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Abstract—Compiler research and development has treated
computation as the primary driver of performance improvements
in C/C++ programs, leaving memory optimizations as a secondary
consideration. Developers are currently handed the arduous task of
describing both the semantics and layout of their data in memory,
either manually or via libraries, prematurely lowering high-level
data collections to a low-level view of memory for the compiler.
Thus, the compiler can only glean conservative information about
the memory in a program, e.g., alias analysis, and is further
hampered by heavy memory optimizations. This paper proposes
the Memory Object Intermediate Representation (MEMOIR), a
language-agnostic SSA form for sequential and associative data
collections, objects, and the fields contained therein. At the core
of MEMOIR is a decoupling of the memory used to store data
from that used to logically organize data. Through its SSA form,
MEMOIR compilers can perform element-level analysis on data
collections, enabling static analysis on the state of a collection
or object at any given program point. To illustrate the power of
this analysis, we perform dead element elimination, resulting in
a 26.6% speedup on mcf from SPECINT 2017. With the degree
of freedom to mutate memory layout, our MEMOIR compiler
performs field elision and dead field elimination, reducing peak
memory usage of mcf by 20.8%.
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I. INTRODUCTION

Imperative programming languages require developers to

describe their programs via direct updates to the program

state. Some of these languages, namely C, give developers

direct access to memory, making the ceiling for manual

memory optimizations nearly unlimited. Using this degree of

freedom, developers have been able to build operating systems,

optimizing compilers, and interpreters.
However this manual control comes with the caveat that

all memory optimizations must be created manually. This

spawned mostly out of necessity, as compilers of the time were

almost solely translation units, taking C as a portable assembly

language and translating it to the target machine code. As such,

developers were required to prematurely optimize [1] memory,

before the compiler could perform meaningful optimizations.
For projects where performance is a primary goal, manual

memory optimizations are prevalent throughout the source code.

Anytime a developer wants to change a data structure, they must

consider the implications of that change on existing memory

optimizations. A daunting task, as memory optimizations are

performed by careful consideration of both the data structure

definition and its multitude of allocations. However this leaves

compilers with lacking degrees of freedom, as these decisions

are fixed before compilation.
As a result, production compiler optimizations either focus

on scalar values or are limited in their applicability when

memory is involved. Modern compilers seek to perform more

aggressive transformations, such as automatic vectorization

and parallelization [2–14], to fully utilize modern, multi-core

processors. Such transformations require precise information

about data and control dependencies in the program [15–17].

For programs operating on scalars, these dependencies can

be easily analyzed with SSA forms [18,19]. However these

techniques are severely limited when dealing with applications

operating on complex data structures holding increasingly large

amounts of data that must be stored in memory.

At present, only fixed-length arrays and objects have SSA

forms [20,21]. Compilers, therefore, must rely on pointer

analyses for data flow information about memory objects.

This information can be improved by field-sensitive [22] and

type-based [23] analyses, however common manual memory

optimizations create spurious dependencies and ambiguity that

the compiler cannot resolve. An example of this is allocation

reuse, wherein a memory location is used to represent multiple

objects over the execution of the program. This optimization is

common for vectors, which may use the same memory location

for different elements throughout its lifetime. This aggregates

the disjoint lifetimes of individual elements into a single,

long-lived lifetime. Through such premature optimizations,

the compiler cannot distinguish between dependencies injected

by the developer and those logically necessary.

The problems facing modern compilers are the culmination

of ambiguous memory behavior and lacking degrees of freedom

for dependency breaking transformations. To remedy this, the

compiler requires unambiguous memory operations via strong

guarantees about the type, allocation, and usage of memory

within the program. Memory behavior must be presented in a

form that can be meaningfully analyzed and transformed.

This paper proposes the Memory Object Intermediate

Representation (MEMOIR). MEMOIR provides the compiler

with an SSA representation for sequential and associative

data collections. Additionally it defines a representation for

objects and their fields. By decoupling the representation of

memory used to store data from the memory used to

logically organize data, MEMOIR grants powerful guarantees

for transformation and enables sparse data flow analysis for

elements of collections and fields of objects via def-use chains.

MEMOIR also grants the degrees of freedom necessary to

change the memory layout of individual objects as well as the

broader memory structure of a program. By providing an IR

that is amenable to both analysis and transformation, MEMOIR

compilers can emit performant code without placing the burden

of memory optimization on developers.
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This paper makes the following contributions:

• Makes the empirical observation that the majority of

memory used within well-established C/C++ benchmark

suites has a higher-level data structure (§III).

• Proposes MEMOIR, an SSA IR for associative and

sequential collections, objects and their fields (§IV).

• Presents dead element elimination, redundant indirection

elimination, and field elision, novel transformations that

rely on element-level analyses (§V).

• Implements algorithms to generate and lower MEMOIR

without incurring spurious copies (§VI).

• Evaluates the impact of MEMOIR compiler transforma-

tions on well-established C/C++ benchmarks (§VII).

Our MEMOIR compiler implementation is publicly available

at https://github.com/arcana-lab/memoir.

II. BACKGROUND

Compilers rely on data flow analyses to perform opti-

mizations, such as dead code elimination and common sub-

expression elimination. The SSA form [18] was introduced to

provide a sparse representation for the data flow of variables

throughout a program via def-use chains. This representation

enables compilers to perform data flow analyses more effi-

ciently and succinctly [24]. As such, SSA has become the de

facto standard for modern, optimizing compiler intermediate

representations (IR) such as LLVM [25] and GCC [26].

The Jalapeño compiler [27] sought to represent a subset

of memory objects in Java programs with an SSA form.

Their work made use of Array SSA form [20] to capture

the semantics of fixed-size arrays and the Extended Array SSA

form [21] to represent the fields of statically-, strongly-typed

objects. This enabled the compiler to perform parallelization

of array processing applications and load-store propagation

for accesses to object fields by analyzing elements of these

simple data collections at any given program point. While

this work enabled compilers to more easily analyze simple

array and object structures in a program, it does not provide a

general representation for data structures that are sequential or

associative. These data structures have operational semantics

that cannot be represented as simple arrays or individual objects.

Without abstracting these collections into a general form, the

compiler is unable to provide a unified analysis.

In dealing with a similar problem, tensor compilers have pro-

vided an inspiring generalization for higher-dimensional array

structures. Efficient memory layout of tensors is heavily tied to

the structure of the data stored therein, commonly classified as

either sparse or dense. Sparse tensors are commonly stored as

tree structures to reduce memory usage, limiting the ability for

compilers to perform optimizations because of the linked data

structure. To remedy this, the TACO compiler [28–30] provides

a general representation for tensor operations, abstracting away

the storage structure as either sparse or dense. The compiler can

thus perform unified analysis of tensors while still reasoning

about the structure of the stored data when generating code,

illustrating the power of generalized representations while still

maintaining rich semantics.

III. MOTIVATIONS

At present, TACO and Jalapeño’s representations do not

generalize to common data structures. These include, linked

lists, key-value stores, and memory allocations that grow and

shrink throughout program execution. To illustrate the preva-

lence of these data structures in modern programs, we inspected

the memory usage and accesses of C/C++ benchmarks in the

SPECspeed 2017 Integer suite (SPECINT 2017).

Unstructured Graph Tree
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(a) Breakdown of bytes allocated for each collection class.

p
er

lb
en

ch

p
er

lb
en

ch

m
cf

x
al

an
cb

m
k

0%

20%

40%

60%

80%

100%

(b) Breakdown of bytes read from each collection class.
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(c) Breakdown of bytes written to each collection class.
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Fig. 1: Classification of SPECINT 2017 heap memory usage.

Figure 1 shows the breakdown of heap memory usage, as

reported by Valgrind’s dynamic heap analysis tool [31]. These

benchmarks use a negligible amount of stack memory. We

manually classify collections into one of six classes. Sequential

collections are contiguous in index space, e.g., arrays, vectors

and linked lists. Associative collections store a relation between

key-value pairs and have an index space composed of the

keys stored therein. Objects are fixed-length data structures

composed of heterogeneously-typed fields. Trees and graphs

represent any tree or graph-based data structure, making

no distinction between their storage formats. Unstructured

collections have no well-defined structure or are dictated by an

externally defined memory layout, such as a file. Of note, the

existing work on SSA forms described in §II does not fully

cover sequences as Array SSA does not provide a representation

for the reallocation of sequential collections; associative arrays,

trees and graphs do not have any SSA representation; and

unstructured data has no representation at present, aside from

file readers represented as streams [32].

As illustrated above, modern applications utilize complex

data structures. However, these data structures entail increas-

ingly complex memory dependencies in the IR due to ambigui-

ties in their representation. These memory dependencies result

in overly-conservative analyses, limiting existing techniques

and constricting the compiler’s optimization space. This paper

focuses on three sources of ambiguity in modern compiler

representations. These are linked data structures, stateful data

accesses, and premature memory optimizations.
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Linked data structures are the source of the undecideability of

memory alias analysis [33]. These data structures hinder static

analyses, as they are unable to determine with certainty where

in the list a value came from. However, these data structures

do possess an underlying index space that the compiler can

use to disambiguate accesses. By representing linked lists as a

sequence of values, similarly to an array, the index space can

be exploited by the compiler. This comes from decoupling the

representation of the memory used to store the data from the

memory used to logically organize the data.

Stateful data accesses create data dependencies between

unrelated memory operations. Listing 1 illustrates a piece of

code that is unoptimizable by language-agnostic IR optimiza-

tions. Even though the key 0 is statically known to be unique

from 1, neither clang++, g++, nor icpc can propagate the

constant 10 to the return statement: to the compiler every

write to the map may update the state of the entire collection.

In the code example, this is caused by a premature lowering

of std::unordered_map to its implementation in the standard

library.

Listing 1: Example of stateful data access in C++.

1 int work(std::unordered_map<int, int> &map) {

2 map[0] = 10;

3 map[1] = 11;

4 return map[0];

5 }

Memory optimizations performed by developers, such as

over-provisioning of arrays, cause memory analyses to fail

when details about element-level liveness is needed. This results

from memory locations with disjoint lifetimes being aggregated

into the same, long lived lifetime. As a result, the compiler

cannot disambiguate accesses between unique objects, creating

unresolvable false dependencies.

To remedy these shortcomings of the compiler we propose

MEMOIR, an SSA representation for associative and sequential

data collections, objects and the fields contained therein.

MEMOIR provides a representation for the most commonly

used memory classes in SPECINT 2017: objects, sequences

and associative arrays. MEMOIR’s SSA form enables the

analyses needed by modern optimizations, which require a

detailed understanding of the memory locations being accessed

throughout the program. To guarantee this SSA form, we

propose the use of the MEMOIR type system, which enforces

static-, strong-typing for SSA collection variables.

IV. SSA FORM FOR COLLECTIONS AND OBJECTS

MEMOIR is an intermediate representation with data

collections as first-class citizens. To enable element-level

analysis and transformation on generalized data collections,

MEMOIR provides three main properties for collections.

• Collections have a static single assignment (SSA).

• Collections are value types.

• Collections and their elements have static, strong types.

These properties make MEMOIR data collections immutable.

MEMOIR consists of named variables for collections, instruc-

tions for construction, access, and data flow of collections and

objects, and a type system to represent object layout. MEMOIR

instructions allow the creation of new collections from existing

ones with unambiguous operations to add, remove or redefine

elements. The syntax for MEMOIR collections, objects and

types is shown in Figure 2.

A. Collections

We define a collection to be an index-value mapping. Indices

and values stored within a collection have static, strong types.

We refer to an individual index-value pair in the collection as

an element. We refer to the set of indices present in the index-

value mapping as the index space of a collection. In this paper

we explore two variants of collections with different constraints

on the index space, sequential and associative, explained in

§IV-C and §IV-D, respectively. These variants harken back

to the concepts of position- and value-dependent containers

introduced by prior work [34].

B. Operations on SSA Collections

Reading elements of a collection is performed with the

READ operator, of the form v = READ(c, i), where c is the

collection being accessed and i is the index being read from.

The value held at that index is stored in the variable v. Reading

from an uninitialized element is considered undefined behavior.

Reading from an index not in the index space of the collection

is similarly undefined behavior.
The USEφ, as introduced in prior work [21], links accesses

to the same collection in control flow order. This allows sparse

data flow analyses to associate a lattice variable with each

access, disaggregating use information from the definition.

As USEφ’s are not needed for every analysis, and increase

program size by an additional instruction per-read, they can be

constructed and destructed on demand via copy-folding [24].
Redefinition of elements in MEMOIR is accomplished by

the write operation. Write operations are of the form c1=

WRITE(c0, i, v), where c1 is a copy of the input collection

c0 with the exception of c1[i] = v. With the write operation,

a fixed-size collection is put in SSA form. Write operations

in MEMOIR are similar to functional updates or DEFφ’s, as

introduced in prior work [20,21].
Insertion and Removal of elements in an SSA form is

provided by the insert and remove operations. These operations

are the only way changes to the index space of collections can

be represented. Insert operations are of the form c1= INSERT

(c0, i, v), where c1 is a copy of c0 with index i inserted

and c’[i] = v if v is defined. Remove operations, of the form

c1= REMOVE(c0, i), where c1 is a copy of c0 except for the

element at index i being removed. The semantics of these

operations depends on the type of collection being operated on,

the details of which are expanded upon in §IV-C and §IV-D.
Copying Elements of a Collection is performed by the

copy operation, of the form c1= COPY(c0), which creates a

new collection, c1, with the same index-value mapping of c0.

Additional semantics for sequences are explained in §IV-C.
The Size of a Collection can be queried with the size

operation, of the form %n = size(c0). The result of this query

is the number of index-value pairs in the collection.
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id ::= unique identifier, x ∈ Name

Types Instructions inst ∈ Instructions

T ::= PrimT | τid | &τid inst ::= seq = new Seq<T>(i)

PrimT ::= i64 | i32 | i16 | i8 | assoc = new Assoc<T, T>

| u64 | u32 | u16 | u8 | bool | obj = new τid | delete(obj)
| index | f64 | f32 | ptr | elem = READ(c, idx)

CollT ::= Seq<T> | Assoc<T,T> | c = USEφ(c)

DefT ::= type τid= { x: T, ...} | c = WRITE(c, idx, elem)

Variables | c = INSERT(c, idx, [elem]) | seq = INSERT(seq, i, seq)

idx ::= i | elem | c = REMOVE(c, idx) | seq = REMOVE(seq, i, i)

elem ::= %id: PrimT | obj | c = COPY(c) | seq = COPY(seq, i, i)

i ::= %id: index | end | seq[,seq] = SWAP(seq, i, [i,] [seq,] i)

obj ::= @id: RefT | %id: index = size(c)

c ::= seq | assoc | Fid: Assoc<&τid, T> | %id: bool = HAS(assoc, elem)

seq ::= Sid: Seq<T> | seq = keys(assoc)

assoc ::= Aid: Assoc<T,T> | c = RETφ(c,...) | c = ARGφ(c,...) | c = φ(c,...)

Fig. 2: The syntax for MEMOIR types, collections, objects and instructions.

C. Sequences

A sequence is a collection of data organized with a

contiguous index space. This index space is defined as the

linear order of {n ∈ N | 0 ≤ n < l}, where l is the sequence’s

length. SSA sequence variables are denoted as cid, e.g., S0:

Seq<i32> is a sequence with elements of 32-bit signed integers.

More information about element types is included in §IV-E.

A new sequence with n elements of type T can be created via

a new Seq<T>(n) instruction; n need not be statically known,

but the length of the sequence is fixed upon allocation. Elements

are uninitialized upon allocation. For operations on sequences,

the end symbol is used as syntactic sugar for the size of the

sequence being accessed.

On account of their sequential index space, sequences have

additional semantics for the remove, copy and swap operations.

A visual summary of these differences is shown in Figure 3

The first is the ability to operate on ranges, as the index space

is contiguous. This is done by specifying a second index for

the argument, which is the end of the range. We will use

the shorthand S[a:b] to represent the range of a sequence

from a to b (exclusive) when explaining the semantics of

such operations. For example, S1= REMOVE(S0,i,j) creates S1,

where S1[0:i] = S0[0:i] and S1[i:end] = S0[j:end].

Additionally, the insert operation can insert elements from

Fig. 3: Visualization of operations on sequence ranges.

a sequence at a given index. For example, S2= INSERT(S1, i,

S0), which creates S0, where S2[0:i]=S1[0:i], S2[i:i+size

(S0)]=S0[0:end], and S2[i+size(S0):end]=S1[j:end].

The swap operation provides a means to swap ranges of

sequences with one operation. For example, S1= SWAP(S0,i

,j,k) creates S1, a copy of S0 except for the ranges i:j

and k:k+j-i swapped. Similarly, S3,S2= SWAP(S1,i,j,S0,k)

swaps ranges i:j and k:k+j-i between sequences S1 and S0.

D. Associative Arrays

An associative array is a mapping from keys to values. For

example, A0: Assoc<f32, bool>, is an associative array of

32-bit floating point keys to boolean values.

In addition to the collection operations defined in §IV-B, the

has operator, denoted %h = HAS(A0, k), checks if the given

key k is contained in the associative array A0. If it is, then

a true value is written to the boolean variable %h, otherwise

false is written. Additionally, the keys operator S1= keys(A0),

creates a sequence S1 containing the keys of A0; there are no

guarantees on the order of keys in S1.

Identity equality is used for key comparisons on primitive

types. MEMOIR uses shallow equality for reference types,

where keys alias iff they reference the same object. For object

types MEMOIR checks equality for each element and field.

E. Field Arrays, Objects and Types

Objects flow throughout a program via object references,

denoted as @id. Individual objects have explicit creation and

deletion sites with the new and delete operators, respectively.

Semantically, nested objects are stored as unique references

within read-only elements of the collection, these references

can be read into a variable via the READ operator.

Fields of objects are accessed via field arrays, borrowed

from the concept of heap arrays [21]. Field arrays are an

associative array, mapping an object reference to a field value.

Each field of an object type–defined below–has a unique field

array and are instantiated with the object type definition. By

construction, a field array cannot alias with any other field

of the object. This representation for fields allows MEMOIR
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compilers to easily track all accesses of a given field, even

when its owning object is an element of a collection. It also

decouples the access of fields from the layout of fields within

the object, enabling myriad degrees of freedom to MEMOIR

compilers. Among these is the ability to reorder, add or delete

fields within an object.

To specify the layout of objects and provide a mechanism for

such transformations, MEMOIR includes the object type: an

ordered list of individually addressable, typed data fields. For

example, τT={a:i32, b:f32} defines a new type τT containing

two fields. The first having unique identifier a and is of 32-bit

signed integer type. The second being b of 32-bit floating

point type. The field arrays for them being FT.a: &τT→a and

FT.b: &τT→b, respectively.

MEMOIR includes support for unsigned and signed inte-

gers (e.g., i32), booleans, floating point values, and C-style

pointers. C-style pointers are included to support operations

that require access to locations within conventional memory

allocations, such as memory-mapped regions. Reference types

are also supported, being nullable references to an object of a

given object type. For example, Seq<&τT> is a sequence type

containing elements that are references to structs of type τT.

Object types can contain nested object types, but may not

be recursively defined. This ensures that object types have a

finite, and statically-known, size in memory and a finite depth

equality function when used as keys of associative arrays.

V. EMPOWERING THE COMPILER

By providing a more comprehensive representation for

collections, MEMOIR enables automatic transformations on

both the computation performed on data and its memory layout.

In this section we will explore this optimization space.

We will operate on a constrained form of LLVM [25], where

irreducible loops [35] are not permitted. The µ-operation [36] is

used to represent a φ in the context of a loop; the first operand

is the initial value and the second is used by later iterations.

The ARGφ and RETφ functions are used for interprocedural

data flow. ARGφs are attached to each parameter of a function,

mapping a parameter to its incoming argument from each

possible call site. RETφs are attached to each call function

and map live-out variables from each possible return statement.

During partial compilation, externally visible functions have

an unknown operand from an unknown call site added to their

ARGφs, similarly, RETφs of indirect calls have an unknown

incoming value from an unknown function.

For analysis, we define an expression tree, representing an

expression and the expressions that compose it, as well as a

range, describing a contiguous subspace of a sequence via

expression trees. We then define an analysis for the range of

live elements in a sequence at each program point.

Def. 1. An expression tree is a tree where every internal node

is an operator and every leaf is either a variable or a constant.

We will define a partial ordering of expression trees, t1 ⊆ t2
iff t2 contains t1 as a subtree.

TABLE I: CONSTRAINT RULES FOR SEQUENCES. WHERE |Si| ≡
SIZE(Si), AND %a, %b ARE NEW PARAMETERS OF THE FUNCTION.

Operation Constraints

S2 = φ(S1, S0) S2 ⊑ S1, S2 ⊑ S0

... = READ(S0, i) i+ [0 : 1] ⊑ S0

S1 = USEφ(S0) S1 ⊑ S0

S1 = WRITE(S0, i, v) S1 ⊑ S0

S1 = INSERT(S0, i, v) S1 ∧ [0 : i] ⊑ S0,

S1 ∧ [i+ 1 : end]− 1 ⊑ S0

S2 = INSERT(S1, i, S0) S2 ∧ [0 : i] ⊑ S1,

S2 ∧ [i : i+ |S0|]− i ⊑ S0,

S2 ∧ [i+ |S0| : end]− |S0| ⊑ S1

S1 = REMOVE(S0, i, j) S1 ∧ [0 : i] ⊑ S0,

S1 ∧ [j : end] ⊑ S0

S1 = COPY(S0, i, j) S1 + i ⊑ S0

S3, S2 = SWAP(S1, i, j, S3 ∧ [0 : i] ⊑ S1,

S0, k) S3 ∧ [i : j]− i+ k ⊑ S0

S3 ∧ [j : end] ⊑ S1

S2 ∧ [0 : k] ⊑ S0

S2 ∧ [k : k + j − i]− k + i ⊑ S1

S2 ∧ [k + j − i : end] ⊑ S0

S1 = SWAP(S0, i, j, k) S1 ∧ [0 : i] + k ⊑ S0

S1 ∧ [i : j]− i+ k ⊑ S0

S1 ∧ [j : k] ⊑ S0

S1 ∧ [k : k + j − i]− k + i ⊑ S0

S1 ∧ [k + j − i : end] ⊑ S0

S2 = ARGφ(S1, S0) S2 ⊑ S1, S2 ⊑ S0

S2 = RETφ(S1, S0) [%a : %b] = S2,
[%a : %b] ⊑ S1, [%a : %b] ⊑ S0

Def. 2. A range of a sequence is a contiguous subspace of its

index space [ℓ : u], where ℓ and u are expression trees.

Def. 3. A range lattice L is a lattice comprising n lattice

points {L1, ...,Ln}. Each lattice point Li maps to a range

[ℓi : ui]. These lattice points are partially ordered with the

subset relation ⊑ with Li ⊑ Lj iff ℓi ⊆ ℓj and ui ⊆ uj .

Def. 4. The disjunctive merge operator ∨ unions the ranges

of two lattice points, defined as:

Li ∨ Lj = [ℓi : ui] ∨ [ℓj : uj ]
.
= [min(ℓi, ℓj) : max(ui, uj)]

Def. 5. The conjunctive merge operator ∧ intersects the ranges

of two lattice points, defined as:

Li ∧ Lj = [ℓi : ui] ∧ [ℓj : uj ]
.
= [max(ℓi, ℓj) : min(ui, uj)]

Live Range Analysis computes ranges for the live elements

of sequence variables in a program. This uses a similar approach

as the range analysis described in [37], extending it to be

context-sensitive and modifying it to operate on sequence

variables. The analysis, detailed in Algorithm 1, operates on a

constraints graph derived from a constraints system, the rules

for which are defined in Table I, being a backwards propagation

of liveness information.

Def. 6. A constraints graph, G = (N,E,L,C), where: N is

a set of vertices where na is a vertex; E is a set of edges

where −−→nanb is an edge; L : E → S is a function from edges

to constraints; C : E ⇀ c is a partial function from edges to

call site c, representing context-sensitive edges.

312



Algorithm 1: Live range analysis.

in: S a set of constraints
in: V a set of sequence variables.
in: R(i) = [ℓ : u] a mapping from index var. i to range

▷ R(i) result of an intraprocedural range analysis [38]

out : ρ(v, c) = [ℓ : u] a mapping from sequence variable v
and call site c to a range

let G = (N,E,L,C) ▷ A constraints graph from Def. 6

foreach v ∈ V do create a vertex nv ∈ N
foreach i ∈ I do create a vertex ni ∈ N , let ρ(i) = R(i)
foreach s ∈ S s.t. s = f(x) ⊑ y do

create an edge −−−→nxny ∈ E
let L(−−−→nxny) = f(x) ∨ ρ(x) ⊑ y

foreach s ∈ S s.t. s = [ℓ : u] ⊑ x do
create a vertex n[ℓ:u] ∈ N
let L(−−−−−→n[ℓ:u]nx) = [ℓ : u] ⊑ x

foreach s ∈ S s.t. s = [%a : %b] alias x do

create an edge −−−−−−−→nxn[%a:%b] ∈ E
let c be the call site let C(−−−−−−−→nxn[%a:%b]) = c let

L(−−−−−−−→nxn[%a:%b]) = ρ([%a : %b], c) = ρ(x)

call resolve_cycle(G)

function resolve_cycle(G)
foreach nv ∈ G in topological order do

if nv is a trivial SCC [39] then

ρ(v) = ∨{L(−−−→nunv)|
−−−→nunv ∈ E}.

else
let SCC be the SCC containing nv

let H = {−−−→nxny ∈ SCC |C(−−−→nxny) is undef.} ▷ H is

the context-insensitive subgraph of SCC

call resolve_cycle(nw)
foreach nv ∈ SCC s.t. C(−−−→nunv) is defined do
let ρ(v, C(−−−→nunv)) = ρ(u)

foreach nv ∈ SCC s.t. ρ(v) is undefined do
let ρ(v,undefined) = [0 : end ]

Dead Element Elimination Using the live slice range analy-

sis, we describe the dead element elimination transformation in

Algorithm 2. This transforms sequence access and construction

to only operate on the live slice range, eliminating dead

code. The materialization function (defined below) is used to

perform available expression analysis [40] on an expression tree,

constructing operations. Following dead element elimination,

constant propagation and folding are applied, simplifying the

if-else regions along with a conventional sink pass to move

computation into its newly conditional execution.

Def. 7. The materialization function M(e, p) ⇀ v is a partial

function, which analyzes an expression tree e at a given

program point p, constructing the necessary operations and

returning the resultant value v, which is either a variable or a

constant. M(e, p) = e iff e is a constant, a parameter of the

function containing p, or a variable dominating p. M(e, p) = g

iff ∃ variable g which dominates p and has the same global

value number [41] as e. M(e, p) = op(M(e1, p), ...,M(en, p))
iff e is an expression tree such that ei ⊆ e for all i = 1, ..., n,

op is an operation with no side effects and M(ei, p) are defined

for all i. Otherwise, M(e, p) is undefined.

Algorithm 2: Dead element elimination.

in: ρ(v, c) = [ℓ, u] ▷ Result of live range analysis (Algorithm 1)

for each (v, c) = [ℓ, u] ∈ ρ do
if c is defined then

let f be the function containing v
create f ′(c), a copy of f for c, if it does not already
exist
let v = variable corresponding to v in f ′

if M(ℓ, v) and M(u, v) are defined then
create %l = M(ℓ, v), create %u = M(u, v)
if v = WRITE(S0, i, ...) then

create
if ((i >= %l) and (i < %u))

v’ = WRITE(S0, i, ...)

Sp = φ(v’, S0)

replace uses of v with Sp.

if v = INSERT(S0, i, ...) then
create

if (i < %u)

S1 = INSERT(S0, i, ...)

Sp = φ(S1, S0)

replace uses of v with Sp

if v = SWAP(S0, i, j, k) then
create

%from_live = i < %u and j <= %l

%to_live = k < %u and k+j-i <= %l

if (%from_live and %to_live)

S1 = SWAP(S0, i, k)

else if (%from_live)

for %n = 0 to j - 1

%kv = READ(S0, k + %n)

S2 = WRITE(S0, i + %n, %kv)

else if (%to_live)

for %m = 0 to j - i

%iv = READ(S0, i + %m)

S3 = WRITE(S0, k + %m, %iv)

% else // Do nothing.

Sp = φ(S1, S3, S5, S0)

replace uses of v with Sp

if v = RETφ(...) then
Pass %l into %a and %u into %b at the call c

Listing 2: Abridged mcf implementation in MEMOIR.

1 type τ0 = { arc: rawptr, cost: i64 }

2 fn master()

3 Sorig = { Initialize }

4 do

5 Sold = µ(Sorig, Ssorted)

6 Snew = new Seq<τ0>(0)
7 do // Filter elements.

8 Snew0 = µ(Snew, Snew2)

9 %i = µ(0, %i+1)

10 @cur = Sold[%i]

11 if (call check_cost(@cur))

12 Snew1 = INSERT(Snew0, end, @cur)

13 Snew2 = φ(Snew1, Snew0)

14 while((%i+1 < size(Sold) and (%i+1 < B))

15 do // Append elements.

16 Snew3 = µ(Snew2, Snew4)

17 %j = µ(0, %j+1)

18 v = { Initialize }

19 Snew4 = INSERT(Snew3, end, v)

20 while(%j < K)

21 call qsort(Snew4, 0, size(Snew4)) 1
22 Ssorted = RETφ(Sin, Sout)

23 @max = Ssorted[0]

24 while(call check_opt(@max))
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Listing 3: Abridged quick sort implementation in MEMOIR.

1 fn qsort(Sin:Seq<τ0>, %lo:index, %hi:index)

2 Sin = ARGφ(S10, Sp, Sls)

3 if (%hi < %lo or (%hi-%lo) <= 1) return

4 %pv = Sin[%lo] // pivot value

5 while true // partition

6 %i = µ(%lo, %i’)

7 %j = µ(%hi, %j’)

8 S1 = µ(S0, S2)

9 for %i’ = %i + 1 to %j step 1

10 if S1[%i’] > %pv break

11 for %j’ = %j - 1 to %i’ step -1

12 if S1[%j’] < %pv break

13 if %i’ >= %j’ break

14 S2 = SWAP(S1, %i’, %j’)

15 Sp = SWAP(S1, %lo, %j’)

16 call qsort(Sp, %lo, %q)

17 Sls = RETφ(Sin, Sout)

18 call qsort(Sls, %q+1, %hi)

19 Sout = RETφ(Sin, Sout)

20 return

Listing 2 and Listing 3, a simplification of mcf’s hot

code, are used for illustration. check_cost and check_opt

are summarized computations with no side effects. For mcf,

Listing 4 shows the optimized qsort function; not shown is

the call at 1 of master being transformed to pass 0 and B.

Listing 4: Optimized quick sort implementation in MEMOIR.

1 fn qsort(Sin:Seq<τ0>, %lo:index, %hi:index,

2 %a:index, %b:index)

3 { ... Lines 2-4 unchanged ... }

4 while { ... Lines 5-13 unchanged ... }

5 if %a <= %i’ < %b and %a <= %j’ < %b

6 Sdee0 = SWAP(S1, %i’, %j’)

7 else if %a <= %i’ < %b

8 %jv = READ(S1, %j’)

9 Sdee1 = WRITE(S1, %i’, %jv)

10 else if %a <= %j’ < %b

11 %iv = READ(S1, %i’)

12 Sdee2 = WRITE(S1, %j’, %iv)

13 S2 = ϕ(Sdee0, Sdee1, Sdee2, S1)

14 if %a <= %lo < %b and %a <= %j’ < %b

15 Sdee3 = SWAP(S1, %lo, %j’)

16 else if %a <= %lo < %b

17 %pv = READ(S1, %j’)

18 Sdee4 = WRITE(S1, %lo, %pv)

19 else if %a <= %j’ < %b

20 %lov = READ(S1, %lo)

21 Sdee5 = WRITE(S1, %q, %lov)

22 Sp = ϕ(Sdee3, Sdee4, Sdee5, S3)

23 { ... %a, %b passed into qsort calls ... }

Field Elision is a novel optimization enabled by the element-

level analysis and decoupled field semantics of MEMOIR. Field

elision converts a field of an object into a key-value pair stored

in an associative array. This reduces the memory usage of

possibly unused fields and increases the spatial locality of

definitely used fields. Data structure splicing [42] pursues a

similar goal by migrating fields that are not accessed with their

co-located fields frequently to their own object. However, this

entails additional pointer fields to locate the migrated fields,

increasing the size of objects. Field elision avoids this by

introducing a collection instead of pointer fields.

If a field is deemed a candidate for elision via affinity analysis

[43,44], the transformation is applied. To apply this for a given

candidate T.a, with field array FT.a: &T→U; construct AT.a

= new Assoc<T,U> at the beginning of the program’s entry

function. For each reference to FT.a replace it with AT.a. If FT.a
is used by an ARGφ, create a new parameter in the corresponding

function, passing AT.a as an argument, replacing all uses of

FT.a in the function with the new parameter. Finally, remove

field a from the definition of T.

Redundant Indirection Elimination (RIE) simplifies indi-

rect accesses (e.g., a[b[i]]]) [45] to associative arrays when

the index is derived from constant data (e.g., elements of b

are constant). When detected, the keys of an associative array

can be replaced with the indices of a sequence or the keys of

another associative array. This transforms the collection’s type,

removing an access to the index collection (e.g., b[i]).

The analysis is as follows: for an associative array, A0= new

Assoc<T,U>, let R be the set of variables in the def-use chain

of A0, let R be the set of these variables. If any variable in

R may, but not must, reference A0 (e.g., control divergence),

RIE is not applicable. Otherwise, the transformation checks

all accesses r[k]
1, where r ∈ R. If all keys k are of the form

k = READ(c, i), where c is a sequence or associative array

and all instances of c must reference the same collection, then:

1) If c is a sequence, construct c’ = new Seq<U>(size(c)).

2) If c is an assoc. array, construct c’ = new Assoc<V,U>,

where V is the key type of c.

3) ∀r ∈ R, replace accesses r[k] with c’[i], where k=c[i].

Dead Field Elimination utilizes a simple data flow analysis

provided by MEMOIR’s element-level analysis to eliminate

fields of objects that are trivially dead. If a field array is never

read from, i.e., it is never redefined with a USEφ and is never

passed into an unknown function during partial compilation,

it is deemed dead. If so, all writes to the field array and all

variables in its def-use chain are removed and the field is

eliminated from the type definition.

VI. A MEMOIR COMPILER

We will now describe our implementation of a MEMOIR

compiler, the pipeline of which is laid out in Figure 4. First, we

introduce the MUT library, a C/C++ programming interface for

developers to grant the compiler with guarantees and degrees

of freedom necessary to construct and optimize a MEMOIR

program. Second, we present the SSA construction algorithm,

converting the mutable collections in MUT into immutable

SSA collections in MEMOIR. Finally, we discuss the lowering

algorithms employed to generate LLVM IR, namely SSA

destruction and heap/stack selection.

Fig. 4: Prototype MEMOIR compilation pipeline.

1The notation c[i] refers to any read, write or has operation that uses
collection c at index i.
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MUT MEMOIR

%n = size(c) ⇒%n = size(c)

%v = read(c, i) ⇒%v = READ(c, i)

[ c’ = USEφ(c) ]

write(c, i, v) ⇒c’ = WRITE(c, i, v)

insert(c, i) ⇒c’ = INSERT(c, i)

remove(c, i) ⇒c’ = REMOVE(c, i)

c2 = copy(c) ⇒c2 = COPY(c)

[ c’ = USEφ(c) ]

s = new Seq<T>(n) ⇒s = new Seq<T>(n)

remove(s, i, j) ⇒s’ = REMOVE(s, i, j)

insert(s, i, s2) ⇒s’ = INSERT(s, i, s2)

[ s2’ = USEφ(s2) ]

append(s, s2) ⇒s’ = INSERT(s, end, s2)

[ s2’ = USEφ(s2) ]

swap(s, i, j, k) ⇒s’ = SWAP(s, i, j, k)

swap(s, i, j, ⇒s’,s2’ = SWAP(s, i, j

s2, i2) s2, k)

s2 = split(s, i, j)⇒s2 = COPY(s, i, j)

s’ = REMOVE(s, i, j)

s2 = copy(s, i, j) ⇒s2 = COPY(s, i, j)

[ s’ = USEφ(s) ]

a = new Assoc<K,V> ⇒a = new Assoc<K,V>

%b = contains(a, k)⇒%b = HAS(a, k)

[ a’ = USEφ(a) ]

s = keys(a) ⇒s = keys(a)

Fig. 5: MUT operations (left) and their mapping to MEMOIR
operations (right). USEφ’s are only constructed on demand.

The MUT Library. To instantiate a MEMOIR program,

the compiler relies on guarantees for allocation, access and

typing of data collections, objects and elements. Similar to past

language extensions [46,47], we use a library-compiler codesign

to achieve this. To this end, we present the MUT library,

consisting of sequences, associative arrays and objects. The

MUT library contains explicit operators to directly mutate these

collections—outlined in Figure 5—mirroring those available

in the standard C++ library. Collections and objects in MUT

have the same type properties as those laid out for MEMOIR

in §IV, namely that they have strong, static types and mutable

value semantics [48]. By employing the MUT library in their

program, developers provide the guarantees and degrees of

freedom necessary to construct and optimize a MEMOIR

program. Additionally, by providing an extension rather than a

replacement for C/C++, existing programs can be incrementally

ported to benefit from MEMOIR.

SSA Construction. We now present the algorithm for

constructing the SSA form of MEMOIR. We will only cover

construction of SSA collections; construction of field arrays

for object accesses is performed in the same manner as prior

work [21]. For collections, a conventional ϕ insertion using

the dominance frontier is used to insert ϕ-functions for MUT

operations. A depth-first traversal of the CFG dominator tree

is performed, applying the rewrite rules in Figure 5 are to

MUT operations. Reaching definitions are updated accordingly:

ReachDef (v′) = ReachDef (v) and ReachDef (v) = v′ for

each v, v′ pair in the rewrite rule.

Algorithm 3: Algorithm to destruct the SSA form.

in: f a MEMOIR function
for B ∈ preorder DFS of f ’s CFG dominator tree do

foreach I = Def (v) in storage order of B do
if v = new Seq(n) then UPDATE(v, v[0:n])
else if v = keys(A) then UPDATE(v, v[0:end])
else if v = φ(S0, ..., Sn) then

construct Sv= φ(S’0, ..., S’n),
fv=φ(f0, ..., fn), and
tv= φ(t0, ..., tn), where Si= S’i[fi, ti]

UPDATE(v, Sv[fv:tv])

else if v = USEφ(c0) then replace uses of v with c0

else ▷ Handle cases where operation mutates collection.

if Si ∈ Operands(I) is not dead after this use then
replace use of Si with COPY(Si)

if v = WRITE(c0, i, ...) then
replace uses of v with c0

if v = REMOVE(c, ...) then
construct remove(c, ...)

replace uses of v with c

if v = COPY(S, a, b) then UPDATE(v, S[a:b])
if v = INSERT(S0, i, S1) then

construct insert(S0, i, S1)

replace uses of v with S0

if v = SWAP(S0, i, j, k) then
construct swap(S0, i, j, k)

replace uses of v with S0

if v,w = SWAP(S0, i, j, S1, k) then
construct swap(S0, i, j, S1, k)

replace uses of v with S0 and uses of w with S1

function UPDATE(S, S’[a:b])
foreach use U of S do

if U=S[c:d] then replace S[c:d] with S’[a+c:a+d]

else replace S with S’[a:b]

function COPY(c: Collection)
if c =S0[i:j] then return copy(S0, i, j)

else return copy(c)

SSA Destruction. After SSA construction and optimizations

are applied, MEMOIR collections are lowered to LLVM IR.

SSA destruction, shown in Algorithm 3, coalesces collection

variables, replacing SSA operations with ones that operate

directly on their memory representation. Just as in scalar SSA,

great care must be taken in destructing MEMOIR, as a naïve

approach could drastically increase the number of allocations

and copies in the program. Our MEMOIR compiler employs

an SSA destruction algorithm with a focus on avoiding such

spurious copies. These operations act directly on collections

and views of sequences, which represent a contiguous subset

of their index space, denoted Si[f:t]. A variable being dead

or alive refers to the program point following the instruction.

Collection Lowering. Finally, new operators are lowered

to either a heap or stack allocation using the implementation

in the standard library, e.g., std::vector or std::map. If an

escape analysis computed on a new operator indicates that the

collection or object is dead at all exit points of its containing

function, it will be allocated on the stack; otherwise it is

allocated on the heap.
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VII. EVALUATION

To evaluate MEMOIR’s construction, destruction and op-

timizations we have implemented a MEMOIR compiler on

the production-quality LLVM 9.0.0 compiler infrastructure,

allowing us to utilize the open-source NOELLE [16,49]

compiler framework for its loop-level analysis. The developer

effort of our compiler implementation is shown in Table II. We

have also manually converted the hot collections, which spread

throughout much of the codebase, from SPECINT 2017’s

mcf_s, deepsjeng_s and LLVM’s opt to use collections and

objects from the MUT library. We evaluate the compilation

time and effectiveness of our MEMOIR compiler (§VII-B) and

the effectiveness of MEMOIR optimizations (§VII-C). We also

analyze LLVM passes that MEMOIR could improve (§VII-D).

A. Experimental Setup

Our evaluation was performed on a server with two Intel

Xeon Gold 6258R (Cascade) processors running at 2.70GHz.

Each processor has 28 cores with 2-way hyper-threading, 32KiB

8-way L1d$ and 1MiB 16-way L2$, backed by 38.5MiB 11-

way LL$, all having a 64B line size. They are supported by

512GiB of DDR4 main memory running at 2933MT/s. The

OS used is Red Hat Enterprise Linux 8.7.

We evaluate against four production-quality compilers: GCC

8.5.0 (GCC), ICC 18.0.1 (ICC), LLVM 9.0.0 (LLVM9), and

LLVM 14.0.6 (LLVM14). All performance results are gathered

from 10 executions per configuration, all values are the median

of those executions relative to LLVM9.

B. Compilation

We evaluated the effectiveness of our compiler at avoiding

spurious copies and providing compilation time on par with

modern optimizations. Table III shows the breakdown of our

MEMOIR compiler’s performance on mcf and deepsjeng from

SPECINT 2017 as well as LLVM’s opt middle-end compiler.

Compilation time for solely perfoming SSA construction and

destruction (MEMOIR O0) is on par with that of clang -O0.

Compiling with all MEMOIR optimizations and opt -O3

causes a reasonable increase in compilation time and could

be improved with further engineering. We also show that no

spurious copies are introduced.

TABLE II: MEMOIR REQUIRES REASONABLE DEVELOPER EFFORT.

MEMOIR SLOC LLVM SLOC

DEE 1211 NewGVN 2814

DFE 267 Sink 181

FE 580 ConstantFold 1788

RIE 461

TABLE III: OUR MEMOIR COMPILER HAS REASONABLE COMPILA-
TION TIME WITH NO SPURIOUS COPIES FROM SSA CONSTRUCTION.

Compile Time (ms)

MEMOIR LLVM # Collections

Benchmark O0 O3 O0 O3 Source SSA Binary

mcf 70.6 776.4 20.9 663.2 5 13 5

deepsjeng 246.0 1867.6 34.8 852.8 2 14 2

LLVM opt 225.9 668.4 52.0 414.7 8 37 8
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Fig. 7: Relative memory usage of ported SPECINT 2017 benchmarks.

C. Performance and Memory Usage Impact of Optimizations

We evaluated the impact of MEMOIR optimizations on

mcf_s and deepsjeng_s from SPECINT 2017. To evaluate

the impact of the optimizations described in §V we utilize a

separate compilation pipeline. The aforementioned programs

are manually transformed, following the algorithms described

in §V. These programs are then compiled using clang 9.0.0,

with optimization level O3. By transforming these optimizations

manually instead of automatically, we are able to isolate their

impact without additional noise caused by different collection

implementations from the baseline, which may stress different

regions of the program.

We evaluate multiple permutations of MEMOIR compiler

transformations: Dead Element Elimination (DEE), Dead

Field Elimination (DFE), Field Elision (FE), and Redundant

Indirection Elimination (RIE). The ALL configuration has all

of the above transformations applied. Evaluation of LLVM’s

opt is not included as the MEMOIR optimizations explored

in this paper were not applicable. Figures 6 and 7 show the

execution time and maximum resident set size (max RSS),

respectively, with the ALL configuration. We see that MEMOIR

optimizations are able to reduce the memory usage of both mcf

and deepsjeng, while only mcf sees a reduction in execution

time. For deepsjeng, only field elision and key folding were

applicable, eliding a 16-bit field from the hottest data structure.

This allowed for better packing of the struct in memory,

reducing the memory usage by 16.6% but entailing a 5.1%
increase in execution time due to cache performance.

All MEMOIR optimizations were applicable to mcf, we

will now explore their individual impact and interplay. DEE

results in a 26.6% speedup over LLVM9 by reducing the

computational complexity of mcf’s quick sort on a sequence of

length n = K+B from O(nlog(n)) to O(n+Blog(B)). FE,

in the absence of other optimizations, causes a 10.4% increase

in execution time and a 3.3% increase in max RSS, where a

single pointer field is elided. The resulting associative array is

lowered to a hashtable, whose key-value store causes increases

memory usage and expansion of the table causes the increased

execution time. When combined with RIE, the positive impact
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Fig. 9: Relative memory usage for breakdown of mcf optimizations.

of FE can be seen with a 10.4% decrease in max RSS with

only a 1.3% increase in execution time, as the associative array

is converted into a single sequence. This removes the storage

of the key, only needing to store the value.

When combined with DFE the memory size of the object is

shrunk to 56 bytes, allowing fields of more than one object to be

stored on the same cache line. Because accesses to these objects

are filtered by the value of the first field, filtered iterations

(i.e., where the rest of the object is not read), can be processed

along with the previous iteration, achieving a 4.7% speedup

over the baseline. This combination also greatly reduces the

memory usage of the benchmark, reducing the max RSS by

20.8%, approximately 844MiB. When ALL optimizations are

applied an additional 2.1% speedup is seen over solely DEE

and max RSS reduction remains 20.8%.

D. Pass Analysis

We evaluated optimizations in the LLVM 16.0.32 compiler

pipeline to locate areas that traditional compiler techniques

could be improved by MEMOIR, the goal being to find an

upper-bound for such benefits. Results were gathered via

manually inserted counters, from an invocation of opt -O3

on the whole-program bitcode generated by gclang.

Global Value Numbering is restricted by LLVM’s opaque

memory locations, which prevent assignment of memory and

pointer operations to existing congruence classes, introducing

a large number of memory-related value numbers, as seen

in Figure 10. With element-level information, these memory

locations can be mapped to a smaller set of congruence classes.
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Fig. 10: Percentage of global value numbers introduced for memory
operations in LLVM’s NewGVN pass.

2LLVM 16.0.3 was the most recent release at the time of experimentation.

Sink is constrained by memory operations, which create

barriers that instructions can not be safely moved across.

Figure 11 illustrates how common of an occurence this is, as

many attempts to sink an instruction fail because of instructions

that may write or reference the same memory location. With

unambiguous representations for what memory operations are

being performed and which elements are being operated on,

MEMOIR could enable additional, safe, code motion.
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Fig. 11: Analysis of LLVM’s Sink pass.

Constant Folding is blocked by an inability to propagate

constants across memory barriers, the breakdown of which

is seen in Figure 12. The element-level analysis provided

by MEMOIR allows constants to be propagated along a

collection’s DEF-USE chain, an optimization performed in [21]

for fields. Prior work has also proposed conditional constant

propagation algorithms for Array SSA [50], which could be

repurposed by MEMOIR compilers.
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Fig. 12: Analysis of LLVM’s ConstantFold pass.

VIII. RELATED WORK

A. Compiler Intermediate Representations

Array SSA [20] provides a first class representation for

arrays, but fails to generalize to sequential collections that

grow and shrink throughout execution. Extended Array SSA

[21] provides a representation for accessing fields of objects

with static, strong types, introducing what this paper calls field

arrays. MEMOIR generalizes both of these representations,

making it amenable to techniques that use them [27,50–53].

Memory SSA [54] and similar works [55,56] provide a sparse

representation of points-to information, enabling flow analyses

on memory blocks. However, they do not grant degrees of

freedom to the compiler as they do not provide a representation

for the structure of data in memory.

MLIR [57] provides a compiler infrastructure for progressive

lowering from higher- to lower-level representations. MLIR’s

memref dialect represents memory objects, but is purely a

wrapper for the LLVM memory representation, providing no

additional guarantees as the underlying memory is mutable.

MLIR seems a useful substrate for MEMOIR compilers, but

the concepts introduced by MEMOIR are missing, making

its introduction a matter of engineering. Additionally, there is
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currently no MLIR-based compiler capable of meaningfully

handling the complexity of SPEC benchmarks.

SDFG’s [58] represent the program as a stateless, acyclic

graph of data containers and computation, wrapped by state-

ful nodes. This representation does not provide meaningful

abstractions for their containers, suffering from the memory

ambiguities shown in §III, especially stateful data accesses

which require each access be wrapped in a stateful node.

Similarly, HPVM [59] provides a dataflow graph representation

of the program, with explicit data movement between nodes.

These nodes may have side effects, which are modeled with

the same low level memory representation as LLVM, making

HPVM subject to the same memory aliasing problems.

B. SSA Destruction and Register Allocation Techniques

SSA destruction of data collections in MEMOIR bears a

strong resemblance to the register allocation problem, known

to be NP-complete [60]. We present an algorithm with a

primary focus on avoiding spurious copies, simply preserving

the user-defined allocation. Adapting strategies from scalar

variable allocation [61–64], could enable MEMOIR compilers

to optimize the allocations. Advanced escape analyses could

be used to improve the stack allocation algorithm [65–67].

C. Precise Reasoning with Collections and Structured Heaps

There is a growing body of work related to the static analysis

of data collections. Dillig et al. [34] proposed a framework

for analyzing the contents of containers–analogous to element-

level analysis in this paper–for the purpose of verification.

Unifying their framework with MEMOIR provides an exciting

opportunity for sound collection lowering to implementations

outside of the standard library. More recently, structured heaps

[68] have been proposed as a means of enabling static analysis

for programs using dynamic memory, to which MEMOIR bears

a strong, albeit higher-level, resemblance.

D. Programming Languages Amenable to MEMOIR

At its core, MEMOIR proposes collections as value types.

In this paper, we implement a library in C/C++ to provide this

functionality, however many languages exist which provide the

guarantees needed for a MEMOIR compiler. Languages with

mutable value semantics [48], which degrades references to

second-class citizens, are amenable to SSA construction, as

they are analogous to our MUT library. Such languages include

Swift’s struct types [69] and Hylo [70].

Languages with single-ownership, i.e., “borrowing”, which

guarantee that only one mutable reference will exist at a

time can be used to construct a MEMOIR program. An

example of this is Rust [71], which is steadily entering the

programming zeitgeist. Similarly to Rust, newer languages such

as Mojo [72] and Vale [73] have similar ownership models.

Of note, use φ’s cannot be constructed for these languages, as

multiple immutable references may exist at once. While the

aforementioned languages are promising directions of future

work, the lack of accepted benchmark suites implemented in

them, unlike C/C++, was deemed too large a barrier to adoption

in our research at present.

Collection-oriented languages [74–77] have existed for many

years now. APL [74] and SETL [77] serve as prime examples

of their philosophy, focusing on arrays and sets, respectively,

as prime concepts of the language. As such they are interesting

source languages for compilation and, furthermore, their

implementations provide a wealth of resources on optimizing

collection-oriented programs [78]. A recent example of these

concepts being exploited outside of their original languages

is parallel block-delayed sequences [79], which implements

loop-fusion techniques on sequences as a library for Parallel

ML and C++. Investigating the extent these optimizations could

be performed statically with MEMOIR provides an interesting

starting point for this line of research.

IX. CONCLUSION

This paper introduced MEMOIR, a compiler intermediate

representation in an SSA form for data collections and objects

stored in memory. The core of MEMOIR comes from a decou-

pling of the memory used to store data from the memory used to

logically organize data. Through this decoupling, the compiler

is granted a generalized representation of both sequential and

associative collections with well-defined operational semantics

that cover common operations performed on them. This paper

also introduced a prototype MEMOIR compiler, which is

capable of performing element-level analysis on collections

thanks to its SSA form and unambiguous operations. Using

this analysis, the compiler is able to perform novel memory

optimizations that must be applied manually today, including

efficient layout of fields, selection of heap or stack allocation

and copy elision. Furthermore, MEMOIR enables traditional,

scalar analyses and transformations be applied to elements

of collections. As an example, we generalized live variable

analysis to be live range analysis and used it to perform dead

element elimination, a generalization of dead variable elimina-

tion. With additional work on MEMOIR compilers, we believe

that developers can be liberated from the burden of performing

low-level, manual memory optimizations. Additionally, the

avoidance of premature lowering and optimization of data

collections can remove barriers to optimizations, improving

the applicability of traditional compiler optimizations.
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ARTIFACT APPENDIX

A. Abstract

Our artifact includes source files for the prototype MEMOIR

compiler described and evaluated in the paper. In addition to

this it includes source-code patches for SPEC CPU2017 and

LLVM opt. When applied, these patches port the programs to

utilize MEMOIR collections and apply MEMOIR optimizations

at the source-code level.

B. Artifact Check-List (Meta-Information)

• Algorithm: SSA Construction, SSA Destruction, Dead
Element Elimination, Dead Field Elimination, Field Elision,
Redundant Indirection Elimination

• Program: LLVM; Optional: SPEC2017
• Compilation: LLVM9; Optional: LLVM14, GCC, ICC
• Transformations: MEMOIR optimizations and porting im-

plemented as ed scripts.
• Binary: None
• Data set: SPEC CPU2017 Integer (not included)
• Run-time environment: Linux
• Hardware: Tested on Intel and AMD x64 machines.
• Metrics: Execution time, Max resident set size, Compilation

time, Number of collections, Significant lines of code
• Output: Tables 2 and 3, Figures 5, 6, 7 and 8.
• Experiments: Performance and Compiler Evaluation
• How much disk space required (approximately)?: Generated

artifact is 11GiB
• How much time is needed to prepare workflow (approxi-

mately)?: 30 minutes
• How much time is needed to complete experiments (approx-

imately)?: 45 minutes (1 run, with minimal configurations
enabled), 4 hours (1 run, with all configurations enabled)

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT License
• Workflow framework used?: Unix Makefiles, Bash, cus-

tomization described below.
• Archived?: Yes, https://doi.org/10.5281/zenodo.10182391

C. Description

1) How Delivered: The artifact is available on Zenodo, at

https://zenodo.org/records/10201049.

2) Hardware Dependencies: An x64 processor. This artifact

has been tested on both Intel and AMD x64 machines.

3) Software Dependencies: Running the artifact requires

LLVM 9.0.0, Julia 1.9.4, scc, and gclang. It optionally depends

on LLVM 14.0.6, GCC 8.5.0, and ICC 18.0.1.

All of the above dependencies are handled when building the

docker image. This artifact has been tested with both docker

24.0.5 and Podman 4.6.1.

D. Installation

We have provided a Dockerfile to handle dependencies. If

evaluating the artifact with SPEC2017, the easiest solution is to

copy your SPEC2017.tar.gz into the artifact directory, which

will be transfered to your docker container. If you choose to

use docker, run the following two commands from within the

installed artifact directory:

docker build -t cgo24-artifact .

docker run -it cgo24-artifact

After installation, run make config within the artifact direc-

tory to configure the artifact. Details about the configuration

are included in §G.

E. Experiment Workflow

After installation and configuration, run make all, which

will run the following pipeline:

1) make memoir-setup compiles MEMOIR.

2) make benchmark-setup sets up benchmark files.

3) make benchmark compiles benchmarks.

4) make performance executes performance tests.

5) make figures gathers statistics about the MEMOIR com-

piler and then creates figures.

F. Evaluation and Expected Results

As the output of the experiment flow, the figures/ directory

will be populated with the tables and figures from the paper.
Table 2 (figures/table_2.txt) evaluates our prototype

MEMOIR compiler. The first portion evaluates the compilation

time for the MEMOIR compiler and LLVM compiler using no

optimizations (O0) and all optimizations (O3).
Table 3 (figures/table_3.txt) evaluates the development

effort of our prototype MEMOIR compiler. The SLOC for

LLVM passes is not included.
Figure 5 (figures/figure_5.pdf) evaluates the impact of

MEMOIR optimizations on execution time.
Figure 6 (figures/figure_6.pdf) evaluates the impact of

MEMOIR optimizations on memory usage (max RSS).
Figure 7 (figures/figure_7.pdf) evaluates the impact of

each MEMOIR optimization, in isolation and concert, on

execution time.
Figure 8 (figures/figure_8.pdf) evaluates the impact of

each MEMOIR optimization, in isolation and concert, on

memory usage (max RSS).

G. Experiment Customization

The artifact can be customized by running make config.

The configuration options are as follows:

• SPEC2017 can be enabled/disabled. If disabled, figures

5, 6, 7 and 8 cannot be generated.

• Sweeping Compilers can be enabled/disabled. When

enabled, figures 5, 6, 7 and 8 will include performance

evaluation for GCC and LLVM14.

• Sweeping Optimizations can be enabled/disabled. When

enabled, the figures 7 and 8 will be generated.

• Number of Runs can be set, this will run each configu-

ration of each benchmark that many times.

More detailed information about the artifact and how to

extend it to be used on new benchmarks and compiler

configurations is available in the artifact README.md.

H. Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html

• http://cTuning.org/ae/reviewing-20190109.html

• https://www.acm.org/publications/policies/

artifact-review-badging
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