
Workload Characterization of
Nondeterministic Programs Parallelized by STATS

Enrico A. Deiana
Northwestern University
ead@u.northwestern.edu

Simone Campanoni
Northwestern University

simonec@eecs.northwestern.edu

Abstract—Chip Multiprocessors (CMP) are everywhere, from
mobile systems, to servers. Thread Level Parallelism (TLP) is the
characteristic of a program that makes use of the parallel cores of
a CMP to generate performance. Despite all efforts for creating
TLP, multiple cores are still underutilized even though we have
been in the multicore era for more than a decade. Recently,
a new approach called STATS has been proposed to generate
additional TLP for complex and irregular nondeterministic pro-
grams. STATS allows a developer to describe application-specific
information that its compiler uses to automatically generate a
new source of TLP. This new source of TLP increases with the
size of the input and it has the potential to generate scalable
performance with the number of cores. Even though STATS
obtains most of its potential, some of it is still unreached. This
paper identifies and characterizes the sources of overhead that
are currently blocking STATS parallelized programs to achieve
their full potential. To this end, we characterized the workloads
generated by the STATS compiler on a 28 core Intel-based
machine (dual-socket). This paper shows that the performance
loss is due to a combination of factors: some can be optimized
via engineering efforts and some require a deeper evolution
of STATS. We also highlight potential solutions to significantly
reduce most of this overhead. Exploiting these insights will
unblock scalable performance for the parallel binaries generated
by STATS.

Keywords-nondeterminism; parallelizing compiler; specula-
tion; workload characterization;

I. INTRODUCTION

The thread-level parallelism (TLP) of a program defines the
performance and the energy efficiency of a commodity system
in this multicore era. Unfortunately, typical programs suffer
from low—and non-scalable—TLP due to data exchanges
between threads. These data exchanges are called actual
dependences. This is in contrast with apparent dependences,
which usually exist (and require synchronization) because a
developer (or a tool) could not prove that data motion is not
actually necessary (e.g., the data generated by one thread is not
actually read by the other). These two types of dependences
are the main cause of low TLP in today’s software, which
leads to underutilized hardware cores in commodity platforms
and, therefore, low performance.

To date, tremendous research effort has resulted in tech-
niques, such as thread-level speculation, that alleviate the
impact of apparent dependences [24], [29], [35], [37], [48],
[49], [51], [53], [58], [60]. The results of this effort landed
in some today’s commodity processors, which now include
transactional memories that are required by these techniques.

This is not enough. Cores are still underutilized. To truly
unleash the performance potential present in current (and
even more so future) hardware, we need to address actual
dependences as well.

Recently, a new compiler-based approach called STATS
has identified a new opportunity to generate additional TLP
from nondeterministic workloads while preserving the original
program semantics [20]. To this end, STATS targets a subset
of actual dependences called state dependences: non-transitive
dependences that update the state of a computation based
on the previous state. Hence, a state dependence forms a
dependence chain constraining the TLP of its program. Often,
an update related to a state dependence does not depend on its
previous updates that are old enough. STATS exploits this short
memory property by speculating on how many state-updates
a given one depends on and it splits accordingly the depen-
dence chain. The so-generated dependence chain segments are
linked back together at run-time exploiting the variations of
intermediate data measured while a nondeterministic program
runs. The short memory property allows STATS to generate a
new source of TLP that has the potential of scaling linearly
with the amount of inputs (state updates) that a program needs
to process.

Intuitively, the TLP generated by STATS should translate
in performance that scales linearly with the number of cores
when enough inputs are processed. However, the performance
increase measured on commodity multicores is sub-linear. This
paper characterizes the workloads generated by STATS to
understand what are the limiting factors that are blocking
STATS to fulfill its potential. We show that the performance
loss is composed by a combination of factors. Some of them
can be eliminated by relatively simple engineering efforts,
others require a deeper evolution of the STATS approach.

After further describing STATS (Section II), we expose the
sources of overhead that are blocking the generated parallel
binaries to achieve linear performance scaling (Section III).
Then, we show the empirical evaluations of these overhead
sources on a 28 core, 2 sockets Intel-based platform (Sec-
tion V). Finally, motivated by our evaluations, we conclude
suggesting the most promising evolutions of STATS for ob-
taining its full potential.

II. THE STATS APPROACH TO EXTRACT TLP

Modern nondeterministic workloads often possess depen-
dences that serialize large portions of these programs. STATS



Fig. 1: Code pattern followed by a state data dependence.

performs a new compiler transformation that reorganizes these
dependences to create additional TLP for these nondetermin-
istic programs. This section describes what programs STATS
targets, which properties it takes advantage of to perform its
transformation (Section II-A), what is the execution model
STATS follows to generate additional TLP (Section II-B), and
how this execution model is enforced (Section II-C).

A. State Dependence

Program’s dependences are either actual or apparent. Ap-
parent dependences are those that a compiler (or developer)
could not prove their non-existence, so the compiled program
is forced to satisfy them. Dependences created by the conser-
vativeness of alias analysis are examples of apparent depen-
dences. Actual dependences, instead, are those that require
actual data transfers while the program executes. Producer-
consumer dependences are examples of actual dependences.

STATS focuses on a subset of actual dependences that
are found in nondeterministic programs. These dependences
are called state dependences because the data transfers that
are necessary to satisfy them is related to the state of a
computation [20].

A state dependence is a read-after-write actual dependence
that updates the current state of the computation based on the
previous computational state. Fig. 1 shows the pattern followed
by a state dependence. The computation performed by the ith

call of update() takes as input the state Si−1 of the previous
computation along with the input Ii. This invocation produces
an output Oi and updates the computational state to Si. The
new state Si is then transferred to the subsequent call of
update(). These data transfers create the state dependence.

STATS allows the developer to explicitly expose state de-
pendences. Its compiler automatically extracts a new source
of TLP from the described state dependences. An example of
a nondeterministic program that possess a state dependence is
bodytrack. We will use this program as a driving example
in the rest of this section to describe the properties of state
dependences in a real workload as well as the related TLP that
STATS generates from them.
bodytrack analyzes a stream of images [5]. For each

image, bodytrack identifies the human bodies found in it
and it draws the edges of their body parts (e.g., legs, arms,
head) over the original image. bodytrack does not know
the exact position of a body within an image. Therefore,
the program takes multiple guesses on where the body could
be in the space. To increase the accuracy of the algorithm,
bodytrack exploits the fact that where the body is at a

0 1 2 3 4 5 6 7 8 9 10 11core 0

time

Processing input 0 Processing input 11

(a) A state dependence serializes the execution of a program.
0 1 2

3 4 5

6 7 8

9 10 11

core 0

core 1

core 2

core 3

1 2

4 5

7 8

Time saved

(b) STATS generates additional TLP that reduces the execution time.

Fig. 2: The STATS execution model.

given instant is likely to be close to where the body was an
instant before. To this end, bodytrack takes random guesses
on where the body is within an image Ii by distributing
such guesses close to where the body was found in the
previous image Ii−1. This is performed every time there is
a previous image to exploit (i.e., every image but the first
one). Taking advantage of where the body was in the previous
image is essential: the accuracy obtained without it is too
low for practical uses. Finally, using the state (i.e., body
part locations) of the computation of the previous image to
process the current one creates a chain of read-after-write data
dependences throughout the processing of the whole sequence
of images given as input. This chain of actual dependences
blocks the TLP of the original bodytrack and, therefore,
its performance on multicore platforms. This is an example of
state dependence.

While the location of a body depends on where it was the
instant before, it does not depend on where the body was a
long time ago. In other words, where the body is at image Ii

does not depend on where it was in the image Ii−k with high
k. STATS takes advantage of this short memory property to
generate additional TLP by enforcing the parallel execution
model described next.

B. The STATS Execution Model
STATS creates additional TLP for a nondeterministic pro-

gram by exploiting the short memory property of state depen-
dences. To do so, STATS enforces a parallel execution model
in the generated binary that unconventionally satisfies such
dependences.

Additional TLP generated by STATS. STATS divides the
computation of the original program (serialized by a state
dependence as shown in Fig. 2a) into non-overlapping chunks
of computation. These chunks are distributed on different
threads, which run on different cores (Fig. 2b). Except for
the first chunk, which is the first part of the original program,
the others need an initial state to start their computation. In
the original code the initial state of an input chunk comes
from the processing of the last input of its respective previous
chunk. STATS takes advantage of the short memory property
by creating an alternative producer of the initial state for each
chunk. The computation performed by an alternative producer
is shown in light colored boxes in Fig. 2b; the actual program
computation, instead, is represented by dark colored boxes.

2



An alternative producer processes only k inputs (k = 2 in the
example of Fig. 2b) prior to the first one of the related chunk,
instead of processing all previous inputs like the original
producer does. Therefore, the alternative producer is able to
feed the initial state to its related chunk faster than the original
producer could have done. Also, the chunks of computation are
now independent from each other because they consume the
state (e.g., where the body is in the image before the first one
of the current chunk) generated by the alternative producer.
This enable STATS to run these computation chunks in parallel
generating additional TLP.

Preserving the original semantics. STATS preserves the
original semantics of the program being compiled. To this end,
the chunks of computation after the first one are considered
speculative because it is unknown whether or not the state
coming from an alternative producer (speculative state) is as
good as the state that would have come from the original com-
putation (original state). To understand whether or not these
speculations can commit, STATS relies on its runtime, which
commits or aborts speculations in the sequential order dictated
by the original program semantics. To decide whether or not
a speculation can commit, the STATS runtime compares the
speculative state generated by the related alternative producer
with the original state generated at the end of the previous
chunk of computation. If the speculative state matches the
original one, then the STATS runtime commits the current
chunk of computation and move on to check the next one. If
these states differ, then this difference can be due to either (i)
the alternative producer did not process enough inputs prior
to the current chunk of computation (i.e., the length of the
short memory property was incorrectly estimated by STATS)
or (ii) the data fluctuations generated by the nondeterminism
of the original code. In the first case (i), the STATS runtime
aborts the computation and runs it again starting from the
original state generated by the previous chunk of computation
(original producer). In the second case (ii), the STATS runtime
commits the computation and move on to check the next one.
To distinguish between these two cases, the STATS runtime
processes the set of inputs prior to the current speculative
chunk multiple times generating multiple original states. These
original states differ because of the nondeterminism of the
original algorithm. For example, in Fig. 2b the computation
related to input 1 and input 2 of the first chunk that runs
on core 0 can be executed multiple times, leading to multi-
ple different original states. Finally, the STATS runtime checks
if the current speculative state (generated by the alternative
producer, the light colored boxes in Fig. 2b) matches one of
the original states. If no original state matches the speculative
one, then we are in the first case (i) and the STATS runtime
aborts and restarts the current computation. Otherwise, we are
in the second case (ii) and the STATS runtime commits the
current computation.

STATS design space. The number of inputs that alternative
producers process to comply with the short memory property,
the maximum number of extra original states that are generated
by the STATS runtime, and the length of each computation
chunk are parameters related to a state dependence. Inde-

Fig. 3: STATS is composed by three compilers, a runtime, a profiler,
and an autotuner. The autotuner is in charge to find the configuration
that optimizes the program’s performance.

pendently on how these parameters are set, the original pro-
gram semantics is preserved thanks to the checks performed
by the STATS runtime. However, to increase the program’s
performance, these parameters need to be properly tuned to
balance the likelihood of committing speculative computation
with the extra computation required by the STATS execution
model. The parameters create a design space that STATS
automatically explores. This process is described next.

C. The STATS System

The STATS system is composed by three compilers, an
autotuner, and a runtime. This system enforces the previously
described execution model using the compilation flow shown
in Fig. 3. STATS takes as input the source code of a program,
extended with the STATS interface. The STATS interface is a
language extension that makes state dependences explicit to
STATS compilers.

The front-end compiler translates the language extension to
standard C++ code, which is then given to the middle-end
compiler along with the program’s sources. The middle-end
compiler automatically generates alternative producer code
and the design space. The design space is composed by all
values that state dependence parameters can assume (e.g.,
number of inputs the alternative producer of a given state
dependence will process).

The autotuner chooses a configuration in this design space,
which is passed to the back-end compiler. The back-end
compiler implements the given configuration in the program
and it embeds the STATS runtime in the generated binary. This
binary is then given to the profiler.

The profiler executes the binary using the developer pro-
vided training inputs and collects profiling information such
as execution time and energy consumption of the program.
These information are given back to the autotuner, which uses
them to choose the next configuration. STATS keeps iterating
the autotuner, back-end, profiler loop until it outputs the best
binary that corresponds to the best seen configuration with
respect to the objective that the autotuner is optimizing for
(e.g., execution time).

III. SOURCES OF OVERHEAD

Parallel binaries generated by STATS include an additional
source of TLP that has the potential to scale with the amount
of input that needs to be processed. To this end, STATS intro-
duces additional computation and inter-core communication
to enforce the execution model described in Section II-B.

3



core 0

core 1

time

Imbalance

Code before STATS STATS setup chunk 0 Code after STATS

chunk 1

Fig. 4: Processing different number of inputs leads to imbalance
computation.

This additional computation and communication generates
overhead in the program’s execution that blocks STATS to
completely fulfill its potential. To understand how much of
this overhead can be eliminated by engineering efforts and
how much it requires a deeper evolution, it is important
to understand and study the components of this overhead
and their relative importance. This section describes such
components and Section V empirically evaluates them.

A. Imbalance computation
The thread that runs the longest is the one that defines the

performance of a parallel program. Therefore, the performance
lost because of imbalance execution is the amount of time
spent when all threads but one is running. This loss needs
to be erased to scale the performance of a parallel program
linearly with the number of cores. Namely, the computation
needs to be perfectly balanced, so that at any point in time
every core is executing some computation.

Parallel binaries generated by the STATS compiler can show
imbalance computation at run-time. This is shown in Fig. 4
and it is created by having an imbalance division of the
computation between threads. For example, imbalance can
be created if different threads in the STATS execution model
shown in Fig. 2b process different number of inputs. Another
potential source of imbalance for the STATS execution model
is generated by having different computation latencies for
different inputs distributed between threads. Finally, imbalance
can be generated if different threads start to execute their
chunk of computation at different times because of thread
synchronization overhead.

B. Extra computation
To implement the execution model described in Sec-

tion II-B, the binary generated by the STATS back-end com-
piler performs extra work at run-time that was not part of
the original program. What follows is a description of the
components of this extra computation.

Generating speculative states. The STATS execution
model (Fig. 2b) processes in parallel a sequence of inputs by
splitting it into chunks. Each chunk is processed in parallel.
A thread generated by STATS that processes a chunk needs
to start from a computational state. Such computational state
is computed by an alternative producer exploiting the short
memory property of the related state dependence. In other
words, the goal of an alternative producer is to predict the
state that will be generated at the end of the computation of
the previous chunk.

Alternative producers enable the extraction of additional
TLP from the original code. To do so, they perform extra
computation that was not included in the original program. An

chunk 1

Code before STATS STATS setup chunk 0 Code after STATScore 0

core 1

core 2

core 3

time

Alternative
producer

Computation of multiple
original states

Check for
speculative/
original
state match

Fig. 5: STATS parallelized programs perform extra work because
of the execution model that STATS enforces.

example of execution of an alternative producer is highlighted
in Fig. 5. In this example, the STATS thread running on
core 3 can start processing chunk 1 only after its alternative
producer has generated its initial speculative state. To do so,
this alternative producer processes a few inputs before the
first one of chunk 1, which are the last inputs of chunk 0.
The STATS thread that processes chunk 0 does not need an
alternative producer because this is the first chunk of inputs
and, therefore, it starts from the initial state defined by the
original code. All other STATS threads process at run-time a
few inputs before the beginning of the chunk assigned to them
(like for the one running on core 3 of Fig. 5). The computation
performed by all alternative producers is overhead tightly
coupled with the STATS execution model and, as such, hard
to reduce. While this source of extra work is hard to remove,
Section V includes our empirical evaluation that suggests this
is not the dominant overhead.

Generating multiple original states. STATS generates
multiple original states at the end of each chunk of inputs
to explore the space of acceptable states. For example, Fig. 5
shows that the computation of the last few inputs of chunk
0 is repeated three times, one on core 0, one on core 1, and
the last one on core 2. This extra computation generates three
states that differ because of the nondeterminism of the original
code executed.

Having multiple states at the end of an input chunk allows
the STATS runtime to decide whether or not the speculative
state generated by the alternative producer of the next chunk
can be accepted (and therefore the chunk that starts from it
can commit). For example, the alternative producer running
on core 3 in Fig. 5 generates the speculative state that will be
used to start the computation of chunk 1. Before starting the
computation of chunk 1, this speculative state is copied and
sent to the STATS runtime, which will compare it against the
multiple original states computed on cores 0, 1, and 2.

The multiple original states are generated in parallel (e.g.,
they are generated in parallel between cores 0, 1, and 2 in the
example shown in Fig. 5). However, this computation requires
to replicate the original computation for a few inputs, multiple
times (twice in the example of Fig. 5). Generating multiple
original states at the end of each chunk of inputs can be an
important source of overhead for STATS and, therefore, it can
limit the overall performance obtained.

State comparisons. Once the multiple original states are
computed as described in the previous paragraph, the STATS
runtime compares them with the speculative state generated

4



Code before STATS STATS setup chunk 0 Code after STATS

chunk 1

core 0

core 1

core 2

core 3

time

Copy initial state
Copy speculative state
Copy current state

Fig. 6: STATS enforces an execution model that requires copies of
the computational state to execute the computation in parallel.

by the alternative producer of the subsequent chunk of inputs.
For example, when the thread running on core 0 in Fig. 5
has finished processing its chunk (i.e., chunk 0), it compares
the multiple original states of that computational point with the
speculative state generated by the alternative producer that has
run on core 3. This comparison is needed to allow the STATS
runtime to decide whether the subsequent chunk (e.g., chunk
1 of Fig. 5) can commit. These state comparisons are extra
computation that was not included in the original program and,
as such, can reduce the overall performance improvements
obtained.

Setup. STATS needs to allocate and initialize supporting
data structures to enforce the execution model described in
Section II-B. These extra data structures (input lists, states,
outputs, synchronization mechanisms such as mutexes and
conditional variables) are allocated and initialized at the begin-
ning of the STATS runtime (as Fig. 5 shows), before STATS
threads start their computation. Moreover, they are freed when
all STATS threads have ended their computation. These extra
operations is what we consider the STATS setup overhead.

State copying. STATS splits the original sequential com-
putation in different chunks and it processes them in parallel.
Hence, the STATS execution model needs multiple copies of
the computational state. This is in contrast with the original
program where only a single computational state is needed.

The multiple states are created on demand by copying
another one. For example, Fig. 6 shows that the first copy
of the state is done at STATS setup time, when the system
prepares the initial state that will then be passed to the STATS
threads. Another copy of the state (speculative state in this
case) is done by a STATS thread (chunk 1 in Fig. 6) to its
previous STATS thread (chunk 0) that has committed, so that
it can later check the quality of the speculative state. In order to
check the quality of the given speculative state, chunk 0 needs
to compute multiple original states, and does this in parallel.
So, other state copies are necessary. All these state copies can
limit the overall performance improvements obtained.

Code before STATS STATS setup chunk 0 Code after STATS

chunk 1

core 0

core 1

time

Wait for initial state

Wait for speculative state Wait for commit/abort signal

Fig. 7: Threads created by STATS need to synchronize among each
others to send or receive data or signals.

core 0

core 1

time

Code before STATS STATS setup chunk 0 Code after STATS

chunk 1

Fig. 8: Sequential code outside the code region of STATS does not
benefit from the additional TLP that STATS generates.

C. Threads synchronization

Synchronizing threads can require the program to go to the
kernel (e.g., to wakeup another thread), which takes several
hundreds of clock cycles. On top of that, threads usually
need to wait at the synchronization point for data or signals.
The combination of the extra work (going to the kernel) and
waiting time, is the synchronization overhead.

STATS generates a new source of TLP that follows a fork-
join model as Fig. 7 shows. These threads need to synchronize
with each other to comply with the execution model described
in Section II-B. Initially, all STATS threads are spawned.
A synchronization overhead is created by having all STATS
threads to wait for their initial state. Another one is created
by having a thread that has already committed its execution
(like chunk 0 in Fig. 7) waiting for the speculative state that
the thread processing the subsequent chunk of computation
(chunk 1) used as initial state. This is necessary because chunk
0 is in charge of checking whether or not there is a match
between the speculative state and its original states. Finally,
once a speculative thread (chunk 1 in the example) finishes
to process all its inputs, it has to wait for a commit/abort
signal that comes from the previous committed thread (chunk
0) before it can end the execution and join the parent thread.

D. Sequential code

Speedup benefits coming from a parallelization scheme can
only come from the program’s region that is parallelized.
Everything outside that region creates overhead that prevents
a given parallelization scheme to reach ideal performance
improvements.

STATS creates additional TLP only for the code region of
the program affected by a state dependence. Everything that is
outside this region of interest does not benefit the additional
TLP generated by STATS, hence we consider it as overhead.
Fig. 8 shows the computation outside the STATS region of
interest with the boxes Code before STATS and Code
after STATS.

E. Mispeculation and Unreachability

Mispeculation. The STATS autotuner decides the number
of parallel chunks to generate based on the balance observed
between the amount of parallelism extracted and the amount of
mispeculation generated. The more parallel chunks, the more
speculations are performed, the more potential mispeculations
there are. In other words, STATS could generate more parallel
chunks (and therefore performance) if all speculations commit.
We classify as mispeculation the speedup lost due to having
a lower number of parallel chunks (chosen by the autotuner)
because some speculations abort.

5



Unreachability. Linear speedup is often not reached even if
the parallelization does not add computation or communication
to the execution as well as all speculations commit. This
can happen because there are not enough parallel chunks to
fully utilize all cores even when all speculations commit. We
classify the speedup lost due to this aspect as unreachable.

IV. EXPERIMENTAL SETUP

This paper evaluates the potential performance roadblocks
for parallel binaries generated by STATS. To this end, we run
multiple experiments on an Intel-based platform. This section
describes the experimental setup we have used to perform our
empirical evaluations. Section V describes such evaluations.

A. Platform Setup

Our evaluation is done on a dual socket Dell PowerEdge
R730 server with two Intel Xeon E5-2695 v3 Haswell pro-
cessors running at 2.3GHz and capable of 9.60GT/s on the
QPI interface. Each processor has 14 cores with 2-way hyper-
threading, 35MB of last-level cache, and has a peak power
consumption of 120W. The cores are supported by 256GB of
main memory in 16 dual rank RDIMMs at 2133MHz. The
OS is Red Hat Enterprise Linux Server 7.2 (kernel 3.10.0-
693.21.1), with no CPU frequency governors enabled (all cores
run at maximum frequency). Hyper-Threading is turned off for
all experiments. Moreover, Turbo Boost is disabled. STATS
is built on top of LLVM 7.0.0 [33], Racket 6.8 [23], and
OpenTuner 0.8 [4].

B. Statistics

Convergence. Each data point we show is an average of
repeated runs. We run the relevant configuration as many times
as necessary to achieve a tight confidence interval where 95%
of the measurements are within 5% of the median.

Autotuning time and configurations explored. Each
benchmark has a unique design space. This impacts the time
the autotuner needs to find a good configuration and the
number of configurations explored. To address this issue, we
customized the autotuning time on a per benchmark basis,
which ranged from 2 to 72 hours. Within this autotuning time
window, the number of configurations analyzed varied from
89 to 342.

States and threads created. The STATS execution model
creates additional computational states and threads that were
not present in the original benchmarks. These extra resources
are needed to create additional TLP, generate the speculative
state and extra original states, and produce the auxiliary code.
Table I shows the total number of threads, computational
states, and their size in bytes, that STATS creates for each
benchmark when using 28 cores. Notice that the number of
threads created is greater than the number of cores. This
increases the core utilization of STATS parallelized bench-
marks compared to the original ones. The only exception is
facetrack where STATS only creates 14 parallel chunks of
computation to avoid mispeculation.

TABLE I: Total number of threads, computational states, and state
size of the “Par. STATS” version of the benchmarks shown in Fig. 9b.

Benchmark #Threads #States State size [Bytes]
swaptions 36 36 24
streamclassifier 28 28 104
streamcluster 280 280 104
bodytrack 74 12 500000
facetrack 14 14 8000
facedet-and-track 70 70 8000

C. Benchmarks

We considered the POSIX multi-threaded versions of the
PARSEC (version 3.0) benchmarks as well as their sequential
version. We have considered five out of the six benchmarks
that have been evaluated by the authors of STATS [20].
We did not consider fluidanimate because the STATS
parallelization had no significant impact in the program’s
performance. We substituted facedet with facetrack,
which performs the same task of tracking a person’s face
using a newer version of OpenCV (3.2.0). We considered a
new benchmark called facedet-and-track, which uses
a particle filter to track a person’s face only when the OpenCV
face detection API fails to do so.

Inputs. We used the native inputs provided by the PARSEC
suite for our evaluation in Section V. In some cases native
inputs are too small to properly test performance scalability
on today’s platforms. This has been already observed by
prior work [31]; we thus extended the native inputs in the
same fashion. For streamclassifier, we used the inputs
from [50]. For swaptions, we increased the number of
simulations to 32 millions and decreased the number of
swaptions to 4, in order to allow the benchmark’s bottlenecks
to manifest. For facetrack, we used a video of a person
moving in front of a camera, which includes 600 frames.
For facedet-and-track, we used a longer video (1,050
frames) to compensate for the faster execution of the OpenCV
face detection API with respect to the particle filter. To find
the best configuration for a benchmark we used training
inputs, which are different from the native inputs previously
described.

Output quality. We relied on the same well-known output
quality metrics used by the authors of STATS [20]. For the
output quality of facetrack and facedet-and-track
we used the average Euclidean distance between the boxes
containing the detected faces.

V. EXPERIMENTAL EVALUATION

Our evaluation examines the impact of the overhead de-
scribed in Section III on the parallel execution of nonde-
terministic programs compiled with STATS. We analyze the
performance of these programs in Section V-A. We evaluate
the overhead of combining the TLP that the benchmarks had
originally with the TLP generated by STATS in Section V-B.
Then, we further analyze the overhead introduced by STATS

6



by focusing on the performance scalability roadblocks that
such overhead generates. We also investigate the total amount
of additional work that STATS introduces in terms of number
of instructions in Section V-C. Moreover, we describe the
impact of the STATS parallelization in terms of data locality
and branch prediction in Section V-D. Finally, we analyze
the impact of STATS on the inherent output variability of the
considered nondeterministic programs in Section V-E.

A. Performance Obtained by TLP Sources

The TLP that is expressed explicitly by developers via
parallel programming APIs is not enough to utilize all cores in-
cluded in our platform. Fig. 9 shows the performance obtained
by a parallel binary compared to the sequential execution of
that program. The black bars correspond to the parallel binary
generated by only using the original TLP. The performance
obtained by this TLP source is only 3.7× on 14 cores and
3.76× on 28 cores.

The TLP that is extracted by STATS scales more than the
original TLP. The grey bars of Fig. 9 correspond to the parallel
binary generated by STATS when no original TLP is used. In
other words, these binaries rely only on the TLP extracted from
state dependences. The performance obtained in this case is
8.45× on 14 cores and 11.65× on 28 cores.

Combining the original TLP with the STATS TLP generates
important performance improvements. The red bars of Fig. 9
correspond to the parallel binary generated by STATS when
the TLP extracted from state dependences is combined with
the original TLP. The performance obtained in this situation
is 10.61× on 14 cores and 14.77× on 28 cores. These
results show that STATS improves significantly the overall
performance, but it is not able to reach speedups that scale
linearly with the number of cores. The rest of the section
analyzes the reasons behind this limitation.

B. Performance Effects of STATS Overhead

To understand what is limiting the STATS binaries to obtain
speedups that scale linearly with the number of cores, we have
evaluated the performance impact of each of the six categories
of overhead described in Section III. Notice that these sources
of overhead are only related to the STATS execution model.
These six overhead categories are evaluated as follows.

First we run the parallel binary generated by STATS and
we keep track of the time in CPU cycles of each critical point
of the STATS execution model. For example, we measure the
CPU cycles that passed since the beginning of the program’s
execution and the time the main thread starts the code region
parallelized by STATS. Another example of execution point we
keep track of is when each STATS thread starts the execution
of their chunk of inputs. Other examples are the beginning and
the end of (i) each alternative producer, (ii) each code block
that computes original states, (iii) the STATS setup block (all
shown in Fig. 5), (iv) each thread synchronization code block
(Fig. 7), (v) each code block that clones computational states
(Fig. 6), and (vi) each code region parallelized by STATS.
After obtaining these timestamps, we compute post-mortem
the critical path of the parallel execution similar to what

proposed in [26]. Finally, to evaluate the performance loss
due to a given overhead, we compute the speedup obtainable
if that overhead would be removed. To do this, we emulate
the parallel execution removing only the part of the overhead
targeted that is in the critical path, similar to what proposed
in [26].

We measure the performance loss of each source of over-
head of the STATS execution model following the approach
described above. We performed this analysis in two situations.
First we consider the scenario that STATS has been designed
for. We let STATS combining the original TLP with the TLP
extracted from state dependences. Then, we perform the same
type of evaluation but forcing STATS to only rely on the TLP
that comes from state dependences. This last analysis is needed
to analyze the parallelism extracted by STATS at its limit.

Combining Original and STATS parallelism. Fig. 10
shows the performance loss for 28 cores when both orig-
inal and STATS parallelism are used. It is interesting to
notice that different benchmarks have different principal
sources of overhead. For example, STATS is not able
to achieve linear speedup with the number of cores for
facedet-and-track mainly because of the synchroniza-
tion overhead, which is required to implement the STATS
execution model. facetrack is mainly limited by mis-
peculation because STATS only creates 7 parallel chunks to
avoid aborting the computation. bodytrack is evenly limited
by unreachability, mispeculation, and the overhead related
to the STATS execution model (synchronization and extra
computation). streamclassifier is mainly limited by
synchronization and the code outside the regions parallelized
by STATS. streamcluster is also limited by the sequential
code outside the STATS parallel region, but also by the
imbalance and synchronization between STATS threads. On
the other hand, swaptions parallelized by STATS reaches
linear speedup on 28 cores.

Fig. 11 shows the breakdown of the extra computation
performed by the parallel binaries. The two main sources
of extra computation are related to (and required by) the
speculation scheme implemented by STATS: generating the
speculative state and the multiple original states.

Only TLP from state dependences. This section analyzes
the performance loss when the parallel binaries do not include
the original TLP of the benchmark to better understand the
impact of the sources of overhead described in Section III
to the parallelism that STATS generates. To do this, we run
STATS forcing it to create 14 and 28 STATS-threads (i.e.,
parallel chunks of computation) without using the original
TLP. We performed the performance loss analysis for both
14 and 28 cores to highlight how each overhead source scales
with the number of cores. Fig. 12 shows these results.

The difference between Fig. 12 and Fig. 10 highlights that
extracting more TLP from state dependences generates signif-
icantly more extra computation. The more TLP is extracted
from a state dependence, the more extra code is required to
implement the STATS execution model. This makes the extra
computation overhead more dominant than when the STATS
TLP is combined with the original one. This is because when

7



swaptions
streamclassifier

streamcluster
bodytrack

facetrack

facedet-and-track
geo. mean

0
4
8

12
16
20
24
28

sp
ee

du
p

Original Seq. STATS Par. STATS

(a) 14 cores

swaptions
streamclassifier

streamcluster
bodytrack

facetrack

facedet-and-track
geo. mean

0
4
8

12
16
20
24
28

sp
ee

du
p

Original Seq. STATS Par. STATS

(b) 28 cores

Fig. 9: For most benchmarks, STATS generates a significant amount of extra parallelism. “Original” is the out-of-the-box benchmark that
has been parallelized by traditional means. “Seq. STATS” (“Par. STATS”) is the binary generated by STATS starting from the sequential
(multi-threaded) version of a benchmark.

0 20 40 60 80 100
speedup lost [%]

swaptions
streamclassifier

streamcluster
bodytrack
facetrack

facedet-and-track

0.00x
3.29x
8.62x
13.77x
21.28x
20.15x

Imbalance
Extra computation

Synchronization
Sequential code

Unreachable
Mispeculation

Fig. 10: Percentage of speedup lost by benchmarks that take
advantage of both original TLP and STATS TLP, on 28 cores. The
number at the right of each bar is the amount of speedup lost with
respect to the ideal speedup. Every benchmark is limited by different
sources of overhead.

0 20 40 60 80 100
speedup lost [%]

swaptions
streamclassifier

streamcluster
bodytrack
facetrack

facedet-and-track

0.00x
0.02x
0.04x
4.09x
0.43x
1.39x

Speculative state
Multiple original states

State comparison
State copying

Setup

Fig. 11: Percentage of speedup lost due to the “Extra computation”
fraction of Fig. 10. The number at the right of each bar is the amount
of speedup lost only because of “Extra computation”. The two main
sources of overhead are related to the generation of the speculative
state and multiple original states. The overhead due to the STATS
setup phase only accounts for a small fraction of the speedup lost.

STATS can combine the two sources of TLP, it is not forced
to break state dependences too often.

To further understand the extra computation generated, we
broke it down in the 5 components described in Section III-B.
This analysis is shown in Fig. 13. As for the case when both
sources of TLP are used (Fig. 11), the two main sources of
extra computation are related to the speculation scheme im-
plemented by STATS: generating the speculative state and the
multiple original states. The importance of these two sources
of overhead suggests that the STATS execution model should
evolve to implement a more scalable speculation scheme that
requires less extra computation.

C. Extra Computation

The previous empirical analysis suggests that the extra
computation performed to implement the STATS execution
model is an important source of overhead. To understand
whether this is due to an abundant amount of extra work or
because this extra work was performed in the critical path of
the parallel execution, we further analyze it. To this end, we
computed the total amount of extra work performed in terms
of number of instructions executed at run time.

Fig. 14 shows the amount of extra instructions executed
to implement the STATS execution model using 28 cores.
The benchmarks that execute a considerable amount of extra
instructions are bodytrack and facedet-and-track,
and have respectively 107.4% and 43.8% extra instructions that
are due to the extra computation described in Section III-B.
This result combined with the previous analyses suggest that
the extra computation overhead is an important performance
roadblock for STATS, and that this extra computation is often
performed in the critical path of the parallel execution. Finally,
streamclassifier and streamcluster execute less
instructions than the baseline because the TLP extracted from
state dependences leads the execution to find their clustering
solutions faster. This was already noticed by the authors of
STATS [20].

Most of the extra instructions added by STATS are executed
to copy computational states and to generate speculative states.
Fig. 15 shows the breakdown of these extra instructions.
Combining these results with the loss in performance shown in
Fig. 13b, it is clear that instructions related to “State copying”
are not in the critical path of the parallel execution, since the
performance lost because of that are negligible. Contrarily,
the amount of committed instructions to generate the spec-
ulative state (and to create multiple original states in the
bodytrack case), have an impact on performance as well.
However, we believe that improving STATS by accelerating
the state copy operator is still valuable. This is because in
the design space explored by the autotuner, there might be
configurations that would scale well, but they are not chosen
because copying computational states has a negative impact
on their performance. A more efficient state copying would
solve this problem. Improving the state copying could be
implemented by compiler optimizations that exploit STATS

8



0 20 40 60 80 100
speedup lost [%]

swaptions
streamclassifier

streamcluster
bodytrack
facetrack

facedet-and-track

0.00x
1.20x
0.90x
5.90x
1.49x
7.96x

Imbalance
Extra computation

Synchronization
Sequential code

Unreachable
Mispeculation

(a) 14 cores

0 20 40 60 80 100
speedup lost [%]

swaptions
streamclassifier

streamcluster
bodytrack
facetrack

facedet-and-track

0.12x
10.10x
9.10x
18.97x
5.53x
20.67x

Imbalance
Extra computation

Synchronization
Sequential code

Unreachable
Mispeculation

(b) 28 cores

Fig. 12: Percentage of speedup lost by benchmarks that take advantage of STATS TLP only, on both 14 and 28 cores. The number at the
right of each bar is the amount of speedup lost with respect to the ideal speedup of 28× and 14× respectively. The fraction of speedup lost
due to STATS “Extra computation” dramatically increases when more TLP is generated from state dependences.

0 20 40 60 80 100
speedup lost [%]

swaptions
streamclassifier

streamcluster
bodytrack
facetrack

facedet-and-track

0.00x
0.01x
0.01x
4.87x
1.35x
0.90x

Speculative state
Multiple original states

State comparison
State copying

Setup

(a) 14 cores

0 20 40 60 80 100
speedup lost [%]

swaptions
streamclassifier

streamcluster
bodytrack
facetrack

facedet-and-track

0.00x
0.05x
0.05x
13.94x
4.22x
2.63x

Speculative state
Multiple original states

State comparison
State copying

Setup

(b) 28 cores

Fig. 13: Percentage of speedup lost due to the “Extra computation” fraction of Fig. 12. The number at the right of each bar is the amount
of speedup lost only because of “Extra computation”. As in Fig. 11, the main overhead components are related to the STATS speculation
scheme (speculative state and multiple original states), while the speedup lost because of the STATS setup is negligible.

specific knowledge to consider a transformation space of the
state copy operator larger than what general-purpose code
transformations could reach. Another solution could be to
exploit hardware accelerations for this task.

D. Architecture Effects of STATS TLP

TLP can have a negative effect to some architecture-specific
characteristics of the underlying platform such as data locality
and branch prediction. To evaluate these effects, we measured
the total number of cache misses (absolute and percentage
compared to the total number of cache accesses) for the
L1D cache, L2 cache, and for the last level cache (LLC) of
our platform. Furthermore, we measured the total number of
branch mispredictions (absolute and percentage). These values
are computed by adding all of the per-core counters of that
hardware event. For example, the number of cache L1D misses
is computed by counting all cache misses of all L1D of our
28 core platform.

Table II shows this analysis for the baseline code when no
source of TLP is used (i.e., sequential execution), when only
the original TLP is used (and 28 cores are considered), and
when only STATS TLP is used (again, on 28 cores).
facetrack and facedet-and-track lose some data

locality when STATS is used. This is because the STATS
execution model runs in parallel the computation of in-
put chunks breaking both the temporal and spatial locality
between these chunks. Contrarily, streamcluster and
streamclassifier have less cache misses and branch
mispredictions compared to their out-of-the-box version be-
cause they execute less code. As described in Section V-C, the
STATS version of these benchmarks converges faster to their

solution. Finally, swaptions and bodytrack maintain a
similar misprediction rate between the original and the STATS
version of the benchmark. However, the number of absolute
misses in bodytrack grows in the STATS version because
the number of instructions executed is greater than the original
version of the benchmark.

E. Output Variability Due to Nondeterminism

STATS preserves the original semantics: each output gen-
erated by a STATS binary could have been generated by
the original program. However, the distribution of outputs
generated by the nondeterminism of the original program can
be affected by the parallelization STATS performs.

We run the original program two hundreds times and we
compared all the outputs with an oracle one (i.e., highest
output quality). The result is a distribution of output qualities
between runs shown in Fig. 16. This figure also shows the
same analysis for the parallel binaries generated by STATS.
This comparison allows us to understand the impact of the
STATS transformation to the output variance of the nonde-
terministic benchmarks considered. Counterintuitively, Fig. 16
shows that STATS tends to improve the quality of the outputs.

VI. RELATED WORK

This paper characterizes the performance loss that is block-
ing the parallelizing compiler STATS [20], [21] to achieve
speedups that scale linearly with the number of cores. To do so,
this work characterizes the effects of the STATS parallelization
scheme on a 28 core (dual-socket) Intel-based platform. There-
fore, this paper relates with studies that characterize parallel
workloads as well as parallelizing compilers.

9



TABLE II: Cache and branch mispredictions of the original and STATS transformed benchmarks. For each entry the value on the left is
the total number of mispredictions (in billions), the value on the right is the misprediction rate.

Benchmark Sequential original code Parallel original code STATS on 28 cores
L1D L2 LLC BR L1D L2 LLC BR L1D L2 LLC BR

swaptions 5.5 (1.6%) 0.3 (10.2%) 0.0006 (7.5%) 2.3 (1.7%) 5.7 (1.6%) 0.4 (12.7%) 0.001 (19.9%) 2.3 (1.7%) 5.7 (1.6%) 0.4 (12.1%) 0.01 (29.9%) 2.3 (1.7%)
streamclassifier 68 (30%) 5.5 (98%) 4.5 (87%) 0.293 (0.35%) 65 (28%) 8.7 (93%) 0.8 (11%) 0.316 (0.35%) 49 (29%) 6 (89%) 1 (17%) 0.198 (0.32%)
streamcluster 351 (32%) 6.2 (97%) 5 (90%) 0.688 (0.25%) 392 (35%) 32 (97%) 27 (98%) 0.724 (0.26%) 305 (27%) 17 (97%) 2 (11%) 0.752 (0.29%)
bodytrack 7.3 (5%) 1.6 (25%) 0.005 (0.4%) 0.447 (0.64%) 8.4 (5.7%) 2.1 (30%) 0.032 (2.2%) 0.543 (0.78%) 16.4 (5.4%) 3.5 (25.4%) 0.049 (1.7%) 0.994 (0.69%)
facetrack 13.8 (1%) 2.7 (44%) 0.004 (0.5%) 3 (0.13%) 13.8 (1%) 2.7 (44%) 0.004 (0.5%) 3 (0.13%) 17.2 (1%) 3.6 (47%) 0.06 (5.9%) 3.5 (0.13%)
facedet-and-track 6.1 (1%) 1.3 (47%) 0.005 (1.4%) 1.5 (0.17%) 6.1 (1%) 1.3 (47%) 0.005 (1.4%) 1.5 (0.17%) 17 (1.9%) 2.9 (56%) 0.03 (5.4%) 2.4 (0.18%)

swaptions
streamclassifier

streamcluster
bodytrack

facetrack

facedet-and-track
0

50
100
150
200

in
st

ru
ct

io
ns

 [%
]

Original computation
Extra computation

Fig. 14: Extra amount of instructions executed by STATS paral-
lelized benchmarks on 28 cores. The benchmarks bodytrack and
facedet-and-track, execute a considerable amount of extra
instructions than their original version.

0 20 40 60 80 100
extra instructions [%]

swaptions
bodytrack
facetrack

facedet-and-track

4.6%
107.4%
18.6%
43.8%

Speculative state
Multiple original states

State comparison
State copying

Setup

Fig. 15: Extra instructions breakdown related to the “Extra com-
putation” of Fig. 14. Instructions related to the generation of the
“Speculative state” by the alternative producer, and “State copying”
dominate the other sources of extra instructions.

Parallel Workload Characterization. Most of the bench-
marks [5] considered by this paper already include some TLP
that was expressed manually by developers using parallel
programming APIs like POSIX threads, OpenMP [19], and
Intel TBB [41]. This TLP has been studied and characterized
by prior work on multiple platforms [5], [6], [7], [8], [9],
[10]. The STATS compiler adds the parallelism related to state

swaptions Orig

swaptions STATS

streamclassifier Orig

streamclassifier STATS

streamcluster Orig

streamcluster STATS

bodytrack Orig

bodytrack STATS

facetrack Orig

facetrack STATS

facedet-and-track Orig

facedet-and-track STATS
10−6

10−4

10−2

100

102

104

106

ou
tp

ut
 v

ar
ia

bi
lit

y 
(lo

g 
sc

al
e)

Fig. 16: Output variability before and after the transformation
performed by STATS (lower values are better).

dependences to the original TLP. This paper characterizes this
additional parallelism both in isolation with the original TLP
and when both sources of TLP are combined.

Parallelizing Compilers. Many parallelizing compilers
have been proposed. Some of them satisfy all dependences
without making the distinction between actual and appar-
ent [2], [11], [12], [13], [15], [16], [17], [18], [22], [27], [28],
[34], [36], [40], [44], [54], [57]. Others avoid the overhead
of apparent dependences by speculating they do not exist and
rolling back the parallel execution when they are wrong [1],
[24], [25], [29], [32], [35], [39], [42], [43], [52], [53], [56],
[58], [60]. The parallel binaries generated by these compilers
execute sequentially all actual dependences. There are also
parallelizing compilers that break actual dependences [3], [14],
[38], [46], [47], [55], but do not preserve the original program
semantics. Other systems [30], [45], [59], instead, break actual
dependences by speculating on the state of a computation and
roll back if that speculation was wrong to preserve the program
semantics. However, their speculation techniques do not work
for the irregular nondeterministic programs that STATS targets
because they do not take advantage of the short memory
property and nondeterminism of these programs. The binaries
produced by STATS execute in parallel the code involved in
state dependences, and preserve the original program seman-
tics. This new type of parallelization performed by STATS
introduces different and new sources of overhead that are not
present in parallel binaries generated by other parallelizing
compilers. This paper is the first study that identifies and
characterizes these new sources of overhead.

VII. CONCLUSION

Thread level parallelism is the most important aspect of
a program that defines its performance in the multicore era.
TLP is typically obtained by executing independent code
blocks in parallel. Recently, an additional source of TLP for
nondeterministic workloads has been identified and exploited:
code blocks that depend on each other via a state dependence
can also run in parallel. This new source of TLP is generated
by enforcing a new execution model that the compiler STATS
embeds in the compiled code. This paper characterizes the
impact of such execution model on a commodity platform.
We have identified and characterized the main factors that
can potentially block the performance obtained by the STATS
parallel binaries. This analysis suggests that STATS can ben-
efit from additional engineering efforts to reduce some of
these factors. Finally, our characterization also suggests that
the STATS execution model needs to evolve to remove the
remaining performance roadblocks.

10



REFERENCES

[1] Wonsun Ahn, Shanxiang Qi, M Nicolaides, Josep Torrellas, J-W
Lee, Xing Fang, S Midkiff, and David Wong. BulkCompiler: high-
performance sequential consistency through cooperative compiler and
hardware support. In International Symposium on Microarchitecture
(MICRO), 2009.

[2] Alexander Aiken and Alexandru Nicolau. Perfect Pipelining: A New
Loop Parallelization Technique. In European Symposium on Program-
ming (ESOP), 1988.

[3] Riad Akram, Mohammad Mejbah Ul Alam, and Abdullah Muzahid.
Approximate Lock: Trading off Accuracy for Performance by Skipping
Critical Sections. In International Symposium on Software Reliability
Engineering (ISSRE), 2016.

[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
OpenTuner: An Extensible Framework for Program Autotuning. In
Parallel Architectures and Compilation Techniques (PACT), 2014.

[5] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[6] Christian Bienia, Sanjeev Kumar, and Kai Li. Parsec vs. splash-
2: A quantitative comparison of two multithreaded benchmark suites
on chip-multiprocessors. In International Symposium on Workload
Characterization (IISWC), September 2008.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implications.
In Parallel Architectures and Compilation Techniques (PACT), 2008.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
PARSEC benchmark suite: Characterization and architectural implica-
tions. In Parallel Architectures and Compilation Techniques (PACT),
2008.

[9] Christian Bienia and Kai Li. Characteristics of workloads using the
pipeline programming model. In Workshop on Emerging Applications
and Many-core Architecture, June 2010.

[10] Christian Bienia and Kai Li. Fidelity and scaling of the parsec bench-
mark inputs. In International Symposium on Workload Characterization
(IISWC), December 2010.

[11] S. Campanoni, T. M. Jones, G. Holloway, G. Y. Wei, and D. Brooks.
HELIX: Making the Extraction of Thread-Level Parallelism Mainstream.
In IEEE MICRO, 2012.

[12] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones,
Gu-Yeon Wei, and David Brooks. HELIX-RC: An Architecture-compiler
Co-design for Automatic Parallelization of Irregular Programs. In
International Symposium on Computer Architecuture (ISCA), 2014.

[13] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones,
Gu-Yeon Wei, and David Brooks. Automatically accelerating non-
numerical programs by architecture-compiler co-design. Communication
ACM, 2017.

[14] Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks.
HELIX-UP: Relaxing Program Semantics to Unleash Parallelization. In
Code Generation and Optimization (CGO), 2015.

[15] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa
Reddi, Gu-Yeon Wei, and David Brooks. HELIX: Automatic Paralleliza-
tion of Irregular Programs for Chip Multiprocessing. In Code Generation
and Optimization (CGO), 2012.

[16] Simone Campanoni, Timothy Jones, Glenn Holloway, Gu. Y. Wei, and
David Brooks. The helix project: Overview and directions. In Design
Automation Conference (DAC), 2012.

[17] Ding-Kai Chen and Pen-Chung Yew. On Effective Execution of
Nonuniform DOACROSS Loops. In Transactions on Parallel and
Distributed Systems (TPDS), 1996.

[18] Ding-Kai Chen and Pen-Chung Yew. Redundant Synchronization
Elimination for DOACROSS Loops. In Transactions on Parallel and
Distributed Systems (TPDS), 1999.

[19] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard
API for Shared-Memory Programming. In IEEE Comput. Sci. Eng.,
1998.

[20] Enrico A. Deiana, Vincent St-Amour, Peter A. Dinda, Nikos Hardavellas,
and Simone Campanoni. Unconventional parallelization of nondetermin-
istic applications. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2018.

[21] Enrico Armenio Deiana, Vincent St-Amour, Peter A. Dinda, Nikos
Hardavellas, and Simone Campanoni. POSTER: the liberation day of
nondeterministic programs. In Parallel Architectures and Compilation
Techniques (PACT), 2017.

[22] Kemal Ebcioglu and Alexandru Nicolau. A Global Resource-constrained
Parallelization Technique. In International Conference on Supercomput-
ing (ICS), 1989.

[23] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krish-
namurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. The
Racket Manifesto. In Summit on Advances in Programming Languages
(SNAPL), 2015.

[24] Lance Hammond, Benedict A. Hubbert, Michael Siu, Manohar K.
Prabhu, Michael K. Chen, and Kunle Olukotun. The Stanford Hydra
CMP. In International Symposium on Microarchitecture (MICRO), 2000.

[25] Liang Han, Wei Liu, and James M. Tuck. Speculative Parallelization
of Partial Reduction Variables. In Code Generation and Optimization
(CGO), 2010.

[26] Jeffrey K Hollingsworth. Critical path profiling of message passing
and shared-memory programs. IEEE Transactions on Parallel and
Distributed Systems, 9(10):1029–1040, 1998.

[27] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han
Hung, and David I. August. Decoupled Software Pipelining Creates
Parallelization Opportunities. In Code Generation and Optimization
(CGO), 2010.

[28] A.R. Hurson, Joford T., LimKrishna M., and KaviBen Lee. Paralleliza-
tion of DOALL and DOACROSS Loops - A Survey. In Advances in
Computers, 1997.

[29] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Speculative
Thread Decomposition Through Empirical Optimization. In Principles
and Practice of Parallel Programming (PPoPP), 2007.

[30] K. Kelsey, T. Bai, C. Ding, and C. Zhang. Fast Track: A Software
System for Speculative Program Optimization. In Code Generation and
Optimization (CGO), 2009.

[31] Hanjun Kim, Nick P Johnson, Jae W Lee, Scott A Mahlke, and David I
August. Automatic speculative DOALL for clusters. In Code Generation
and Optimization (CGO), 2012.

[32] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan,
Kavita Bala, and L. Paul Chew. Optimistic Parallelism Requires
Abstractions. In Programming Language Design and Implementation
(PLDI), 2007.

[33] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Code Generation and
Optimization (CGO), 2004.

[34] Duo Liu, Zili Shao, Meng Wang, Minyi Guo, and Jingling Xue. Optimal
Loop Parallelization for Maximizing Iteration-level Parallelism. In
Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
2009.

[35] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose
Renau, and Josep Torrellas. POSH: A TLS Compiler That Exploits
Program Structure. In Principles and Practice of Parallel Programming
(PPoPP), 2006.

[36] Kathryn S. McKinley. Evaluating Automatic Parallelization for Effi-
cient Execution on Shared-memory Multiprocessors. In International
Conference on Supercomputing (ICS), 1994.

[37] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Paralleliz-
ing Sequential Applications on Commodity Hardware Using a Low-cost
Software Transactional Memory. In Programming Language Design and
Implementation (PLDI), 2009.

[38] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. Parallelizing
Sequential Programs with Statistical Accuracy Tests. In ACM Trans.
Embed. Comput. Syst. (TECS), 2013.

[39] Niall Murphy, Timothy Jones, Robert Mullins, and Simone Campanoni.
Performance implications of transient loop-carried data dependences in
automatically parallelized loops. In Compiler Construction (CC), 2016.

[40] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August.
Automatic Thread Extraction with Decoupled Software Pipelining. In
International Symposium on Microarchitecture (MICRO), 2005.

[41] Chuck Pheatt. Intel&Reg; Threading Building Blocks. In J. Comput.
Sci. Coll., 2008.

[42] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos,
and Xin Sui. The Tao of Parallelism in Algorithms. In Programming
Language Design and Implementation (PLDI), 2011.

[43] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and
David I. August. Speculative Parallelization Using Software Multi-
threaded Transactions. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2010.

11



[44] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges,
and David I. August. Parallel-stage Decoupled Software Pipelining. In
Code Generation and Optimization (CGO), 2008.

[45] Easwaran Raman, Neil Va hharajani, Ram Rangan, and David I. Au-
gust. Spice: Speculative Parallel Iteration Chunk Execution. In Code
Generation and Optimization (CGO), 2008.

[46] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi
Nair, and Daniel Prener. Programming with relaxed synchronization.
In Relaxing synchronization for multicore and manycore scalability
(RACES), 2012.

[47] Martin C Rinard. Using early phase termination to eliminate load
imbalances at barrier synchronization points. In Object-oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), 2007.

[48] Behnam Robatmil, Dong Li, Hadi Esmaeilzadeh, Sibi Govindan, Aaron
Smith, Andrew Putnam, Doug Burger, and Stephen W. Keckler. How
to Implement Effective Prediction and Forwarding for Fusable Dynamic
Multicore Architectures. In High-Performance Computer Architecture
(HPCA), 2013.

[49] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu,
Changkyu Kim, Jaehyuk Huh, Nitya Ranganathan, Doug Burger,
Stephen W. Keckler, Robert G. McDonald, and Charles R. Moore.
TRIPS: A polymorphous architecture for exploiting ILP, TLP, and DLP.
In Transactions on Architecture and Code Optimization (TACO), 2004.

[50] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin Rinard. Managing Performance vs. Accuracy Trade-offs with
Loop Perforation. In European Conference on Foundations of Software
Engineering (ESEC/FSE), 2011.

[51] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In International Symposium on Computer Architecture
(ISCA), 1995.

[52] J. Steffan and T Mowry. The Potential for Using Thread-Level Data

Speculation to Facilitate Automatic Parallelization. In High-Performance
Computer Architecture (HPCA), 1998.

[53] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C.
Mowry. The STAMPede Approach to Thread-level Speculation. In
Transactions on Computer Systems (TOC), 2005.

[54] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F.P.
O’Boyle. Towards a Holistic Approach to Auto-parallelization: Inte-
grating Profile-driven Parallelism Detection and Machine-learning Based
Mapping. In Programming Language Design and Implementation
(PLDI), 2009.

[55] Abhishek Udupa, Kaushik Rajan, and William Thies. ALTER: Ex-
ploiting breakable dependences for parallelization. In Programming
Language Design and Implementation (PLDI), 2011.

[56] Cheng Wang, Youfeng Wu, Edson Borin, Shiliang Hu, Wei Liu, Dave
Sager, Tin-fook Ngai, and Jesse Fang. Dynamic Parallelization of Single-
threaded Binary Programs Using Speculative Slicing. In International
Conference of Supercomputing (ICS), 2009.

[57] Cheng-Zhong Xu and Vipin Chaudhary. Time Stamp Algorithms for
Runtime Parallelization of DOACROSS Loops with Dynamic Depen-
dences. In Transactions on Parallel and Distributed Systems (TPDS),
2001.

[58] Antonia Zhai, J. Gregory Steffan, Christopher B. Colohan, and Todd C.
Mowry. Compiler and Hardware Support for Reducing the Synchroniza-
tion of Speculative Threads. In Transactions on Architecture and Code
Optimization (TACO), 2008.

[59] Zhijia Zhao and Xipeng Shen. On-the-Fly Principled Speculation
for FSM Parallelization. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2015.

[60] Hongtao Zhong, Mojtaba Mehrara, Steven A. Lieberman, and Scott A.
Mahlke. Uncovering hidden loop level parallelism in sequential appli-
cations. In High-Performance Computer Architecture (HPCA), 2008.

12


