
TrackFM: Far-out Compiler Support for a
Far Memory World

Brian R. Tauro
btauro@hawk.iit.edu

Illinois Institute of Technology
Chicago, Illinois, USA

Brian Suchy∗
brian@briansuchy.com
Northwestern University
Evanston, Illinois, USA

Simone Campanoni
simone.campanoni@northwestern.edu

Northwestern University
Evanston, Illinois, USA

Peter Dinda
pdinda@northwestern.edu
Northwestern University
Evanston, Illinois, USA

Kyle C. Hale
khale@cs.iit.edu

Illinois Institute of Technology
Chicago, Illinois, USA

Abstract
Largememoryworkloads with favorable locality of reference
can benefit by extending the memory hierarchy across ma-
chines. Systems that enable such far memory configurations
can improve application performance and overall memory
utilization in a cluster. There are two current alternatives
for software-based far memory: kernel-based and library-
based. Kernel-based approaches sacrifice performance to
achieve programmer transparency, while library-based ap-
proaches sacrifice programmer transparency to achieve per-
formance. We argue for a novel third approach, the compiler-
based approach, which sacrifices neither performance nor
programmer transparency. Modern compiler analysis and
transformation techniques, combined with a suitable tightly-
coupled runtime system, enable this approach. We describe
the design, implementation, and evaluation of TrackFM, a
new compiler-based far memory system. Through extensive
benchmarking, we demonstrate that TrackFM outperforms
kernel-based approaches by up to 2× while retaining their
programmer transparency, and that TrackFM can perform
similarly to a state-of-the-art library-based system (within
10%). The application is merely recompiled to reap these
benefits.

CCS Concepts: • Software and its engineering→ Run-
time environments; Source code generation; •Networks
→ Cloud computing; • Computer systems organization
→ Cloud computing.

∗Now at Google.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0372-0/24/04.
https://doi.org/10.1145/3617232.3624856

Keywords: disaggregated memory, compilers, far memory
ACM Reference Format:
Brian R. Tauro, Brian Suchy, Simone Campanoni, Peter Dinda,
and Kyle C. Hale. 2024. TrackFM: Far-out Compiler Support for
a Far Memory World. In 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 1 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,
USA. ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/
3617232.3624856

1 Introduction
Applications benefit from deep, hierarchical memories that
match the program’s available data locality to a memory
tier with appropriate performance characteristics. For ex-
ample, Lagar-Cavilla et al. found that applications access an
average of 32% of their pages in Google’s warehouse-scale
system [20] and most pages are accessed only infrequently.
This infrequent access presents an opportunity for a cheaper,
slower tier of memory that sits between DRAM and disk.
One example of such a far memory tier is remote memory,
alternatively referred to as disaggregated memory [1]. In the
remote memory model, DRAM on a remote server connected
to the local machine with a high-performance interconnect
serves as swap space. Remotememory systems accommodate
memory-constrained applications by allowing workloads to
scale across machines rather than requiring overprovision-
ing using expensive, large-memory hardware. This reduces
ownership costs [40] and mitigates application crashes from
unmet memory demands.

Remote memory can be implemented in hardware or soft-
ware. This paper focuses on software-based remote memory,
for which there are two primary techniques: kernel-based and
library-based. The kernel-based approach modifies the OS
paging subsystem [3, 13, 44], achieving programmer trans-
parency: the application developer gets the advantages of
kernel-based approaches for free; even unmodified binaries
can benefit from remote memory. Fastswap is a notable ex-
ample that uses a modified Linux swap subsystem to leverage
memory on a remote server using RDMA [3]. The program-
mer transparency of the kernel-based approach comes at a

https://doi.org/10.1145/3617232.3624856
https://doi.org/10.1145/3617232.3624856
https://doi.org/10.1145/3617232.3624856


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale

cost, however. For example, page fault overheads in the ker-
nel impose a performance penalty on applications relative to
using only local memory [35]. The hardware page fault cost
creates a fundamental limitation on performance. Addition-
ally, the architected page size of the hardware can poorly
match the granularity of application objects: this results
in “I/O amplification,” where more data is transferred than
necessary. Specialized hardware can improve this situation
by reducing the granularity of memory faults [7], but this
capability is currently limited to research prototypes [32].
The library-based approach to far memory is an impor-

tant alternative, where developers use modified (or custom)
libraries that include data structures designed to leverage
remote memory, at granularities appropriate for the applica-
tion, and entirely in user space. Application-integrated far
memory (AIFM) [35] is the exemplar of this approach. AIFM
builds on the Shenango runtime’s [34] high-performance
user-level tasking and networking to hide remote object
fetch latencies using prefetching, concurrent fetch requests,
caching, and automatic memory evacuation. AIFM can thus
achieve considerably higher performance than Fastswap, es-
pecially for fine-grained objects. The performance of the
library-based approach trades off for programmer trans-
parency, since the application must be reimplemented to
leverage remote memory. Implementations like AIFM do at-
tempt to insulate application developers to some extent. In
the best case, developers need only make minimal changes
to their code to leverage remote versions of data structures
(e.g., a remote HashMap). However, if the AIFM libraries do
not provide appropriate data structures, developers must
design their own.
The tension between transparency and performance in

the kernel-based and library-based approaches creates an
opportunity for a third alternative: compiler-based. We ar-
gue that modern compiler analysis and transformation tech-
niques make it possible to simultaneously achieve program-
mer transparency and performance. To support this argu-
ment, we design, implement, and evaluate TrackFM, a com-
piler and runtime framework that achieves full transparency
using semantics recovered and exploited using state-of-the-
art compiler middle-end analyses and transformations, and
achieves high performance by using the heavily optimized
AIFM runtime as a backend. No specialized hardware or mod-
ifications to the OS are required. Using a mix of micro- and
macro-benchmarks, we demonstrate that the compiler has
sufficient knowledge to allow TrackFM to achieve near per-
formance parity with AIFM (within 10%) while maintaining
the programmer transparency of Fastswap.

We summarize our contributions as follows:

• We introduce the compiler-based approach to software-
based far memory, which provides a path to simul-
taneously achieving programmer transparency and
performance.

1 int sum ( RemoteArray * array , int n) {

2 int sum = 0;
3 for (int i = 0; i < n; i++) {

4 DerefScope scope;

5 sum += array.at(scope, i) ;

6 }
7 return sum;
8 }

Listing 1. Simple loop using AIFM’s remote array.

• We demonstrate how to use modern compiler anal-
ysis and transformation techniques to automatically
transform existing applications to support far memory.

• We introduce new compiler analysis and transforma-
tion passes that improve performance for the target
applications.

• Wepresent the design and implementation of TrackFM,
a new compiler-based far memory system.

• We report on an extensive performance evaluation
using numerous microbenchmarks and applications.

TrackFM is freely available online.1

2 TrackFM Design
Our goal is to use the compiler to approach the performance
of library-based far memory solutions by automatically trans-
forming existing applications, eliminating the need for pro-
grammer modifications. We aim to reuse the AIFM far mem-
ory runtime and automate its integration into the applica-
tion. As an illustrative example, consider a for loop that
computes the sum over an array of integers. To make this
array remotable in the library-based solution (AIFM), the
programmer must use the remote array type provided by
AIFM libraries. The programmer must then change their
code manually, as shown in Listing 1. The highlighted lines
indicate programmer changes. Although these changes are
minimal, they require understanding of AIFM’s semantics;
namely, a scope object must be provided so that AIFM does
not evacuate in-use local memory. Moreover, modifying ap-
plications with large code bases to run on AIFM may not be
practical.
We aim to transform unmodified C/C++ applications to

use remote memory automatically. Figure 1 shows our over-
all design. Our compiler toolchain takes the unmodified
C/C++ source code2 for an application, and using an LLVM-
based, middle-end analysis and transformation pipeline, re-
motes certain memory allocations via AIFM. It also injects a
thin runtime layer into the application that interfaces with
AIFM. The toolchain produces a modified binary that runs
on a far memory cluster. Our transformations take place at
the IR level.

1https://github.com/compiler-disagg/TrackFM
2Our approach also applies for applications shipped as LLVM bitcode.

https://github.com/compiler-disagg/TrackFM


TrackFM: Far-out Compiler Support for a Far Memory World ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

unmodified 
application

TrackFM analysis 
& transforms

LLVM

app code

TrackFM 
runtime

transformed app

AIFM

Shenango

compiler toolchain

Figure 1. Users compile applications with TrackFM to run
on a far memory cluster.

The primary obstacle to automating the integration with
AIFM is the semantic gap between the application devel-
oper’s high-level knowledge of data structures and what the
compiler sees at the granularity of memory accesses. AIFM
works at the level of objects, contiguous chunks of remotable
memory, and what constitutes an object is determined by
the application developer. For example, when AIFM’s object
size is set to 256B, a remote 1KB array will be represented
by four chunked AIFM objects. A remote linked list, on the
other hand, might use an AIFM object size of 64B to consti-
tute a single linked list node. Unlike AIFM, TrackFM works
on unmodified code, so it must automatically determine the
mapping of memory allocations to AIFM objects using low-
level information (i.e., by drawing boundaries around chunks
of contiguous memory allocations).

In kernel-based approaches, any page can be swapped to
a remote node, while in AIFM, candidates for remoting are
determined by which data structures the programmer uses
the AIFM data types for. Our design strikes a middle ground,
where any heap-allocated data can be swapped out (but not
at the granularity of pages). Whether these heap-allocated
regions actually are swapped out depends on temporal ac-
cess patterns; hot regions will be kept local, while cold ones
will be evacuated to the remote node. The TrackFM run-
time tracks this “hotness” via AIFM’s existing object access
interposition mechanisms.

AIFM has several programmer-directed parameters that af-
fect its performance, for example, the degree of concurrency,
object size, and prefetching strategy. We will see how the
compiler’s choices for these parameters impact performance
in Section 4. Since our compiler framework requires source
code, programs that use external libraries present a chal-
lenge. The naïve route is to ignore external libraries. Memory
that they allocate will not be remotable. However, TrackFM
needs to transform pointers to automatically remote them,
and those transformed pointers can easily escape to library
code, which does not know how to handle them. A library
may then incorrectly attempt to access remote memory not
yet localized by the TrackFM runtime. The alternatives are
to (1) have programmers run external libraries through the

TrackFM Compiler
source
code Runtime initialization pass

Guard check analysis

Loop chunking analysis

Loop chunking transform

Guard check transform

libc transformation pass far memory 
binary

Figure 2. TrackFM’s analysis and transformation pipeline.

TrackFM compiler or, (2) only allow pre-transformed ver-
sions of the libraries provided by us. In this paper, we explore
both options, though the latter is more pragmatic.

3 Implementation
We first outline how TrackFM transforms applications to
use far memory, then we describe how we incorporate the
high-performance AIFM runtime with TrackFM. Finally, we
describe our compiler transformations in detail, including
how we manage the overheads they introduce. In this pa-
per, we focus on realizing TrackFM in the context of C/C++
programs.

3.1 Far Memory Pointer Transformation
The first distinction that TrackFM must make is between
remotable and local-only pointers. AIFM makes this distinc-
tion using far memory data structures. However, TrackFM
cannot rely on user annotations since we target unmodified
code.
Conceptually, all heap-allocated pointers must be man-

aged by TrackFM, and all others (stack, global data, etc.)
remain unchanged. However, as a pointer is just an address,
we have no a priori way to tell them apart. TrackFM does
this by overloading the higher-order bits of the address. In
particular, it leverages x86 non-canonical addresses.3 The
60𝑡ℎ bit of the address is used to flag a pointer as a TrackFM
pointer. If this bit were to be set in any non-TrackFM pointer,
the pointer would be invalid. To enforce this distinction,
TrackFM provides a custom malloc implementation which
replaces the default libc malloc. Our custom implementation
always returns TrackFM (non-canonical) pointers.

Intuitively, a TrackFM pointer can refer to memory that is
either on the local or remote system. Thus, the programmust
be prevented from using the pointer directly. The compiler
must provide an indirection layer that, when the pointer is
accessed at runtime, localizes the memory and produces a
standard pointer in the local address space. Thus, we must
3Depending on the x86 implementation, the top 16 or 7 bits of a virtual or
physical address must be either all zeros or all ones in order for the address
to be “canonical.” If a “non-canonical” address is ever used for an instruction
fetch, a load, or a store, a general protection fault is triggered.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale

guard accesses to TrackFM pointers. These guards consti-
tute compiler-injected code that ensures memory is localized
before access; they comprise the lion’s share of TrackFM’s
overheads, as we will see in Section 4. To properly guard
pointers, the TrackFM compiler applies a series of analyses
and transformations at the compiler’s IR level (called passes),
as shown in Figure 2. These passes are built on NOELLE [27],
a novel analysis and transformation framework that expands
LLVM [21] by introducing high-level and program-wide ab-
stractions. We discuss each pass below.

Runtime Initialization. To make far memory transpar-
ent to programmers, this pass inserts hooks in the program’s
main function to initialize TrackFM’s runtime system.

Pointer guards. In this pass, TrackFM searches for all
LLVM IR-level load and store instructions that correspond
to heap allocations (returned by malloc) and marks these
instructions as eligible for guard transformation. The pass
ignores accesses to stack and global objects by leveraging
NOELLE’s program dependence graph abstraction, which is
powered by several high-accuracy memory alias analyses.
Candidate heap pointers are later transformed by the guard
transformation pass, described in Section 3.3.

Loop Chunking. We introduce a novel loop chunking
analysis to reduce guard overheads introduced in loop bodies.
Our loop chunking pass incorporates NOELLE’s profiling
facilities when available to further improve our optimization.
We describe the relevant transformation in Section 3.4, and
techniques to improve it in Section 4.2.

Libc Transformation. This pass transforms all mem-
ory allocation calls (mainly for heap allocation) in libc (e.g.,
malloc, realloc, free), into TrackFM-managed memory
runtime calls. The TrackFM versions leverage AIFM’s region-
based allocator under the covers to allocate remotable mem-
ory. Custom heap allocators are not currently supported,
but provided they simply replace libc malloc with their own
managed heap, this would be trivial to add support for. We
consider more complicated heap setups involving mmap()
(e.g., using MAP_SHARED) out of scope for this paper.

3.2 Bridging AIFM with the Compiler
To integrate with AIFM, we use a lightly modified version of
AIFM that includes hooks into the TrackFM runtime.We next
discuss details about integrating TrackFM pointers with the
AIFM runtime. In particular, we must transform contiguous
heap allocations into AIFM objects, fixed-size chunks that
can be either in the local or remote state. We will see in
Section 3.3 that significant complexity arises because a given
heap allocation can comprise multiple AIFM objects, each of
which may be in different states (local or remote).

AIFM manages remotable memory at the level of individ-
ual data structures. Each of these data structures in the AIFM
runtime is implemented as a C++ class which extends a base

class that handles the underlying mechanisms of remote
objects. We extend this base class with a unified abstract
data structure (ADS) that the compiler uses to capture all
remotable allocations for the application. With AIFM, pro-
grammers specify remote memory usage by leveraging one
of these specialized data structures. However, with TrackFM,
the compiler identifies all remotable allocations and attaches
them to a single runtime-managed object pool. The ADS
thus contains a pool of objects that represent the total far
memory that an application can use. TrackFM interposes on
an application’s allocation sites and chunks the allocations
into objects in the global pool at run-time.

Object size selection. In AIFM, the user/data structure de-
veloper annotates each data structure with an object size for
a given application. Since TrackFM does not require program-
mer changes, it is currently constrained to choose a single
object size at compile time for the entire application. Unlike
Fastswap, which is constrained by the page size, TrackFM
supports object sizes smaller than a page, mitigating I/O
amplification. While multiple object sizes are possible, this
increases the complexity of the runtime system and compiler
transformations, so we leave this for future work. We note
that it is likely the case that only a few fixed object sizes
make sense, and that these are likely to be powers of two
ranging from 64B (cache line size) to 4KB (base page size).
Using object sizes smaller than a cache line would saturate
the network with many small packets, and would not take
advantage of the network’s bandwidth, which is geared to
larger packets. On the other hand, much larger object sizes
would suffer from I/O amplification, and defeat the purpose
of sub-page granularity far memory. While the choice of
object size is currently selected by us, the small search space
suggests that an autotuning approach is feasible. Further-
more, if we are correct that only the powers of two from 6
(cache line) to 12 (base page size) need to be considered, an
exhaustive search involving recompilation and a short-term
execution would simply expand the short compile times.

Allocating far memory. TrackFM only remotes heap
allocations and maintains a simple non-canonical address
space to service memory allocation calls by the application.
All memory allocation call sites within libc are intercepted by
TrackFM and will return TrackFM-managed pointers start-
ing from the non-canonical address range (starting at address
260). Because TrackFM rewrites pointers at the middle-end,
even if a pointer is cast to an integer type (for example to
perform offset math), the resulting load/store will still be
properly guarded, provided that the non-canonical bits of
the address are preserved. Internally, TrackFM maps non-
canonical pointers to objects in an ADS. The object corre-
sponding to a TrackFM pointer can be derived by dividing
the TrackFM pointer by the object size (a right shift for pow-
ers of two). A single memory allocation can span multiple



TrackFM: Far-out Compiler Support for a Far Memory World ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

metadata entries

...

TrackFM 
object state table

mov	%rbx,(%rcx)
target load/store

compiler-
injected 
guard

AIFM 
object 
states

DS ID (8b) P S Obj. Size (16b) Obj. ID (38b)

remote format

H Obj. Data Addr (47b)EDSP
local format

lookup

or

Figure 3. The object state table caches AIFM object metadata
(shown on top, and reproduced from the AIFM paper [35])
for lighter-weight guards.

objects, while smaller allocations are grouped into a single
object.

TrackFM object state table. Any particular allocation
could be in a superposition, i.e., some of its constituent
objects (chunks) could be local while others are remote.4
AIFM tracks the local/remote state of objects by maintaining
two metadata representations (one for each state) internally.
Determining this state in AIFM requires two memory ref-
erences, one to find the object, and another to access its
metadata. TrackFM eliminates one of these operations by
maintaining an object state table, an optimization that caches
object metadata in a contiguous lookup table, allowing us
to perform a simple index calculation rather than an indi-
rect memory reference to derive object metadata. This is
possible because of the way TrackFM encodes object IDs in
the non-canonical range of the pointer. We modified AIFM
so that this table is kept coherent with the AIFM-managed
object metadata. The object state table contains metadata
entries (8B each) for each object in the system, where the
total number of objects is determined by the total size of the
remote heap. The overhead of the table can be computed
similarly to a single-level page table. For example, if we have
a 32 GB remote heap (as in many of our experiments), we
would need 223 entries in the table (assuming each object
is 4KB), thus consuming 64 MB for the full table. As shown
in Figure 3, the compiler-inserted guard derives the object
metadata from this table in order to determine whether or
not the referenced object is localized.

3.3 TrackFM Guards
As described above, TrackFM instruments application de-
rived LLVM bitcode with guards on every relevant load and
store instruction referring to heap-allocated memory at the

4This is a property that makes compiler-based far memory different from
prior DSM-focused systems.

LLVM middle-end layer. These guards comprise compiler-
injected instructions that ensure the memory is localized
(brought into local memory) before being accessed. TrackFM
guards localize an object by reverting the non-canonical ad-
dress returned from the TrackFM allocator back into a canon-
ical address before execution of the target load/store. Figure 4
depicts the guard. Figure 4a shows an abstract depiction of
the injected code as a control flow graph, and Figure 4b shows
the guard after it has been lowered to x86_64 assembly. We
break down the TrackFM guard into three components: a
custody check, a fast-path guard, and a slow-path guard. Note
that on the fast path only one of those instructions is a data
access (to the object state table) that can result in a cache
miss. Figure 4b highlights the fast path through the guard
with vertical orange lines on the left. Note that we can also
enable optional debug instrumentation that indicates when
guards take the fast or slow path, and which AIFM code path
they trigger.

Custody check. TrackFM first checks whether the pointer
is managed by TrackFM. Recall that this means only heap-
allocated memory. If a pointer is not managed by TrackFM,
we immediately jump to the target load/store. This path con-
stitutes roughly four instructions. If the pointer passes the
custody check (i.e., it is a TrackFM pointer), we perform
a table lookup to derive the object state table entry corre-
sponding to the AIFM object, and then load the object state
of the TrackFM pointer. This path constitutes roughly six
instructions.

Fast-path guard. We use AIFM’s internal object meta-
data to determine if an object is safe to access, i.e., guaran-
teed to be local. Safety is satisfied if certain bits in AIFM’s
internal metadata representation are cleared.5 When safety
is satisfied, the fast-path guard will be taken, constituting
14 instructions. Note that it appears that there is a time-
of-check to time-of-use issue between the test instruction
(line 6) and the actual target load/store (line e). That is, if the
safety check passes and this application thread gets context
switched out (or even if there is a race), an evacuator might
run on another core and delocalize the object, rendering the
pointer invalid for the final target load/store. This issue is
prevented because AIFM’s evacuator threads use a barrier
that waits on all application threads to converge to a state
where remotable pointers are “out-of-scope.” While within
the context of a TrackFM guard, the app thread is guaran-
teed not to be in this “out-of-scope” state, preventing the
convergence necessary for the evacuator to proceed. This
means that between line 5 and line e, the object cannot be
evacuated.

5AIFM must indicate that the object has been localized either through a
blocking access or an asynchronous prefetch request, and is not a candidate
for evacuation to the remote node.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale

3

custody check

6
ptr not managed

by TrackFM

N Y
safety
check

guaranteed
local accesscall into

runtime

YN1

5

6

>144

= fast path

= slow path

(a) abstract control flow.

0:	shr				$0x3c,%rax											//	custody	check	(is	this	TrackFM-managed	ptr?)
1:	je					e																				//	if	not,	perform	original	load/store	
2:	lea				0x20(%rsp),%rdi						//	map	non-canonical	ptr	to	object	metadata
3:	shr				$0xc,%rdi
4:	xor				%r15,%rdi
5:	mov				(%r12,%rdi,8),%rax			
6:	test			$0x10580,%eax								//	is	object	safe	(localized)?
7:	je					a																				//	yes,	go	to	fast	path	guard
8:	callq		<slow_path_guard_fn>	//	otherwise,	runtime	call	(slow	path	guard)
9:	jmp				b	
a:	shr				$0x11,%rax											//	pointer	offset	math
b:	lea				0x20(%rsp),%rcx						
c:	and				$0xff8,%ecx
d:	add				%rax,%rcx
e:	mov				%rbx,(%rcx)										//	TARGET	LOAD/STORE

fast-path guard

object metadata lookup

(b) generated x64 code.

Figure 4. Left: control flow of compiler-inserted guard check. Circles indicate conditional branches and squares indicate exit
nodes. Each node is annotated with the number of x64 instructions executed. Right: guard lowered to x64 code. The vertical
orange lines indicate the fast path (highlighted in blue on the left).

naïve transformation

= fast-path guard

with chunking optimization

= slow-path guard

= locality guard 
  = obj. boundary check 
  

for	(i	=	0;	i	<	N;	i++)	
		sum	+=	GUARD(a[i]);	

(end,	ptrid)	=	tfm_init(a)
tfmptr	=	tfm_rw(ptrid);	
for	(i	=	0;	i	<	N;	i++)	
		sum	+=	tfmptr[tfm_idx(ptrid)]
		if	(++tfmptr	==	end)
					tfmptr	=	tfm_rw(ptrid)

Figure 5. The loop chunking optimization eliminates fast-
path guards within loops when object boundaries are not
crossed. This trades off a cheaper conditional branch inserted
in every iteration (yellow) and a more expensive guard at
object boundaries (orange).

Slow-path guard. If the object is unsafe to access, then
we must call into the TrackFM runtime. TrackFM in turn
calls into the AIFM runtime to dereference the object, which
could involve a remote fetch. When TrackFM interfaces with
AIFM here, it adheres to AIFM’s internal DerefScope API
(shown in Listing 1), and also triggers a periodic collection
point to allow stale objects to be evacuated to the remote
node. This runtime call in the slow path, which has a higher
cost, ensures safety.

Once TrackFM ensures safety, it performs the target load/s-
tore. The slow-path guard comprises at least 144 instructions
when the pointer object is already localized. However, if
the object is remote, the cost of the slow-path guard will be
dwarfed by the remote fetch cost.

3.4 Managing Loop Overheads
Up to this point, we focused on direct pointer accesses. How-
ever, there are many cases where pointers are accessed via
an offset, a major example being array accesses. It is com-
mon for such accesses to occur in loops. Ideally, when iter-
ating over a collection (e.g., an array) in a loop, we could
localize the entire array at the beginning of the loop, bring-
ing any remote elements local before accessing them. This
optimization was commonly employed by compiler-based
DSM frameworks [26, 28, 31]. However, because we build on
AIFM, and a single collection might constitutemultiple AIFM
objects, the entire collection might be in a superposition (si-
multaneously local and remote). Moreover, the entire array
may not fit in memory. This renders the DSM-style hoist-
ing optimizations ineffective, and it means that all pointer
accesses within a loop body must be guarded.

However, whenmany collection (array) elements fitwithin
a single AIFM object, many of these guards are redundant.
They are only necessary when we cross object boundaries
in the loop. In AIFM, the iterator classes developed by the
library developer for the remote data structures manage
this overhead. With TrackFM we leverage the compiler’s
knowledge of the loop to reduce this overhead by developing
a loop chunking optimization for TrackFM pointers.

Figure 5 depicts such a situation with a contiguous array,
where multiple array elements fit within an AIFM object. The
naïve guard insertion strategy will involve injecting guards
at every element access. The slow-path guards (shown in red)
will be taken at object boundaries, i.e., when i is a multiple
of the object size, and fast-path guards (blue) will be taken
on every other access. With our optimization, the compiler
can determine the induction variable of a loop, including the
step count and the start value of the induction variable, so it
knows that sequential accesses within the boundaries of an



TrackFM: Far-out Compiler Support for a Far Memory World ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

already fetched object do not require fast-path guards. This
trades off many fast-path guards with a slightly more expen-
sive locality invariant guard at object boundaries that calls
into the runtime to pin the object in local memory for the
duration of accesses to the object (one loop chunk). Object
boundary checks (yellow) are also inserted on every access
to detect when the locality invariant guard should be taken.
Note that this optimization is not just applicable to contigu-
ous arrays; it applies more generally to loops that employ
a loop-governing induction variable, which is common in
practice (we will see this in Section 4.5).
The analysis pass for the loop chunking optimization

searches for spatially local memory accesses that occur in
loops, typically a popular location of hot code. Upon find-
ing these accesses, TrackFM attempts to mitigate the over-
head from guards in the loop body by chunking the original
pointer into object-size chunks. To identify such memory ac-
cesses, TrackFM makes use of NOELLE’s induction variable
(IV) analysis.6 Such analysis is unique as it detects induc-
tion variables as patterns in the dependence graph, rather
than building on variable analysis. This leads us to capture
significantly (∼ 3×) more induction variables than what is
traditionally possible. However, TrackFM can also be adapted
to use other IV analyses should better techniques arise. Note
that there is not a correctness issue if the IV analysis misses
induction variables; it just results in lost loop chunking opti-
mizations. We plan to further generalize our loop analysis in
the future, for example by adapting polyhedral methods [43]
to NOELLE.
Our optimization is particularly effective for workloads

that display high regularity.7 Prefetching plays an impor-
tant role in such workloads. TrackFM can detect sequen-
tial access at compile-time, so it uses prefetching alongside
loop chunking to mitigate loop overheads. This has an in-
creasing impact on performance as the number of pointers
iterating over induction variables in a loop increases. This
demonstrates a strength of the compiler-based approach to
far memory: kernel-based approaches cannot take advantage
of such loop-centric memory analysis; they must make post
hoc inferences based on run-time page faults.

Improving Loop Chunking. Loop chunking is not al-
ways beneficial. In particular, when array elements are large
(so that fewer of them fit within a fixed-sized AIFM object),
or the loops have a small iteration space, there are fewer fast-
path guards in the first place. If we apply the loop chunking
transformation in such cases, performance can actually drop
relative to the standard guards. Intuitively, there is a break-
even point when sequential array access occurs at a fine
enough granularity for this transformation to pay off. To

6This is a more sophisticated analysis than what is available in gcc or LLVM.
See §2.B and §4.C of the NOELLE paper [27] for details.
7That is, spatial locality of access closely matches temporal locality of access.

help the compiler determine where that point is, we develop
a simple cost model.

Cost Model. Let 𝑜 be the size in bytes of a TrackFM object,
and let 𝑒 be the size of an element in a collection accessed
in a loop. For example, for an 8-byte integer, 𝑒 would be 8.
We model the number of elements that fit within a single
TrackFM object as the object density, 𝑑 = 𝑜

𝑒
. We are inter-

ested in determining how densely elements must be packed
before the compiler applies the loop chunking transforma-
tion. Intuitively, the more dense an object, the more fast
path guards will be involved, so the more advantageous the
optimization will be. Conversely, if there are few elements
per object, the transformation could be detrimental. With
the naïve transformation, each loop will iterate over some
number of objects, and each object must incur a fast-path
guard for each element access, except for the first, which
requires a slow-path guard. For each object there will thus
be one slow-path guard and 𝑑 − 1 fast-path guards. Slow-
path guards have cost 𝑐𝑠 and fast-path guards have cost 𝑐 𝑓 .
We model the guard costs at the level of individual objects.
We can then estimate the cost of the entire loop in terms of
guards:

𝐶 = (𝑑 − 1)𝑐 𝑓 + 𝑐𝑠 (1)

Our loop chunking optimization replaces fast path guards
(14 instructions) with less expensive object boundary checks
(3 instructions) that determine when an object boundary
is crossed. The object boundary checks are shown as small,
yellow circles in Figure 5. Slow-path guards are replaced with
slightly more expensive locality invariant guards (orange
circles) at object crossing boundaries, which involve a call
to the runtime. We model the cost of the boundary checks
as 𝑐𝑏 and the locality invariant guards as 𝑐𝑙 . The cost of the
transformed loop in terms of guards is then:

𝐶𝑜𝑝𝑡 = (𝑑 − 1)𝑐𝑏 + 𝑐𝑙 (2)

When a loop iterates over large elements, the relatively
high cost of the invariant guard can offset the elimination
of the fast-path guards. Thus, we must only apply the opti-
mization when there is sufficient object density, i.e.:

𝑑 >
𝑐𝑠 − 𝑐𝑙

𝑐𝑏 − 𝑐 𝑓
(3)

Figure 6 shows the projected cost of a simple loop with
a varying number of iterations for the baseline method and
the loop chunking optimization. The chunking optimization
becomes preferable once an object comprises as few as ∼730
elements. The curve on the plot shows empirical measure-
ments of loop cost. Note that the projected break-even point
matches the empirical data. Thus, if the compiler can deter-
mine 𝑑 , we can make intelligent choices about when to apply
the loop chunking transformation. To do this, we leverage



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale

0 250 500 750 1000
# elements per object

0.0

0.5

1.0

1.5

2.0

sp
ee

du
p 

vs
. b

as
el

in
e 

tra
ns

fo
rm

predicted →
crossover
point

Figure 6. Cost model to capture the point at which loop
chunking becomes advantageous. The horizontal dotted line
shows empirically when loop chunking benefits, and the
vertical red line shows when the model predicts a beneficial
outcome.

NOELLE’s profiling engine to collect loop code coverage sta-
tistics. With the profiling pass in TrackFM we filter out loops
with low object density transparently without modifications
to source code.

4 Evaluation
The TrackFM compiler must make choices about how it struc-
tures far memory objects and passes information to the run-
time system. We evaluate the performance impact of these
choices and the overheads of compiler-injected guards using
microbenchmarks, studying the impact of different types of
workloads and access patterns in a controlled setting. We
then demonstrate that by making good choices, TrackFM can
approach the performance of AIFM on application bench-
marks while maintaining programmer transparency.We seek
to answer the following questions in our evaluation:

• How expensive are TrackFM guards? (§4.1)
• To what degree can compiler analysis and transforma-
tions mitigate guard overheads? (§4.2)

• When the compiler can control AIFM object size and
prefetching, how do its choices impact performance?
(§4.3)

• To what degree can TrackFM mitigate I/O amplifica-
tion? (§4.4)

• How do TrackFM’s optimizations translate to overall
application performance relative to state-of-the-art
approaches? (§4.5)

• How does TrackFM affect code size and compilation
time? (§4.6)

Experimental setup. We conducted our experiments on
CloudLab [10] using two x170 machines with 10-core Intel
Xeon E5-2640v4 CPUs clocked at 2.40 GHz, 64GB RAM and
a 25 Gb/s Mellanox ConnectX-4 NIC. We used Ubuntu 18.04
(to support AIFM) with stock Linux kernel version 5.0 and
DPDK version 18.11. For Fastswap measurements we use

TrackFM Guard Type Cached Uncached

TrackFM fast-path read guard 21 297
TrackFM fast-path write guard 21 309
TrackFM slow-path read guard 144 453
TrackFM slow-path write guard 159 432

Table 1. TrackFM fast-path vs. slow-path guard costs when
a object is local. Costs are reported in median cycles over
1000 trials.

Runtime Event Local Cost Remote Cost

Fastswap read fault 1.3K 34K
Fastswap write fault 1.3K 35K
TrackFM slow-path read guard 453 35K
TrackFM slow-path write guard 432 35K
Table 2. Comparison of primitive overheads for TrackFM
and Fastswap. Costs are reported in median cycles over 1000
trials.

the latest version8 ported to the 5.0 kernel.9 We use the
most recent publicly available version of AIFM.10 TrackFM
builds on LLVM version 9.0.0, with NOELLE v9.8.0. For C++
applications, we use libc++ version 9 provided by clang (we
directly compile it with TrackFM). For large codebases we
use WLLVM11 to produce bitcode for the entire application
before passing it to the TrackFM compiler.

4.1 Guard Overheads
The primary source of TrackFM’s overhead comes from the
compiler-inserted guard instructions at the bitcode level on
heap-allocated loads and stores. Table 1 shows their costs in
cycles relative to local load/store operations. The additional
overhead for a fast path guard relative to a local unmodified
load/store (36 cycles) instruction is 21 cycles. This will be
the common case for applications that have locality of ac-
cess. The uncached slow-path and fast-path guards are more
expensive, but better than a page fault.

The slow-path guard is similar in cost to a major page fault
in Fastswap when an object is not present in local memory
because both events trigger a remote fetch over the network.
For reference, Table 2 compares slow-path guards to remote
page fault costs in Fastswap (both when the page is local and
remote). Handling a page fault in the kernel incurs 2.9× the
cost of handling a slow-path guard in TrackFMwhen the data
is local. This changes when the object/page is remote due
to Fastswap’s fast RDMA backend, which outperforms our
use of AIFM’s TCP-based backend (from Shenango) when

8commit 9cfc2a
9https://github.com/nilyibo/fastswap, commit 9d5c6f
10https://github.com/AIFM-sys/AIFM, commit aaf711
11https://github.com/travitch/whole-program-llvm

https://github.com/nilyibo/fastswap
https://github.com/AIFM-sys/AIFM


TrackFM: Far-out Compiler Support for a Far Memory World ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

there is not sufficient concurrency. However, even with this
high-performance networking layer, Fastswap still provides
little benefit over our remote slow-path guard. This is due
to Fastswap’s page fault handling overheads (e.g., mapping
and cgroups memory reclamation).
If we really instrument every load and store to heap-

allocated memory, what would the costs be? To provide ini-
tial intuition, we used TrackFM to automatically transform
the STREAM benchmark [29], which has a 9GB working set.
This transformation produces up to 56 million slow-path
guards and ∼10 billion fast-path guards. Note that we must
pay the cost of these guards even when objects are local. Nei-
ther kernel-based approaches nor library-based approaches
pay such costs for local objects (thoughAIFMdoes incur over-
head for smart pointer indirection). Thus, it would seem that
these guards present an insurmountable barrier to achiev-
ing good performance. However, as we will see in the next
section, TrackFM can exploit regularity in the workload to
dramatically reduce the number of guards.

4.2 Mitigating Guard Costs
Tomake compiler-assisted far memory feasible, there are two
paths to increase performance: (1) reduce guard costs and,
(2) reduce the number of guards. We spent significant effort
on (1), making the common case fast-path guard involve a
small number of instructions (only 14). In this section, we
focus our discussion on the second path.

Loop chunking transformation. Loop chunking, de-
scribed in Section 2, eliminates fast-path guards, a key factor
for improving performance. To understand its impact, we
first evaluate its effects on the STREAM benchmark, which
involves sequential access to arrays of small elements (inte-
gers), and is simple to transform. The “Sum” test consists of
a single memory access to an array element (sum+=a2[i])
within a loop. “Copy” consists of two memory accesses
(a1[i]=a2[i]) within the loop body. Figure 7 shows the
speedup when using the optimized loop chunking transfor-
mation relative to the naïve transformation, where every
loop element involves a fast-path guard. The total working
set size for both examples is fixed at 12GB to aid in com-
parison. Note that the local memory constraint enforced
on the application does not include the metadata used by
AIFM/TrackFM.

We see that as the number of memory accesses within
the loop increases (looking at the figures top to bottom), the
speedup offered by loop chunking increases due to the larger
number of fast-path guards that are eliminated. For example,
for “Sum,” we reduce the fast-path guard count from ∼1.6
billion to zero. Notice that the horizontal axis sweeps the
amount of local memory available to the application, with
increasing memory pressure to the left. These graphs tend to
have an inclination towards the right-hand side since in that

1.50

1.75

2.00 Sum

0.2 0.4 0.6 0.8 1.0
local mem [% of 12GB]

1.50

1.75

2.00

sp
ee

du
p

Copy

Figure 7. Speedup from loop chunking improves with in-
creased memory accesses in loops as more fast-path guards
are eliminated.

0.2 0.4 0.6 0.8 1.0
local mem [% of 1GB]

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

all loops
high-density loops only

Figure 8. TrackFM can selectively apply the loop chunking
optimization (like in k-means) to avoid collections with low
object density.

regime the system is less network-bound, so the importance
of eliminating guard overheads is amplified.

Improved Loop Chunking. To showcase how profiling
can be coupled with our cost model from Section 3.4, we
automatically transformed a k-means benchmark, which con-
tains many loops for which it would be detrimental to apply
the loop chunking transformation. We run k-means with 30
million points. The working set size is fixed at 1GB.

Figure 8 shows the results of applying the loop chunking
optimization indiscriminately to all loops compared to ap-
plying it only to those loops identified as viable candidates
by the TrackFM profiler, according to our cost model.

Both lines are normalized to the baseline (no loop chunk-
ing) to measure speedup. The figure shows that applying
the loop chunking transformation indiscriminately produces
poor results and suffers on average 4× slowdown. This is
because k-means has many nested loops with a low object
density. Such nested loops amplify the cost of loop chunk-
ing. In this case, there were at least 512 array elements per
AIFM object. The chunking optimization detects 103 array
pointers, and after applying the cost model only 27 were
optimized. Applying the cost model to the loop chunking



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale

0.5 1.0
local mem [% of 2GB]

0

1

2

3

4

5

th
ro

ug
hp

ut
 (M

Op
s/

s)

4KB
2KB
1KB
512B
256B

(a)

4KB 2KB 1KB 512B 256B
local mem [% of 2GB]

0.0

0.5

1.0

1.5

2.0

th
ro

ug
hp

ut
 (M

Op
s/

s)

(b)

Figure 9. Impact of object size on STL maps. Fine grained
memory accesses with little spatial locality can benefit from
small object sizes.

pass here improves the situation considerably, resulting in a
mean speedup of 2.5×.

4.3 AIFM Parameters
The TrackFM compilermustmake two primary choiceswhen
integrating with AIFM: the object size and prefetching strat-
egy. This section explores the impact of those choices.

Object size. TrackFM currently chooses an object size
at compile time, though this choice could in principle be
informed by profiling. To evaluate the impact of this choice,
we compare two microbenchmarks with different degrees of
spatial locality and granularity of access.

The first microbenchmark involves accessing a hashmap,
much like how a key-value store would operate. We use the
unordered hashmap implementation from the C++ STL. Both
keys and values are 4B integers. In this case, the entire C++
STL is transformed by the TrackFM compiler. The working
set size is 2GB. We use a workload generator to access the
hashmap (50 million lookups) according to a Zipfian distribu-
tion with skew 1.02. To generate the access trace, we store a
sequence of keys sampled from the distribution in a separate
190 MB array also allocated on the heap.

In this case, a small handful of the entries in the hashmap
will constitute the majority of accesses, so there will be a
high degree of temporal locality (but little spatial locality),
and accesses occur at very small granularities (4B). The left
side (Figure 9a) shows the impact of varying object size as we
sweep the amount of local memory available, and the right
side (Figure 9b) highlights the impact for a fixed proportion
of the working set size available to local memory (25%). We
measure the throughput (MOps/s) of the generated workload.
In this case, a smaller object size is clearly preferable.
If we look again at STREAM, where the access pattern

shows almost perfect spatial locality, we would expect to
see different results. Here, we use the “copy” benchmark
from STREAM with a working set size of 9GB. In this case,
we measure the far memory bandwidth (the default metric

0.25 0.50 0.75 1.00
local mem [% of 9GB]

100

200

300

400

m
em

or
y 

ba
nd

wi
th

 (M
B/

s) 4KB
2KB
1KB

512B
256B

(a)

4KB 2KB 1KB 512B 256B
object size

0

50

100

150

200

250

(b)

Figure 10. Impact of object size on STREAM. Access patterns
with high spatial locality benefit from the choice of a larger
object size.

3

4

5 Sum

0.2 0.4 0.6 0.8 1.0
local mem [% of 12GB]

3

4

5

sp
ee

du
p

Copy

Figure 11. Speedup of prefetching coupled with loop chunk-
ing vs. only loop chunking. The combinations helps TrackFM
extract more performance from workloads with spatial lo-
cality.

reported by STREAM). Though the granularity of access for
this example is even smaller (integers), the high degree of
spatial locality necessitates chunking elements into larger
objects. In this case, 4KB is the better choice.

Figures 9 and 10 highlight that proper selection of object
size is critical to performance. While we currently make
this choice offline, we envision using profiling to make this
choice when application code is recompiled with TrackFM.

Prefetching. When much of the application’s memory is
remote, the costs of remote fetches can dominate execution
time. To mitigate network costs in this regime, TrackFM
must employ prefetching to exploit spatial locality. We again
run an experiment on STREAM, this time with and without
prefetching enabled. In this case, we use AIFM’s existing
stride prefetcher, and we prefetch pointers operating on in-
duction variables as identified by TrackFM’s loop chunking
pass. Figure 11 shows the speedup of using prefetching rela-
tive to no prefetching as we sweep the amount of local mem-
ory available. The loop chunking optimization discussed
previously is enabled in both cases. If we focus on the left-
hand side of the figures (where remote costs dominate), we
see a large impact (almost 5×) on overall performance. As



TrackFM: Far-out Compiler Support for a Far Memory World ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0

2

4 Sum

0.2 0.4 0.6 0.8 1.0
local mem [% of 12GB]

0

2

4

sp
ee

du
p 

vs
. F

as
ts

wa
p

Copy

Figure 12. Speedup on STREAM relative to Fastswap with
prefetching and loop chunking enabled. TrackFM’s mem-
ory analysis helps to best exploit AIFM’s high-performance
prefetching.

more local memory is available, the cost of guards dominate,
so the impact of prefetching reduces. We validated this with
experiments (not shown for space) that demonstrate that the
relative number of critical remote fetches, i.e., the number of
loads/stores blocked by first having to fetch the object from
remote memory when prefetching is disabled, is reduced
dramatically with prefetching.
Figure 12 shows the speedup relative to Fastswap on

STREAM when we apply both chunking and prefetching.
TrackFM performs ∼2.7× better than Fastswap for Sum, and
∼2.9× better for Copy. In this case, Fastswap is limited by its
page fault costs, and by its weaker ability to discern high-
level knowledge about the access pattern. Note that AIFM
could achieve similar (even slightly better) performance here,
but would require programmer modifications.

4.4 Mitigating I/O Amplification
One of AIFM’s major goals is to reduce I/O amplification, i.e.,
the unnecessary localization of unused memory, for work-
loads that access memory at fine granularity. Can TrackFM
achieve the same goal? Figure 13a recreates our hashmap
example, which will be sensitive to I/O amplification due to
the small key/value pair sizes (4B). This time we show how
overall performance is highly correlated with the amount
of data transferred. We see how the smaller object size cho-
sen by TrackFM significantly reduces the amount of data
transferred over the network relative to Fastswap, which
uses the standard 4KB page size. Fastswap transfers 43× the
working set size for the hashmap, while TrackFM amplifies
the working set by only 2.3× (the 64B object size chosen
here is still larger than the key/value pairs). The net effect of
reducing I/O amplification in this case is an average speedup
of 12× relative to Fastswap. Though AIFM can achieve simi-
lar or higher speedups with programmer effort, this involves
porting libc++ (457 KLOC) to AIFM, a non-trivial task.

Just the array storing the access trace for the keys requires
190MB, and with local memory constrained to 5% of total
application memory (only 128 MB), we see high memory
pressure, resulting in many object evacuations and swap-ins.

0.5 1.0
local mem [% of 2GB]

0

100

200

300

400

500

ex
ec

ut
io

n 
tim

e 
(s

)

TrackFM 64B
Fastswap

(a)

0.5 1.0
local mem [% of 2GB]

0

25

50

75

100

125

150

to
ta

l d
at

a 
Fe

tc
he

d 
(G

B) TrackFM 64B
Fastswap

(b)

Figure 13. Applications that access memory at small granu-
larities suffer when limited by the architected page size.

0.0 0.5 1.0
local mem [% of 31GB]

1

2

3

4

5

slo
wd

ow
n 

vs
. l

oc
al

-o
nl

y TrackFM
Fastswap
AIFM

(a)

0.0 0.5 1.0
local mem [% of 31GB]

1.5

2.0

2.5

3.0

3.5

#g
ua

rd
s/

fa
ul

ts
 (×

10
M

)

(b)

Figure 14. Performance of analytics application on TrackFM
vs. Fastswap and AIFM. The left (a) shows overall perfor-
mance normalized to a setup with only local memory, vary-
ing the amount of local memory available to the application.
The right (b) shows the number of guard checks for TrackFM
and page fault events for Fastswap. With less local memory,
the page fault cost for Fastswap is amplified.

Thus, we see an inflated execution time (∼200s) for the first
point to the left of Figure 13a.

4.5 Application Benchmarks
How do injected guards, remote costs, and our optimizations
translate to overall application performance?We explore this
question with two application benchmarks. The first is a data
analytics workload taken from Kaggle12 that analyzes New
York City taxi trips. We adapted this benchmark from AIFM
to validate our results against that paper [35]. The second
application is memcached [12], a commonly used in-memory
key-value store. We also evaluate several benchmarks from
the widely used NAS suite [5].

Analytics Application. The analytics application has a
working set size of 31 GB. We compare the performance of
12https://www.kaggle.com/code/kartikkannapur/nyc-taxi-trips-
exploratory-data-analysis/notebook

https://www.kaggle.com/code/kartikkannapur/nyc-taxi-trips-exploratory-data-analysis/notebook
https://www.kaggle.com/code/kartikkannapur/nyc-taxi-trips-exploratory-data-analysis/notebook


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale

0.0 0.2 0.4 0.6 0.8 1.0
local mem [% of 31GB]

0
2
4
6
8

10
12
14
16

slo
wd

ow
n 

vs
. l

oc
al

-o
nl

y
baseline
all loops
high-density loops only

Figure 15. Applying the loop chunking optimization to low
density objects in the analytics application reduces perfor-
mance.

the application automatically transformed with TrackFM to
the same application running on Fastswap and AIFM. This
analytics application builds on a custom C++ dataframe li-
brary, and while we can correctly transform this library, our
loop optimizations will not work efficiently due to C++ se-
mantics such as exception handling, which the existing loop
analysis in NOELLE has no support for. We concluded that
supporting/extending NOELLE to support such C++-specific
semantics would require engineering effort not justified by
the research value added. Instead, we ported the original C++
dataframe library used in that paper to C, and the results
reported for the analytics workload use the C dataframe
library.

Figure 14 shows that when the available local memory is
constrained, TrackFM comes within 10% of AIFM’s perfor-
mance, reaching near parity. Fastswap’s performance con-
verges when remote costs stop dominating, when roughly
75% of the working set fits in local memory. To explain these
results, we measured the number of major (remote) page
faults in Fastswap and the number of slow-path guards in-
jected by TrackFM. We see that the page fault count (page
faults imply one-sided RDMA operations in Fastswap) is rela-
tively much higher than TrackFM guards; both event counts
strongly correlate with overall performance. The analytics
application consist of many column scan operations, which
involve tight loops with almost no temporal locality but a
high degree of spatial locality. TrackFM can exploit this to
eliminate much of the guard costs, and also benefits from
the AIFM runtime.
How impactful is our loop chunking optimization here?

Figure 15 breaks down the performance similarly to Sec-
tion 4.2, where we run the benchmark without loop chunk-
ing, with loop chunking applied to all loops, and with it
applied only to candidate loops identified by our cost model.
This application has several aggregation operations that in-
volve loops that iterate over small collections of table rows
(low object density), so applying the model here clearly has
benefits for reducing guard costs.

Benchmark Class Memory (GB) LoC

CG (conjugate gradient) D 9 586
FT (3D FFT) C 6 756
IS (bucket sort for integers) D 34 558
MG (PDE solver with multigrid method) D 27 941
SP (PDE solver with scalar penta-diagonal method) D 12 2013

Table 3. NAS benchmarks (C++ versions) run on TrackFM.

Memcached. In-memory key-value stores represent an-
other end of the access pattern spectrum. Here, access pat-
terns tend to show much less spatial locality, and the gran-
ularity of access tends to be quite small, thus there is sig-
nificant sensitivity to I/O amplification. We use TrackFM
to automatically transform memcached version 1.2.7 to run
as a far memory application. We use key/value pair sizes
based on the USR distribution [4]. The working set size for
memcached is 12GB, and we constrain the local memory to
1GB. We use a workload generator to create get operations
on a Zipfian-distributed set of 100M keys. We measure the
overall throughput for all get operations. Figure 16 shows the
results. TrackFM shows a ∼1.7× improvement over Fastswap
when the skew parameter for the access distribution is be-
tween 1.01 and 1.04. As the access distribution becomes more
skewed, we see an average speedup of 1.3× over Fastswap.
As the skew parameter increases, Fastswap’s performance
converges due to increased temporal locality, which helps to
amortize its page fault costs. While not shown in the figure,
as we increase the amount of memory on the local node,
Fastswap will converge with an even smaller skew, since
more hot keys in the working set can fit on the local node.
In this regime, TrackFM’s fast-path guards become expen-
sive, as they are not amortized like page faults. As the access
distribution becomes less skewed, however, TrackFM outper-
forms Fastswap due to reductions in I/O amplification. We
verify this by measuring the total data transferred over the
network. Figure 16c shows that Fastswap, limited by the ar-
chitected page size, transfers 66× the working set size, much
of which is unnecessary since the key-value pair sizes are
small. In contrast, TrackFM benefits from small object sizes
and transfers only 15× the working set.

NAS benchmarks. We use a reference C++ implemen-
tation of the NAS serial benchmark suite [23], and select a
limited subset (details shown in Table 3) due to time con-
straints. Figure 17a shows TrackFM outperforming Fastswap
for most benchmarks, where page faults are the limiting
factor for Fastswap. FT is a notable outlier where TrackFM
performs poorly. First, the FFT implementation in NAS has
a particularly friendly access pattern for Fastswap involving
good temporal reuse, allowing it to amortize its page fault
costs. Further investigation revealed that TrackFM is also
injecting an exceptionally large number of guards for FT. We
found that the deeply nested, tight loop structure used in
FT confounds our loop analysis, resulting in the high guard



TrackFM: Far-out Compiler Support for a Far Memory World ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1.0 1.1 1.2 1.3
zipf skew param.

12

14

16

18

20

22

24

th
ro

ug
hp

ut
 (K

Op
s/

s)

TrackFM
Fastswap
All local

(a)

1.0 1.1 1.2 1.3
zipf skew param.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#g
ua

rd
s/

fa
ul

ts
 (×

10
0M

)

(b)

1.0 1.1 1.2 1.3
zipf skew param.

0

200

400

600

800

da
ta

 tr
an

sf
er

re
d 

(G
B)

(c)

Figure 16. Key-value stores with small object sizes and little spatial locality suffer from I/O amplification in Fastswap.

CG FT IS MG SP GeoM.0

2

4

6

8

10

12

slo
wd

ow
n 

vs
. l

oc
al

-o
nl

y

Fastswap
TrackFM

(a)

FT SP0

2

4

6

8

10

12
FSwap
TFM
TFM/O1

(b)

Figure 17.NAS benchmarks configured with a local memory
size of 25% of the application working memory. Performance
is normalized to local memory.

count. However, we found that this is mainly an artifact of
the default analysis pipeline in NOELLE. By default, NOELLE
sees unoptimized code from LLVM. However, in our case, it
makes more sense to accept pre-optimized code in NOELLE
tominimize the number of guards that are injected. For exam-
ple, redundant code elimination or dead code elimination can
reduce the number of loads and stores and thus the number
of guards. We verified this in Figure 17b, where we perform
the chain of optimizations included in the “O1” set before
the TrackFM passes (TFM/O1). This results in a 6× reduction
in memory instructions for FT, and a 4× reduction for SP,
dramatically reducing guard overheads. This experiment led
us to change NOELLE’s default optimization pipeline order
for use with TrackFM.

4.6 Compilation Costs
TrackFM increases generated code size by an average of
2.4× relative to the original binary. This increase is roughly
proportional to the number of memory instructions in the
program, each of which is expanded into a guard with the
standard transformation. TrackFM’s compile time is under

6× compared to standard LLVM, though we have not yet
focused effort on reducing compilation overheads.

5 Discussion
Section 4 showed that the compiler-based approach holds
promise. We now attempt to convey some hard-earned in-
sights from our work, its limitations, and future prospects.

Lessons. We spent significant effort engineering the guards
to be lightweight. This did pay off, but we were surprised
to find that exploring ways to eliminate guards entirely was
the more fruitful path, though this is somewhat obvious in
retrospect. We were also surprised how well kernel-based ap-
proaches perform when there is sufficient temporal locality.
This is because page fault costs are quickly amortized when
there is repeated access. Even in this scenario, however, they
are still sensitive to I/O amplification. This suggests that a
hybrid approach (compiler and kernel) holds promise.

Understanding the high-level semantics of access patterns
(i.e., access over an array, or a list, etc.) is critical for per-
formance. We expect greater benefits when we can capture
information about recursive data structures [25]. Finally, we
found that in some cases, application code optimized for
locality of reference can actually confound efforts by the
compiler to derive fine-grained information about the access
pattern. For example, memcached uses an optimized slab
allocator that batches small allocations, thus grouping to-
gether small objects into large chunks. This actually limited
TrackFM’s ability to mitigate I/O amplification; TrackFM
could have more effectively transformed this application had
it performed small allocations in the naïve way.

Hardware Support. The overhead of TrackFM’s guards
could be improved with new hardware extensions. In the
limit, the hardware can interpose on remote accesses and
track dirty objects on its own, for example by extending the
cache coherence engine (as in Kona [7]). However, while this
approach is attractive from the standpoint of transparency,
it forgoes the benefits of the high-level knowledge available



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale

System Programmer
Transparent?

No custom
hardware?

Mitigates I/O
Amplification?

No OS Kernel
Changes?

Project Kona [7] ✓ ✗ ✓ ✗
AIFM [35] ✗ ✓ ✓ ✓
Fastswap [3] ✓ ✓ ✗ ✗
Infiniswap [13] ✓ ✓ ✗ ✗
DiLOS [44, 45] ✓ ✓ ✓ ✗
TrackFM (this work) ✓ ✓ ✓ ✓

Table 4. Comparison of TrackFM with prior work.

to the compiler. An extension more appropriate for TrackFM
might involve hardware that the compiler could manage, e.g.,
a lightweight, sub-page triggering mechanism that vectors
directly to user-space (in contrast to the existing userfaultfd
mechanisms in Linux [18]). This might, for example, look like
a software/hardware stack built atop range translations [17]
and user-level fault handling.13

Limitations and Future Work. The impact of AIFM’s
object size parameter is workload-dependent, so users must
currently choose it. We believe it would be fairly simple to
remove this engineering limitation by using autotuning, as
discussed in Section 3.2.

Since TrackFM operates at the level of LLVM IR, informa-
tion about application semantics (e.g., recursive data struc-
tures) is mostly lost. We plan to explore inter-procedural data
structure analysis [22] to capture these semantics. There is
also opportunity for languages whose memory semantics
more closely match those of far memory, such as Rust, whose
ownership model maps well to the notion of locality. High-
level parallel languages, where ownership can fall out of lan-
guage semantics [42], and partitioned global address space
(PGAS) languages [9] could also map to compiler-based far
memory.

Fetching remote data just to perform trivial computations
is unwise. AIFM overcomes this by allowing library develop-
ers to manually offload such lightweight computations onto
the remote node, thus employing near-data processing. We
believe TrackFM could employ static analysis techniques,
such as automated amortized resource analysis [15, 30], to
achieve the same goal. TrackFM could also benefit from a
profiling stage that prunes the set of heap allocations avail-
able for remoting based on access frequency. For example,
the MaPHeA framework leverages hardware performance
monitoring to enable profile-guided optimization (PGO) to
effectively place heap-allocated objects in heterogeneous
memory [33]. Though this framework is built on gcc, we
suspect incorporating a similar approach into the TrackFM
middle-end transformations would be straightforward.

13As in Intel’s user-level interrupt vectoring introduced in the Sapphire
Rapids microarchitecture [16].

6 Related Work
Prior work on far memory primarily falls along two lines:
software and hardware-based. Hardware-based approaches
center on the idea of removing the limitation of the archi-
tected page size [7, 14, 35]. On commodity machines, how-
ever, such specialized hardware is not yet an option. Prior
work on improving software-based, programmer-transparent,
far memory focuses on overcoming the limitations of the
kernel-based approach, either by using better prefetching
strategies [2, 6], by reducing page fault costs in the kernel [3],
or by using high-performance networking [13]. Significant
benefits are available when full programmer transparency
is not a requirement, as shown by AIFM [35] and Carbink,
which focuses on fault-tolerant far memory [47].

One way to improve on the kernel-based approach is to
leverage a custom OS. DiLOS focuses on mitigating software
overheads (especially of the paging subsystem) by build-
ing a LibOS specialized for disaggregated memory [44, 45].
DiLOS, which builds on OSv [19], uses a custom, unified
page table that incorporates remote page table entries in lieu
of repurposing the traditional swap cache to track remote
page state, thus reducing software overheads. This approach
can actually outperform AIFM with sufficient prefetching,
demonstrating that in some cases reducing the page fault
costs can counteract the negative effects of I/O amplification.
However, even though DiLOS can run unmodified binaries
(through POSIX compatibility), adopting a new OS can be a
challenge. TrackFM, in contrast, runs on stock Linux without
any changes.
Meta’s production-scale far memory framework (TMO)

leverages run-time information to transparently offloadmem-
ory onto heterogeneous storage, and demonstrates that far
memory pays off at scale [41].
Far memory systems share lineage with a large body of

work on distributed shared memory (DSM), as these systems
are similarly constrained by the architected page size. Thus,
there is also work in this domain on avoiding page fault
overheads. For example, Blizzard [37] and Shasta [36] work
at sub-page granularity to mitigate false sharing. User-space
approaches to DSM that leverage the compiler employ opti-
mizations such as aggregation/hoisting of guards to reduce
overheads [26, 28, 31]. However, these systems assume that
an entire allocation is localized at once. In our system, chunks
of a large allocation can be in independent states (local or
remote), making hoisting optimizations more challenging.
Prior approaches also assume that localized memory will
not be evacuated again, which we must handle. Many of the
optimizations applied in DSM systems relate to synchroniza-
tion overheads and communication avoidance [8, 11, 24, 46],
which are not applicable to non-coherent, far memory setups.
TrackFM requires more careful analysis to reducing guard
overheads since the same assumptions made for user-space
DSM systems do not apply.



TrackFM: Far-out Compiler Support for a Far Memory World ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

While unrelated to far memory, we build on ideas from
prior work on using the compiler to replace paging-based ad-
dress translation, namely CARAT [38] andCARATCAKE [39].
Table 4 compares TrackFM to the most closely related work.

7 Conclusion
We demonstrated that the compiler-based approach to far
memory is a feasible path to automatically transform applica-
tions to leverage remote memory. We realized the compiler-
based approach with a prototype system called TrackFM,
and demonstrated how it can outperform the kernel-based
approach by up to 2× by merely recompiling the application.
Its performance comes within 10% of the best performing
library-based approach, AIFM, but requires no modifications
to application code. TrackFM simultaneously achieves pro-
grammer transparency and good performance by leveraging
novel compiler analysis and transformation techniques, and
by using the highly-optimized AIFM runtime as a backend.

Acknowledgments
We thank Zhenyuan Ruan, Nicholas Wanninger, Tommy
McMichen, Kevin McAfee, Enrico Deiana, Rolf Riesen, Bal-
azs Gerofi, Matthew Wolf, and Ron Minnich for their assis-
tance and discussions which helped make this paper possible.
We also thank the anonymous reviewers and our shepherd,
Marcos Aguilera, for their valuable feedback. This work was
made possible with support from the United States National
Science Foundation (NSF) via grants CCF-2028958, CNS-
1763612, CNS-2239757, CNS-1763743, CCF-2028851, CCF-
2119069, CCF-2107042, CNS-2211315, and CNS-2211508, the
Department of Energy (DOE) via the Exascale Computing
Project (17-SC-20-SC) and by the grant DE-SC0022268, as
well as with generous support from Samsung Semiconduc-
tor, Inc. This work used resources from CloudLab [10], which
is supported by the NSF’s NSFCloud program.

References
[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,

Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati,
Rajesh Venkatasubramanian, and Michael Wei. 2017. Remote Mem-
ory in the Age of Fast Networks. In Proceedings of the Symposium
on Cloud Computing (Santa Clara, California) (SoCC ’17). Associa-
tion for Computing Machinery, New York, NY, USA, 121–127. https:
//doi.org/10.1145/3127479.3131612

[2] Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively Prefetch-
ing Remote Memory with Leap. In Proceedings of the USENIX Annual
Technical Conference (USENIXATC ’20). USENIXAssociation, USA, 843–
857. https://www.usenix.org/conference/atc20/presentation/al-maruf

[3] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. 2020. Can Far Memory Improve Job Throughput?.
In Proceedings of the 15𝑡ℎ European Conference on Computer Systems
(Heraklion, Crete, Greece) (EuroSys ’20). Association for Computing
Machinery, New York, NY, USA, Article 14, 16 pages. https://doi.org/
10.1145/3342195.3387522

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-Scale Key-Value Store.

SIGMETRICS Performance Evaluation Review 40, 1 (June 2012), 53–64.
https://doi.org/10.1145/2318857.2254766

[5] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart,
Alex Woo, and Maurice Yarrow. 1995. The NAS parallel benchmarks
2.0. Technical Report NAS-95-020. NASA Ames Research Center.
https://www.davidhbailey.com/dhbpapers/npb-2.0.pdf

[6] Christopher Branner-Augmon, Narek Galstyan, Sam Kumar, Em-
manuel Amaro, Amy Ousterhout, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. 2022. 3PO: Programmed Far-Memory Prefetch-
ing for Oblivious Applications. arXiv:2207.07688 [cs.OS] https:
//arxiv.org/abs/2207.07688

[7] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking Software
Runtimes for Disaggregated Memory. In Proceedings of the 26𝑡ℎ ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 79–92.
https://doi.org/10.1145/3445814.3446713

[8] Michał Cierniak and Wei Li. 1995. Unifying Data and Control Trans-
formations for Distributed Shared-Memory Machines. In Proceedings
of the 1995 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (La Jolla, California, USA) (PLDI ’95). As-
sociation for Computing Machinery, New York, NY, USA, 205–217.
https://doi.org/10.1145/207110.207145

[9] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François Can-
tonnet, Tarek El-Ghazawi, Ashrujit Mohanti, Yiyi Yao, and Daniel
Chavarría-Miranda. 2005. An Evaluation of Global Address Space
Languages: Co-Array Fortran and Unified Parallel C. In Proceed-
ings of the 10𝑡ℎ ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (Chicago, IL, USA) (PPoPP ’05). Associ-
ation for Computing Machinery, New York, NY, USA, 36–47. https:
//doi.org/10.1145/1065944.1065950

[10] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Op-
eration of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (Renton, WA, USA) (USENIX ATC ’19). USENIX Association,
USA, 1–14. https://www.usenix.org/conference/atc19/presentation/
duplyakin

[11] Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. 1996. An In-
tegrated Compile-Time/Run-Time Software Distributed Shared Mem-
ory System. In Proceedings of the 7𝑡ℎ International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (Cambridge, Massachusetts, USA) (ASPLOS VII). Association
for Computing Machinery, New York, NY, USA, 186–197. https:
//doi.org/10.1145/237090.237181

[12] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux
journal 2004, 124 (2004), 5. https://www.linuxjournal.com/article/7451

[13] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with Infin-
iswap. In Proceedings of the 14𝑡ℎ USENIX Symposium on Networked
Systems Design and Implementation (Boston, MA) (NSDI ’17). USENIX
Association, 649–667. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/gu

[14] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiy-
ing Zhang. 2022. Clio: A Hardware-Software Co-Designed Disag-
gregated Memory System. In Proceedings of the 27𝑡ℎ ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). As-
sociation for Computing Machinery, New York, NY, USA, 417–433.
https://doi.org/10.1145/3503222.3507762

https://doi.org/10.1145/3127479.3131612
https://doi.org/10.1145/3127479.3131612
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/2318857.2254766
https://www.davidhbailey.com/dhbpapers/npb-2.0.pdf
https://arxiv.org/abs/2207.07688
https://arxiv.org/abs/2207.07688
https://arxiv.org/abs/2207.07688
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1145/207110.207145
https://doi.org/10.1145/1065944.1065950
https://doi.org/10.1145/1065944.1065950
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://doi.org/10.1145/237090.237181
https://doi.org/10.1145/237090.237181
https://www.linuxjournal.com/article/7451
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1145/3503222.3507762


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale

[15] Martin Hofmann and Steffen Jost. 2003. Static Prediction of Heap
Space Usage for First-Order Functional Programs. In Proceedings of the
30𝑡ℎ ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (New Orleans, Louisiana, USA) (POPL ’03). Association for
Computing Machinery, New York, NY, USA, 185–197. https://doi.org/
10.1145/604131.604148

[16] Intel Corporation 2023. Intel® Architecture Instruction Set Extensions
Programming Reference. Intel Corporation. https://software.intel.
com/content/www/us/en/develop/download/intel-architecture-
instruction-set-extensions-programming-reference.html

[17] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal,
Mark D. Hill, Kathryn S. McKinley, Mario Nemirovsky, Michael M.
Swift, and Osman Ünsal. 2015. Redundant Memory Mappings for
Fast Access to Large Memories. In Proceedings of the 42𝑛𝑑 Annual
International Symposium on Computer Architecture (Portland, Oregon)
(ISCA ’15). Association for Computing Machinery, New York, NY, USA,
66–78. https://doi.org/10.1145/2749469.2749471

[18] Linux Kernel. [n. d.]. Userfaultfd. https://www.kernel.org/doc/
Documentation/vm/userfaultfd.txt

[19] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El,
Don Marti, and Vlad Zolotarov. 2014. OSv—Optimizing the Operating
System for Virtual Machines. In Proceedings of the 2014 USENIX Annual
Technical Conference (Philadelphia, PA) (USENIX ATC ’14). USENIX As-
sociation, 61–72. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/kivity

[20] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,
Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule,
Nan Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu
Zhao, and Parthasarathy Ranganathan. 2019. Software-Defined Far
Memory in Warehouse-Scale Computers. In Proceedings of the 24𝑡ℎ
International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19).
Association for Computing Machinery, New York, NY, USA, 317–330.
https://doi.org/10.1145/3297858.3304053

[21] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization
(San Jose, CA, USA) (CGO ’04). IEEE, 75–86. https://doi.org/10.1109/
CGO.2004.1281665

[22] Chris Lattner and Vikram Adve. 2005. Automatic Pool Allocation:
Improving Performance by Controlling Data Structure Layout in the
Heap. In Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Chicago, IL, USA)
(PLDI ’05). Association for Computing Machinery, New York, NY, USA,
129–142. https://doi.org/10.1145/1065010.1065027

[23] Júnior Löff, Dalvan Griebler, Gabriele Mencagli, Gabriell Araujo, Mas-
simo Torquati, Marco Danelutto, and Luiz Gustavo Fernandes. 2021.
The NAS Parallel Benchmarks for evaluating C++ parallel program-
ming frameworks on shared-memory architectures. Future Generation
Computer Systems 125 (Dec. 2021), 743–757. https://doi.org/10.1016/j.
future.2021.07.021

[24] Honghui Lu, Alan L. Cox, Sandhya Dwarkadas, Ramakrishnan Ra-
jamony, and Willy Zwaenepoel. 1997. Compiler and Software Dis-
tributed Shared Memory Support for Irregular Applications. In Pro-
ceedings of the 6𝑡ℎ ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (Las Vegas, Nevada, USA) (PPoPP ’97).
Association for Computing Machinery, New York, NY, USA, 48–56.
https://doi.org/10.1145/263764.263772

[25] Chi-Keung Luk and Todd C. Mowry. 1996. Compiler-Based Prefetching
for Recursive Data Structures. In Proceedings of the 7𝑡ℎ International
Conference on Architectural Support for Programming Languages and
Operating Systems (Cambridge, Massachusetts, USA) (ASPLOS VII).
Association for Computing Machinery, New York, NY, USA, 222–233.
https://doi.org/10.1145/237090.237190

[26] Govindarajan R. Manoj N. P., Manjunath K. V. 2004. CAS-DSM: A
Compiler Assisted Software Distributed Shared Memory. International
Journal of Parallel Programming 32, 2 (2004), 77–122.

[27] Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip
Ghosh, Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi,
Brian Homerding, et al. 2022. NOELLE Offers Empowering LLVM
Extensions. In Proceedings of the IEEE/ACM International Symposium
on Code Generation and Optimization (Seoul, Republic of Korea) (CGO
’22). IEEE, 179–192. https://doi.org/10.1109/CGO53902.2022.9741276

[28] Takashi Matsumoto and Kei Hiraki. 1997. Memory-based communi-
cation facilities and asymmetric distributed shared memory. In Pro-
ceedings of the 1𝑠𝑡 International Workshop on Innovative Architecture
for Future Generation High-Performance Processors and Systems (Maui,
HI, USA) (IWIA ’97). IEEE, 30–39. https://doi.org/10.1109/IWIA.1997.
670405

[29] John D. McCalpin. 1991–2007. STREAM: Sustainable memory band-
width in high performance computers. Technical Report. University of
Virginia.

[30] Stefan K. Muller and Jan Hoffmann. 2021. Modeling and Analyz-
ing Evaluation Cost of CUDA Kernels. Proceedings of the ACM on
Programming Languages 5, POPL, Article 25 (Jan. 2021), 31 pages.
https://doi.org/10.1145/3434306

[31] Junpei Niwa, Tatsushi Inagaki, Takashi Matsumoto, and Kei Hiraki.
1999. Evaluation of Compiler-Assisted Software DSM Schemes for a
Workstation Cluster. In Proceedings of the 3𝑟𝑑 International Workshop
on Innovative Architecture for Future Generation High-Performance
Processors and Systems (Maui, HI, USA) (IWIA ’99). IEEE, 57–68. https:
//doi.org/10.1109/IWIA.1999.898843

[32] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. 2014. Scale-out NUMA. In Proceedings of the 19𝑡ℎ
International Conference on Architectural Support for Programming
Languages and Operating Systems (Salt Lake City, Utah, USA) (ASPLOS
’14). Association for Computing Machinery, New York, NY, USA, 3–18.
https://doi.org/10.1145/2541940.2541965

[33] Deok-Jae Oh, Yaebin Moon, Do Kyu Ham, Tae Jun Ham, Yongjun
Park, Jae W. Lee, Jung Ho Ahn, and Eojin Lee. 2022. MaPHeA: A
Framework for Lightweight Memory Hierarchy-Aware Profile-Guided
Heap Allocation. ACM Transactions on Embedded Computing Systems
22, 1 (Dec. 2022), 1–28. https://doi.org/10.1145/3527853

[34] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-Sensitive Datacenter Workloads. In Proceedings of the 16𝑡ℎ
USENIX Conference on Networked Systems Design and Implementation
(Boston, MA, USA) (NSDI ’19). USENIX Association, Berkeley, CA,
USA, 361–377. https://doi.org/10.5555/3323234.3323265

[35] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated Far
Memory. In Proceedings of the 14𝑡ℎ USENIX Symposium on Operating
Systems Design and Implementation (Virtual, USA) (OSDI ’20). USENIX
Association, Berkeley, CA, USA, 315–332. https://www.usenix.org/
conference/osdi20/presentation/ruan

[36] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A.
Thekkath. 1996. Shasta: A Low Overhead, Software-Only Approach
for Supporting Fine-Grain Shared Memory. In Proceedings of the 7𝑡ℎ
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Cambridge, Massachusetts,
USA) (ASPLOS VII). Association for Computing Machinery, New York,
NY, USA, 174–185. https://doi.org/10.1145/237090.237179

[37] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt,
James R. Larus, and David A. Wood. 1994. Fine-Grain Access Control
for Distributed Shared Memory. In Proceedings of the 6𝑡ℎ International
Conference on Architectural Support for Programming Languages and
Operating Systems (San Jose, California, USA) (ASPLOS VI). Association
for Computing Machinery, New York, NY, USA, 297–306. https://doi.
org/10.1145/195473.195575

https://doi.org/10.1145/604131.604148
https://doi.org/10.1145/604131.604148
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://doi.org/10.1145/2749469.2749471
https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt
https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://doi.org/10.1145/3297858.3304053
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1016/j.future.2021.07.021
https://doi.org/10.1016/j.future.2021.07.021
https://doi.org/10.1145/263764.263772
https://doi.org/10.1145/237090.237190
https://doi.org/10.1109/CGO53902.2022.9741276
https://doi.org/10.1109/IWIA.1997.670405
https://doi.org/10.1109/IWIA.1997.670405
https://doi.org/10.1145/3434306
https://doi.org/10.1109/IWIA.1999.898843
https://doi.org/10.1109/IWIA.1999.898843
https://doi.org/10.1145/2541940.2541965
https://doi.org/10.1145/3527853
https://doi.org/10.5555/3323234.3323265
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://doi.org/10.1145/237090.237179
https://doi.org/10.1145/195473.195575
https://doi.org/10.1145/195473.195575


TrackFM: Far-out Compiler Support for a Far Memory World ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[38] Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda.
2020. CARAT: A Case for Virtual Memory through Compiler- and
Runtime-Based Address Translation. In Proceedings of the 41𝑠𝑡 ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (London, UK) (PLDI ’20). Association for Computing Machinery,
New York, NY, USA, 329–345. https://doi.org/10.1145/3385412.3385987

[39] Brian Suchy, Souradip Ghosh, DrewKersnar, Siyuan Chai, ZhenHuang,
Aaron Nelson, Michael Cuevas, Alex Bernat, Gaurav Chaudhary, Nikos
Hardavellas, Simone Campanoni, and Peter Dinda. 2022. CARAT
CAKE: Replacing Paging via Compiler/Kernel Cooperation. In Proceed-
ings of the 27𝑡ℎ ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS ’22). Association for Computing Machinery, New York,
NY, USA, 98–114. https://doi.org/10.1145/3503222.3507771

[40] Muhammad Tirmazi, Adam Barker, Nan Deng, Md Ehtesam Haque,
Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: the Next Generation. In Proceedings of the 15𝑡ℎ European
Conference on Computer Systems (Herakleion, Crete, Greece) (EuroSys
’20). Association for Computing Machinery, New York, NY, USA, Arti-
cle 30, 14 pages. https://doi.org/10.1145/3342195.3387517

[41] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. 2022. TMO: Transparent
Memory Offloading in Datacenters. In Proceedings of the 27𝑡ℎ ACM
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22).
Association for Computing Machinery, New York, NY, USA, 609–621.
https://doi.org/10.1145/3503222.3507731

[42] Michael Wilkins, Sam Westrick, Vijay Kandiah, Alex Bernat, Brian
Suchy, Enrico Armenio Deiana, Simone Campanoni, Umut Acar, Peter
Dinda, and Nikos Hardavellas. 2023. WARDen: Specializing Cache
Coherence for High-level Parallel Languages. In Proceedings of the

IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (Montréal, QC, Canada) (CGO ’23). Association for Computing
Machinery, New York, NY, USA, 122–135. https://doi.org/10.1145/
3579990.3580013

[43] Michael E. Wolf and Monica S. Lam. 1991. A Data Locality Optimizing
Algorithm. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Toronto, Ontario, Canada)
(PLDI ’91). Association for Computing Machinery, New York, NY, USA,
30–44. https://doi.org/10.1145/113445.113449

[44] Wonsup Yoon, Jinyoung Oh, Jisu Ok, Sue Moon, and Youngjin Kwon.
2021. DiLOS: Adding Performance to Paging-Based Memory Disaggre-
gation. In Proceedings of the 12𝑡ℎ ACM SIGOPS Asia-Pacific Workshop
on Systems (Hong Kong, China) (APSys ’21). Association for Comput-
ing Machinery, New York, NY, USA, 70–78. https://doi.org/10.1145/
3476886.3477507

[45] Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and Youngjin Kwon.
2023. DiLOS: Do Not Trade Compatibility for Performance in Memory
Disaggregation. In Proceedings of the 18𝑡ℎ European Conference on
Computer Systems (Rome, Italy) (EuroSys ’23). Association for Comput-
ing Machinery, New York, NY, USA, 266–282. https://doi.org/10.1145/
3552326.3567488

[46] Matthew J. Zekauskas, Wayne A. Sawdon, and Brian N. Bershad. 1994.
Software Write Detection for Distributed Shared Memory. In Pro-
ceedings of the 1𝑠𝑡 Symposium on Operating Systems Design and Im-
plementation (Monterey, CA, USA) (OSDI ’94). USENIX Association,
8–es. https://www.usenix.org/conference/osdi-94/software-write-
detection-distributed-shared-memory

[47] Yang Zhou, HassanM. G.Wassel, Sihang Liu, Jiaqi Gao, James Mickens,
Minlan Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M.
Levy, and Amin Vahdat. 2022. Carbink: Fault-Tolerant Far Memory.
In Proceedings of the 16𝑡ℎ USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’22). USENIX Association, Carlsbad,
CA, 55–71. https://www.usenix.org/conference/osdi22/presentation/
zhou-yang

https://doi.org/10.1145/3385412.3385987
https://doi.org/10.1145/3503222.3507771
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3579990.3580013
https://doi.org/10.1145/3579990.3580013
https://doi.org/10.1145/113445.113449
https://doi.org/10.1145/3476886.3477507
https://doi.org/10.1145/3476886.3477507
https://doi.org/10.1145/3552326.3567488
https://doi.org/10.1145/3552326.3567488
https://www.usenix.org/conference/osdi-94/software-write-detection-distributed-shared-memory
https://www.usenix.org/conference/osdi-94/software-write-detection-distributed-shared-memory
https://www.usenix.org/conference/osdi22/presentation/zhou-yang
https://www.usenix.org/conference/osdi22/presentation/zhou-yang


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale

A Artifact Appendix
A.1 Abstract
The artifact comprises our TrackFM runtime, compiler passes,
experiment scripts and data sets. In our github repository
we have detailed instructions on how to run TrackFM.

A.2 Artifact check-list (meta-information)
• How much time is needed to prepare workflow (ap-
proximately)?: 3 hours

• How much time is needed to complete experiments
(approximately)?: 12 days

• Publicly available? :https://github.com/compiler-disagg/
TrackFM

• Code licenses (if publicly available)?: MIT

A.3 Description
A.3.1 How to access. All code for TrackFM can be found
at https://github.com/compiler-disagg/TrackFM. The detailed
instructions on how to run TrackFM are provided in the
README.md file located in the top level of the repository.

A.3.2 Hardware dependencies. To run these experiments,
we require two ten-core Intel E5-2640v4, 64GB Memory,
300GB Disk and Mellanox ConnectX-4 25 GB NIC. We rec-
ommend CloudLab to run our experiments.

A.3.3 Software dependencies. TrackFM mainly relies on
llvm-9.0.0 and noelle-v9.8.0 the compilation passes. We also
have dependencies on OS packages, specific Linux kernel ver-
sions, and NIC drivers to run the experiments and generate
plots. These details are provided in the TrackFM repository.

A.3.4 Data sets. We host our datasets in Kaggle and pro-
vide detailed instructions in the repository on how to use
them.

A.4 Installation
The TrackFM runtime can be installed by running the ./build.sh
script located in the TrackFM/runtime directory. TrackFM
compilation passes can be installed by running make -j
in the TrackFM/runtime/compiler_passes/passes direc-
tory. Once TrackFM is setup, one can verify the installation
by running make smoke_test from the root directory. More
details are provided in our README.

A.5 Experiment workflow
All experiments can be run from the top-level directory of the
code repo using make. For example, to reproduce Figure 14a,
one can run make trackfm_fig14a from the root directory.

A.6 Evaluation and expected results
A.6.1 Major claims.

• (C1) Loop Chunking eliminates fast-path guards and
improves speedup for STREAM benchmarks. We show
this in experiment E1 described in Section 4.2, whose
results are shown in Figure 7.

• (C2) Loop chunking benefits from avoiding collections
with low object density. We show this in experiment
E2 described in Section 4.2, whose results are depicted
in Figure 8.

• (C3) Fine-grained memory accesses with little spatial
locality can benefit from small object sizes. We show
this in experiment E3 described in Section 4.3 with
results shown in Figure 9.

• (C4) Access patterns with high spatial locality benefit
from the choice of a larger object size. This is shown in
experiment E4 described in Section 4.3, and the results
are in Figure 10.

• (C5) Loop chunking coupled with prefetching helps
TrackFM extract more performance from workloads
with spatial locality. We show this in experiment E5
described in Section 4.3; results are shown in Figure 11.

• (C6) TrackFM ’s memory analysis helps to best exploit
AIFM’s high-performance prefetching. We show this
in experiment E6 in Section 4.3, depicted in Figure 12.

• (C7) Applications that access memory at small gran-
ularities suffer when limited by the architected page
size. This is shown in experiment E7 described in Sec-
tion 4.4, whose results are shown in Figure 13.

• (C8) With less local memory, TrackFM outperforms
Fastswap.We show this in experiment E8 in Section 4.5,
with results in Figure 14.

• (C9) Applying the loop chunking optimization to low-
density objects in the analytics application reduces
performance, shown in experiment E9 described in
Section 4.5, with results in Figure 15.

• (C10) Key-value stores with small object sizes and
little spatial locality suffer from I/O amplification in
Fastswap. We show this in experiment E10, Section 4.5,
and Figure 16.

• (C11) With a 25% local memory constraint, the NAS
benchmarks benefit from TrackFM.We show this in ex-
periment E11 in Section 4.5, with results in Figure 17a.

A.6.2 Experiments. All experiments can be reproduced
using make. On completion, make will generate a figure in
the figs directory located at the top level of the repository.
This figure can then be compared with the respective figure
in the paper to evaluate our claims.

Experiment (E1). This experiment helps to evaluate claim
C1.

[How to]. make_trackfm_fig7

[Results]. A graph named fig7.png will be generated
in figs directory. You should be able to see the benefits of
loop chunking.

Experiment (E2). This experiment helps to validate claim
C2.

https://github.com/compiler-disagg/TrackFM
https://github.com/compiler-disagg/TrackFM
https://github.com/compiler-disagg/TrackFM


TrackFM: Far-out Compiler Support for a Far Memory World ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[How to]. make_trackfm_fig8

[Results]. A graph named fig8.png will be generated in
the figs directory. You should be able to see the importance
of applying loop chunking selectively in TrackFM.

Experiment (E3). This experiment helps to evaluate claim
C3.

[How to]. make_trackfm_fig9

[Results]. A graph named fig9.png will be generated
in the figs directory. You will see the benefits of small object
sizes for applications with irregular access patterns.

Experiment (E4). This experiment helps to validate claim
C4.

[How to]. make_trackfm_fig10

[Results]. A graph named fig10.png will be generated
in the figs directory. You will see that large object sizes
improve performance for applications with spatial locality.

Experiment (E5). This experiment helps to validate claim
C5.

[How to]. make_trackfm_fig11

[Results]. A graph named fig11.png will be generated
in the figs directory. You will see the benefits of prefetching
combined with loop chunking in TrackFM.

Experiment (E6). This experiment helps to validate claim
C6.

[How to]. make_trackfm_fig12

[Results]. A graph named fig12.png will be generated
in the figs directory. You will see that TrackFM can be
2-3𝑡𝑖𝑚𝑒𝑠 better than Fastswap when it understands the ap-
plication’s access patterns.

Experiment (E7). This experiment helps to validate claim
C7.

[How to]. make_trackfm_fig13

[Results]. A graph named fig13.png will be generated
in figs directory. You will see that TrackFM can mitigate
I/O amplification.

Experiment (E8). This experiment helps to validate claim
C8.

[How to]. make_trackfm_fig14a

[Results]. A graph named fig14a.png will be generated
in the figs directory. You will see that TrackFM is within
10% of AIFM’s performance.

Experiment (E9). This experiment helps to validate claim
C9.

[How to]. make_trackfm_fig15

[Results]. A graph named fig15.png will be generated
in the figs directory. You will see that selectively applying
loop chunking is critical to applications which have low
object density.

Experiment (E10). This experiment helps to validate claim
C10.

[How to]. make_trackfm_fig16a

[Results]. A graph named fig16a.png will be generated
in the figs directory. You will see that even when TrackFM
optimizations do not apply, it still benefits from the use of
small object sizes.

Experiment (E11). This experiment helps to validate claim
C11.

[How to]. make_trackfm_fig17a

[Results]. A graph named fig17a.png will be generated
in figs directory. You will see that NAS benchmarks benefit
from TrackFM when less memory is available.

A.7 Notes on Reusability
We provide several make scripts to automate new applica-
tions with TrackFM. We provide instructions on how to use
TrackFM for new applications in the README in the top level
of the TrackFM repository.


	Abstract
	1 Introduction
	2 TrackFM Design
	3 Implementation
	3.1 Far Memory Pointer Transformation
	3.2 Bridging AIFM with the Compiler
	3.3 TrackFM Guards
	3.4 Managing Loop Overheads

	4 Evaluation
	4.1 Guard Overheads
	4.2 Mitigating Guard Costs
	4.3 AIFM Parameters
	4.4 Mitigating I/O Amplification
	4.5 Application Benchmarks
	4.6 Compilation Costs

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Notes on Reusability


