Blake, and I. Reid. 2000. Articulated body motion
capture by annealed particle filtering. In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662),
Vol. 2. 126–133 vol.2. https://doi.org/10.1109/CVPR.2000.854758

[21] J. Deutscher, B. North, B. Bascle, and A. Blake. 1999. Tracking through
singularities and discontinuities by random sampling. In Proceedings
of the Seventh IEEE International Conference on Computer Vision, Vol. 2.
1144–1149 vol.2. https://doi.org/10.1109/ICCV.1999.790409

[22] Yuanbo Fan, Simone Campanoni, and Russ Joseph. 2019. Time squeez-
ing for tiny devices. In Proceedings of the 46th International Symposium
on Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26,
2019. 657–670. https://doi.org/10.1145/3307650.3322268

[23] Yuanbo Fan, Tianyu Jia, Jie Gu, Simone Campanoni, and Russ Joseph.
2018. Compiler-guided Instruction-level Clock Scheduling for Timing
Speculative Processors. In Proceedings of the 55th Annual Design Au-
tomation Conference (DAC ’18). ACM, New York, NY, USA, Article 40,
6 pages. https://doi.org/10.1145/3195970.3196013

[24] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. 1992.
Engineering a simple, efficient code-generator generator. ACM Letters
on Programming Languages and Systems 1, 3 (Sept. 1992), 213–226.
https://doi.org/10.1145/151640.151642

[25] Bert F. Green, J. E. Keith Smith, and Laura Klem. 1959. Empirical Tests
of an Additive Random Number Generator. J. ACM 6, 4 (Oct. 1959),
527–537. https://doi.org/10.1145/320998.321006

[26] Thomas L Griffiths and Joshua B Tenenbaum. [n.d.]. From Algorithmic
to Subjective Randomness. ([n. d.]), 8.

[27] Thomas L Griffths and Joshua B Tenenbaum. [n.d.]. Probability, algo-
rithmic complexity, and subjective randomness. ([n. d.]), 6.

[28] Haowen Chan, A. Perrig, and D. Song. 2003. Random key predistri-
bution schemes for sensor networks. In Proceedings 19th International
Conference on Data Engineering (Cat. No.03CH37405). IEEE Comput.
Soc, Berkeley, CA, USA, 197–213. https://doi.org/10.1109/SECPRI.
2003.1199337

[29] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. 2010. SD3: A scalable
approach to dynamic data-dependence profiling. In 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE, 535–
546.

[30] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C.
Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. 2008. Randomized
benchmarking of quantum gates. Physical Review A 77, 1 (Jan. 2008),
012307. https://doi.org/10.1103/PhysRevA.77.012307

[31] C. Lattner and V. Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004. IEEE, San
Jose, CA, USA, 75–86. https://doi.org/10.1109/CGO.2004.1281665

[32] M. Luby and C. Rackoff. 1988. How to Construct Pseudorandom
Permutations from Pseudorandom Functions. SIAM J. Comput. 17, 2
(April 1988), 373–386. https://doi.org/10.1137/0217022

[33] Easwar Magesan, J. M. Gambetta, and Joseph Emerson. 2011. Scalable
and Robust Randomized Benchmarking of Quantum Processes. Physi-
cal Review Letters 106, 18 (May 2011), 180504. https://doi.org/10.1103/
PhysRevLett.106.180504

[34] Easwar Magesan, Jay M. Gambetta, B. R. Johnson, Colm A. Ryan,
Jerry M. Chow, Seth T. Merkel, Marcus P. da Silva, George A. Keefe,

http://www.cplusplus.com/reference/random/
http://www.cplusplus.com/reference/random/
https://isocpp.org/files/papers/n3551.pdf
https://isocpp.org/files/papers/n3551.pdf
https://doi.org/10.1145/69558.75700
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/CGO.2011.5764677
https://doi.org/10.1109/CGO.2011.5764677
https://doi.org/10.1007/s00446-002-0081-5
https://doi.org/10.1007/s00446-002-0081-5
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1016/0096-0551(90)90006-B
https://doi.org/10.1016/0096-0551(90)90006-B
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1137/0215025
https://doi.org/10.1137/0213053
http://dl.acm.org/citation.cfm?id=2665671.2665705
https://doi.org/10.1145/2259016.2259028
https://doi.org/10.1145/2259016.2259028
https://doi.org/10.1145/2228360.2228412
https://doi.org/10.1145/2228360.2228412
https://doi.org/10.1145/41625.41640
https://doi.org/10.2307/2334522
https://doi.org/10.1145/3173162.3173181
https://doi.org/10.1109/CVPR.2000.854758
https://doi.org/10.1109/ICCV.1999.790409
https://doi.org/10.1145/3307650.3322268
https://doi.org/10.1145/3195970.3196013
https://doi.org/10.1145/151640.151642
https://doi.org/10.1145/320998.321006
https://doi.org/10.1109/SECPRI.2003.1199337
https://doi.org/10.1109/SECPRI.2003.1199337
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1137/0217022
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevLett.106.180504

CGO ’20, February 22–26, 2020, San Diego, CA, USA Michael Leonard and Simone Campanoni

Mary B. Rothwell, Thomas A. Ohki, Mark B. Ketchen, and M. Steffen.
2012. Efficient Measurement of Quantum Gate Error by Interleaved
Randomized Benchmarking. Physical Review Letters 109, 8 (Aug. 2012),
080505. https://doi.org/10.1103/PhysRevLett.109.080505

[35] GEORGE Marsaglia. 1972. The Structure of Linear Congruential Se-
quences. In Applications of Number Theory to Numerical Analysis, S. K.
Zaremba (Ed.). Academic Press, 249–285. https://doi.org/10.1016/B978-
0-12-775950-0.50013-3

[36] G. MARSAGLIA. 2008. The Marsaglia Random Num-
ber CDROM including the Diehard Battery of Tests of
Randomness. http://www.stat.fsu.edu/pub/diehard/ (2008).
https://ci.nii.ac.jp/naid/10025030014/

[37] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator. ACM Transactions on Modeling and Computer Simulation 8,
1 (Jan. 1998), 3–30. https://doi.org/10.1145/272991.272995

[38] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
2016. The Honey Badger of BFT Protocols. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16). ACM, New York, NY, USA, 31–42. https://doi.org/10.1145/
2976749.2978399 event-place: Vienna, Austria.

[39] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Ri-
nard. 2010. Quality of Service Profiling. In International Conference on
Software Engineering (ICSE).

[40] FrankMoosmann, B Triggs, and Frederic Jurie. 2006. Randomized Clus-
tering Forests for Building Fast and Discriminative Visual Vocabularies.
Neural Information Processing Systems (Jan. 2006).

[41] Niall Murphy, Timothy Jones, Robert Mullins, and Simone Campanoni.
2016. Performance Implications of Transient Loop-carried Data Depen-
dences in Automatically Parallelized Loops. In Proceedings of the 25th
International Conference on Compiler Construction (CC 2016). ACM,
New York, NY, USA, 23–33. https://doi.org/10.1145/2892208.2892214

[42] Nicholas Nethercote and Julian Seward. [n.d.]. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. ([n. d.]), 12.

[43] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. 2002.
Streaming-data algorithms for high-quality clustering. In Proceedings
18th International Conference on Data Engineering. IEEE Comput. Soc,
San Jose, CA, USA, 685–694. https://doi.org/10.1109/ICDE.2002.994785

[44] Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. [n.d.]. Cryp-
tographic Approach to “Privacy-Friendly” Tags. ([n. d.]), 17.

[45] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-
Kelley, and Saman Amarasinghe. [n.d.]. Portable Performance on
Heterogeneous Architectures. ([n. d.]), 13.

[46] Ali Rahimi and Ben Recht. [n.d.]. Random Features for Large-Scale
Kernel Machines. ([n. d.]), 8.

[47] Ali Rahimi and Benjamin Recht. [n.d.]. Weighted Sums of Random
Kitchen Sinks: Replacing minimization with randomization in learning.
([n. d.]), 8.

[48] Andrew Rukhin, Juan Soto, James Nechvatal, Elaine Barker, Stefan
Leigh, Mark Levenson, David Banks, Alan Heckert, and James Dray.
[n.d.]. A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. ([n. d.]), 131.

[49] Andrew M Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand,
Bipin Suresh, and Andrew Y Ng. [n.d.]. On Random Weights and
Unsupervised Feature Learning. ([n. d.]), 9.

[50] Claude E. Shannon. 1957. Certain results in coding theory for noisy
channels. Information and Control 1, 1 (Sept. 1957), 6–25. https:
//doi.org/10.1016/S0019-9958(57)90039-6

[51] Hedvig Sidenbladh, Michael J. Black, and David J. Fleet. 2000. Sto-
chastic Tracking of 3D Human Figures Using 2D Image Motion. In
Proceedings of the 6th European Conference on Computer Vision-Part II
(ECCV ’00). Springer-Verlag, London, UK, UK, 702–718. http://dl.acm.
org.turing.library.northwestern.edu/citation.cfm?id=645314.649449

[52] C. Tapus, I-Hsin Chung, and J. K. Hollingsworth. 2002. Active Har-
mony: Towards Automated Performance Tuning. In SC ’02: Proceed-
ings of the 2002 ACM/IEEE Conference on Supercomputing. 44–44.
https://doi.org/10.1109/SC.2002.10062

[53] Joab R Winkler. 1993. Numerical recipes in C: The art of scientific
computing, second edition. Endeavour 17, 4 (Jan. 1993), 201. https:
//doi.org/10.1016/0160-9327(93)90069-F

https://doi.org/10.1103/PhysRevLett.109.080505
https://doi.org/10.1016/B978-0-12-775950-0.50013-3
https://doi.org/10.1016/B978-0-12-775950-0.50013-3
https://ci.nii.ac.jp/naid/10025030014/
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2892208.2892214
https://doi.org/10.1109/ICDE.2002.994785
https://doi.org/10.1016/S0019-9958(57)90039-6
https://doi.org/10.1016/S0019-9958(57)90039-6
http://dl.acm.org.turing.library.northwestern.edu/citation.cfm?id=645314.649449
http://dl.acm.org.turing.library.northwestern.edu/citation.cfm?id=645314.649449
https://doi.org/10.1109/SC.2002.10062
https://doi.org/10.1016/0160-9327(93)90069-F
https://doi.org/10.1016/0160-9327(93)90069-F

	Abstract
	1 Introduction
	2 Opportunity
	2.1 Micro-benchmarks
	2.2 Platforms
	2.3 Results

	3 The PRV Jeeves Solution
	3.1 PRV Jeeves in a Nutshell
	3.2 PRVG Database
	3.3 Middle-End Compiler
	3.4 Autotuner
	3.5 Back-End Compiler
	3.6 Profiler
	3.7 Output Distortion Evaluator

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Obtained by PRV Jeeves
	4.3 Output Quality
	4.4 Impact of Alias Analyses

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

