
GUESS & SKETCH: LANGUAGE MODEL GUIDED
TRANSPILATION

Celine Lee♠ Abdulrahman Mahmoud† Michal Kurek† Simone Campanoni♡
David Brooks† Stephen Chong† Gu-Yeon Wei† Alexander M. Rush♠
♠ Cornell University, † Harvard University ♡ Northwestern University
cl923@cornell.edu

ABSTRACT

Maintaining legacy software requires many software and systems engineering
hours. Assembly code programs, which demand low-level control over the com-
puter machine state and have no variable names, are particularly difficult for hu-
mans to analyze. Existing conventional program translators guarantee correctness,
but are hand-engineered for the source and target programming languages in ques-
tion. Learned transpilation, i.e. automatic translation of code, offers an alternative
to manual re-writing and engineering efforts. Automated symbolic program trans-
lation approaches guarantee correctness but struggle to scale to longer programs
due to the exponentially large search space. Their rigid rule-based systems also
limit their expressivity, so they can only reason about a reduced space of programs.
Probabilistic neural language models (LMs) produce plausible outputs for every
input, but do so at the cost of guaranteed correctness. In this work, we lever-
age the strengths of LMs and symbolic solvers in a neurosymbolic approach to
learned transpilation for assembly code. Assembly code is an appropriate setting
for a neurosymbolic approach, since assembly code can be divided into shorter
non-branching basic blocks amenable to the use of symbolic methods. GUESS &
SKETCH extracts alignment and confidence information from features of the LM
then passes it to a symbolic solver to resolve semantic equivalence of the transpi-
lation input and output. We test GUESS & SKETCH on three different test sets of
assembly transpilation tasks, varying in difficulty, and show that it successfully
transpiles 57.6% more examples than GPT-4 and 39.6% more examples than an
engineered transpiler. We also share a training and evaluation dataset for this task.

1 INTRODUCTION

The increasingly heterogeneous landscape of hardware architectures and their instruction set archi-
tectures (ISAs) marks a large and growing need to develop support for cross-ISA software manage-
ment. This challenge is especially relevant for legacy software which has been compiled down to
hardware-specific programs, and must be re-written to run on any other hardware. Many high-usage
source code files also contain in-lined assembly code, which requires porting to alternate hardware
architectures. Automated cross-ISA software support has been of interest in the computer archi-
tecture community for decades (Armengol-Estapé et al., 2023; Wang et al., 2018; Bellard, 2005;
Ardestani & Renau, 2013; Sanchez & Kozyrakis, 2013). Emulators, virtual machines, and con-
tainerized applications allow users to run software on different host hardware by simulating the
architecture of the hardware platform that the software is compiled for. However, this option can
be unwieldy and compute-inefficient. Assembly-to-assembly transpilation 1 (Ami; occ, 1989), the
process of automatically porting software from one ISA to another, offers a way to generate soft-
ware that can be natively executed on the new hardware. However, current transpilation tools are
engineered for the specific source and target hardware architecture, so they scale poorly as new ISAs
are introduced.

1“Transpiler” describes the general code translation task that our method targets, but we note that the focus
of this paper is assembly-to-assembly transpilation.

1

ar
X

iv
:2

30
9.

14
39

6v
1 

 [
cs

.S
E

] 
 2

5 
Se

p 
20

23



Neural machine learning techniques are a natural fit for transpilation. Assembly program translation
pairs can be generated by cross-compiling C or C++ programs using different existing compilers and
compiler flags, providing vast amounts of training data. Pairs have the same semantics since they
originate from the same high-level program. Assembly code syntax is rigid but simple compared
to natural language and most high-level programming languages, settings that existing language
models have been shown to perform well in (Devlin et al., 2019; Feng et al., 2020; Radford &
Sutskever, 2018; Lewis et al., 2019; Chen et al., 2021). Evaluation in this setting can also be done
automatically by comparing execution of the input code and the resulting code.

However, a key weakness of language models in this setting is their inability to perform long-tail
logical reasoning (Kandpal et al., 2022; Miceli-Barone et al., 2023). Assembly code transpilation
requires reasoning about the complex semantics of program flows. It is also challenging to handle
different implementations of semantically equivalent operations on different ISAs.

Motivated by the symbolic properties of logical reasoning in the problem of transpilation, we pro-
pose a neurosymbolic method to transpilation. Purely symbolic methods are built on correctness
guarantees, but generally can only handle short programs before encountering computational in-
tractability. Classical synthesis techniques struggle to scale past ∼ 6 lines of assembly code (Hu
et al., 2023). Purely neural language modeling approaches are powerful general translators but have
critical failure points that cause program breakdown. We argue for the value of a mixed-method,
i.e. neurosymbolic, approach that uses probabilistic language models to obtain helpful information
for transpilation, then passes such information to an ISA semantics-aware solver to complete the
transpilation process.

Our method, GUESS & SKETCH, uses core properties from the language model to extract sym-
bolic methods for transpilation. During the neural GUESS phase, a trained language model pro-
duces candidate translations for a given input, identifies potential errors in the output, and extracts
semantically-aligned subsequences from the input and output sequences. Potentially erroneous
aligned subsequences are passed to the symbolic SKETCH phase, where the input subsequence is
used as a specification to correct the output subsequence.

We demonstrate the feasibility of our method by porting assembly programs from ARMv8 to RISC-
V and vice-versa, but note that our method can generalize to various source and target languages.
In order to test our method, we introduce a new benchmark consisting of 3 transpilation problems
varying in difficulty and domain. We identify weaknesses in engineered symbolic approaches to the
task. We also find that existing neural network approaches, using both fine-tuned and pre-trained off-
the-shelf large language models, struggle with transpilation. In contrast, our method combines the
strengths of both neural and symbolic approaches and successfully transpiles 57.6% more examples
than GPT-4, 39.6% more examples than an engineered transpiler, and 13.2% more examples than
the most competitive baseline.

2 RELATED WORK

Learned code translation. Code transpilers (or transpilers) translate from one programming lan-
guage to another. The core challenge in this space is preserving operational semantics across the
source and target language, while operating within the strict syntax and vocabulary of both. One
approach to this task is to train neural machine translation systems with paired code sequences for
the task, such as language model (Lewis et al., 2019) or tree-to-tree neural networks (Chen et al.,
2018). Approaches such as Transcoder (Roziere et al., 2020) have also presented an unsupervised
approach to neural source code-to-source code translation, in which they only require monolingual
training data and take advantage of three training objectives: cross-lingual masked language mod-
eling, denoising auto-encoding, and back-translation. Follow-up works use the LLVM intermediate
representation (Roziere et al., 2022) and automatically-generated unit tests (Szafraniec et al., 2023)
to further improve this approach. Older statistical approaches have mined parallel code from repos-
itories and generated grammar-based statistical machine translation models (Nguyen et al., 2013;
Karaivanov et al., 2014; Koehn et al., 2007). These outputs of these prior learned approaches are the
generation directly extracted from the model. GUESS & SKETCH instead incorporates knowledge
of the semantics of the source and target languages in a symbolic solver that improves semantic
correctness the produced output. Additionally, as far as we are aware, we are the first to present a

2



learned approach for learning assembly translation, a lower-level programming language than other
higher-level programming languages such as Python, Java, and even C.

Emulators and engineered transpilers. Executing code on a platform different than the one for
which it was created is a long-desired task. Apple’s Rosetta (app) software was designed to ease the
transition of applications between hardwares by automatically translating binary executables from
the previously supported to the new ISA. Specifically, Rosetta in 2006 supported the transition from
PowerPC to Intel processors. Rosetta 2 released in 2020 enabled translation from x86-64 based
processors to support by Apple silicon. Emulators and virtualizers allow users to execute code
designed for another target hardware by simulating the target hardware ISA atop the host hardware.
QEMU (Bellard, 2005) is one popular emulator and virtualizer that can emulate various architectures
on certain host architectures. Other assembly transpilers have been written to translate assembly
from one language to another, such as from ARM to RISC-V (Schorr et al., 2020). However, these
emulators and transpilers take years to develop. GUESS & SKETCH, on the other hand, leverages
the translation abilities of a learned model to perform a bulk of the transpilation.

Neurosymbolic program synthesis. Program synthesis is the task of generating computer pro-
grams according to some correctness specification (Lee et al., 2021). In the context of program
translation, the correctness specification is the semantics of the input program itself. We discuss
here some works that take a combined neural and symbolic approach to the program synthesis task,
similar to our own approach. Nye et al. (2019) train an LSTM-based model to generate program
sketches from some input specification, then use the generated sketch and specification to search
for a satisfying program. Guo et al. (2022) devise a top-down grammar-based method to selectively
expand nonterminals in a program syntax tree. The incomplete program tree is converted to a sketch
that is passed to the symbolic sketch solver to generate a full program. Unlike these previous works,
our method infers the sketch using attributes of a single autoregressive language model. The benefit
of our approach is over directly producing the sketch or generating based on a grammar is that we
avoid encoding specific sketch and language technicalities into the training process.

3 BACKGROUND

3.1 TRANSPILATION

The task of transpilation is to take an input program Px, represented as sequence of tokens x, and
produce the semantically-equivalent program Py represented as sequence of tokens y. Let D be the
domain of all program inputs. For simplicity we represent programs as functions that map inputs to a
deterministic measurable output, either an integer or program failure: P∗ : D → (Z∪⊥). Semantic
equivalence can be measured by checking that for all inputs in D, both programs produce the same
execution outputs: x ≡ y : ∀d ∈ D : Px(d) = Py(d). In practice, we test the full programs on a
feasible subset of D determined by the objective of the source program.

When working with programs, we will also assume we can partition the tokens into Bx non-
overlapping subsequences x = xb1 , . . . , xb|Bx| where each b ∈ Bx defines a span over x. Sub-
sequences are defined so that they can individually be converted to programs Pxb

. Details for identi-
fying such subsequences for assembly and translating them into a program representation conducive
for symbolic reasoning in a sketch solver are shared in Appendix A.1.

3.2 GENERATIVE LANGUAGE MODELS

Let (x, y) ∈ (VL,VL) denote an input and output sequence pair where V is the shared vocabulary
of tokens and L is the maximum length. The objective of a (conditional) generative language model
is to autoregressively produce the correct output y from input x:

argmax
y∈VL

∏
t

p(yt|y<t, x)

Modern language models are based on the Transformer architecture (Vaswani et al., 2017). Trans-
formers use attention (Parikh et al., 2016), a routing mechanism that provides a distribution over the
input tokens used for predicting the next word. Intuitively, attention learns to indicate which part

3



LM

li a5, 26094
addi a5, a5, 2029

mov   w0, 28123

li a5, 12288
addi a5, a5, -57

mov   w0, 28123
li a5, 12288
addi a5, a5, -57

x
yx

y’

attn. 
map

Figure 1: In the GUESS (top) phase, the full input sequence x (blue) is passed to a trained lan-
guage model (LM), which produces a candidate translation y (orange), identifies potential mistakes
(red), and extracts subsequence alignment (purple) from attention between the input and output (attn.
map). In the SKETCH (bottom) phase, aligned input and output subsequences are passed to a sym-
bolic solver λ to correct errors identified in the GUESS phase. The final output y′ is constructed by
recombining corrected subsequences.

of the input to weigh more for each output. We can extract the model’s attention between the input
sequence x and output sequence y as a series of stochastic matrices at each layer mapping every
output index to a probability distribution over input indices2: M ∈ ∆|y|×|x|.

3.3 SKETCHING

Sketching (Solar-Lezama, 2009; Solar-Lezama et al., 2006a) is an approach to program synthesis
in which a partial program outlines the high-level implementation, then a synthesizer populates the
omitted low-level details by ensuring that the resulting code passes some given correctness specifica-
tion. Partial programs are expressed in a procedural programming language augmented with a single
added construct: a symbolic constant expressed as a hole, denoted •. Programs expressed in this
form, with holes as placeholders for concrete values, are sketches. In our notation, the partial pro-
gram sequence is composed of tokens from the vocabulary and an added hole token: S = (V∪{•})∗.
Program sequences x are compiled by a semantics-aware translator into representations Px in the
procedural programming language understandable by the solver.

The correctness specification is set by source program Px. The goal of the synthesizer is to identify
the mapping ϕ : S → V∗ that populates the holes of the partial program sequence s to produce the
full program sequence ϕ(s) whose corresponding program is semantically equivalent to the source
program: ∀d ∈ D : Pϕ(s)(d) = Px(d).

The synthesis engine reduces the resulting programmatic sketch representation to a constraint sat-
isfaction problem solved using counterexample guided inductive synthesis (Solar-Lezama et al.,
2006b) to find values for the holes.

4 NEUROSYMBOLIC TRANSPILATION: GUESS & SKETCH

Given an input program Px represented as sequence x ∈ VL, our goal is to learn to generate a
semantically-equivalent output sequence y ∈ VL which represents program Py: Px ≡ Py . Programs
are comprised of function definitions that are generally independent from one another, so functions
are individually translated then stitched back together. See details in Appendix A.1.

The challenge of our neurosymbolic approach is that language models operate on prefixes, perform-
ing inference by producing one token at a time, while sketch-based methods reason with partially
complete sequences. To meaningfully pass information between the language model and the

2In encoder-decoder models this comes from cross-attention, for decoder-only models by renormalizing
self-attention.

4



symbolic solver, we must extract relevant sequence-level information from the language model
for the solver to reason over with. Specifically, the solver needs candidate output translations and
their semantic alignment in the input.

Our method breaks the problem into stages that can be better solved by the complementary strengths
of neural and symbolic methods: a probabilistic machine learning language model produces candi-
date translations, then alignment and confidence information is extracted and passed to a semantics-
aware solver to filter the search spaces for a correct solution. The pipeline for the GUESS & SKETCH
approach is illustrated in Figure 1.

4.1 GUESS: STRUCTURED CANDIDATES FROM A GENERATIVE MODEL

The GUESS phase produces guesses as tuples. For an input sequence x, GUESS produces tuples
composed of: a candidate transpilation y, alignments between subsequences: A ∈ B|By|

x , and poten-
tial token-level errors in the prediction: E ∈ {0, 1}|y|.

Candidates. To produce candidate sequences we follow a standard generative approach. We first
train a generative language model on paired source language and target language program sequences.
Once trained, candidate transpilations are produced by querying the model:

y ∈ top k
y∈VL

p(y|x) (1)

Figure 2: True subsequence alignment (l), atten-
tion (r), and projected subsequence alignment (r)
from the GUESS model.

Alignment. Since the input and target output
sequences are intended to be globally semanti-
cally equivalent, we assume output sequences
locally align to input sequences. While there
is not a one-to-one equivalence between to-
kens, subsequences of the two programs can be
matched. We use this subsequence matching
and the transformer attention to determine the
alignment used by the sketch system. A sample
extracted alignment matrix, along with the truth
alignment matrix, is shown in Figure 2.

Alignment is represented as a vector between
subsequences: A. To extract the alignment
from the language model, we average the trans-
former attention matrices connecting x and y at
single layer to form a stochastic matrix M ∈
∆|y|×|x|. We then set the alignment Abj = bi
for the input subsequence with the highest ag-
gregate attention score. Aggregate attention score is given by norm of the submatrices i.e. ∀bj′ ∈
Bx : ∥Mbj ,bi∥ ≥ ∥Mbj′ ,bi∥.

Guesses and Errors. The generative model is also used to identify tokens where it is most likely
guessing. First we check if the output token j is predicted with probability less than some value γ:

p(yj |y<j , x) < γ (2)
These low-confidence prediction points correlate to long-tail code phenomena, i.e. instances that
arise rarely in the data distribution, and are where the model may have made a translation mistake.
The second case is if the general model is confident, but the program violates a domain specific
heuristic, specifically if the token or its aligned input subsequence reference some entity not de-
scribed in scope. If either of these conditions are satisfied, the tokens in question are marked as
potentially erroneous: E ∈ {0, 1}|y|.

4.2 SKETCH: REASON OVER ALIGNED CANDIDATES

The SKETCH phase produces a full synthesized transpilation using information from the GUESS
phase with symbolic program solver methods. Note that we cannot run a symbolic solver over the
entire program, so we focus on solving for errors in individual subsequences By .

5



Algorithm 1 GUESS & SKETCH Pseudocode

procedure GUESS & SKETCH(x)
for y,A,E ∈ GUESS(x) do ▷ produce candidates, alignments, potential errors

for b in By do
if Py ≡ Px then return y

if Ej for any j ∈ b then ▷ identify potential error
bx ← Ab ▷ get aligned input index
s← PLACE HOLES(yb, E) ▷ produce sketch sequence
ϕ← argmaxϕ 1(Pxbx

≡ Pϕ(s)) ▷ solve for solution (synthesizer)
if ϕ success then

y ← UPDATE(b, ϕ(s)) ▷ update subseq.

Create the sketch. We create a sketch s for each subsequence b ∈ By that has an possible error
from the first stage. The sketch is created from yb by replacing each position in j ∈ b that also sat-
isfies Ej ̸= 0 with a hole •. The correctness specification is set by the program represented by the
aligned input subsequence xbx where Ab = bx. Correctness specifications must be based on com-
plete semantics, so for input subsequences with out-of-scope references, we extract the definition of
the referenced entity from the full program. The retrieved entity definition is used to complete the
semantics of the correctness specification.

A semantics-aware translator lifts the sketch and correctness specifications into their sketch solver
programmatic representations Ps and Pxbx

, respectively. Details about this translation process for
our assembly language experiments are shared in Appendix A.1.

Solve the sketch. To solve the sketch is to find a mapping ϕ that correctly populates all holes of the
partial program sequence s to satisfy the correctness specification: ∀d ∈ D : Pxbx

(d) = Pϕ(s)(d).

If a solution populating all holes of the partial program sequences is found by the sketch solver,
it is applied to s and the updated subsequence ϕ(s) replaces the subsequence in the full program
sequence. If the subsequence had an out-of-scope reference, the solver would have also resolved a
definition of the referenced entity. The resolved referenced entity definition is also updated in the
full program. In cases where a sketching solution cannot be found, GUESS & SKETCH resorts to
the original prediction. With this approach, the correctness of GUESS & SKETCH is always lower-
bounded by the correctness of the initial guess. This full process is summarized in Algorithm 1.

5 EXPERIMENTAL SETUP

Dataset Our experiments focus on transpilation between real programs compiled to different ISAs,
specifically the ARMv8 and RISC-V assembly languages. ARMv8 and RISC-V are both reduced in-
struction set architectures (ISAs), and have some similarities in instructions (Hennessy & Patterson,
2011). We construct training and evaluation datasets for this task.

Test Dataset # Avg len In Out

Unix Commands 11 96 ✓ ✓
Project Euler 45 159 ✓
Benchmarks 16 484 ✓ ✓

Figure 3: Test sets for transpilation. Length is
measured as number of lines in the assembly file,
and is averaged across both ARMv8 and RISC-V
architectures under the -O0 optimization flag.

Training data is composed of 307,916 ARMv8
and RISC-V assembly file pairs compiled
from C code files from The Stack (Ko-
cetkov et al., 2022). All selected source C
files can be independently compiled to as-
sembly using the standard C libraries (e.g.
stdlib, stdio). The C files are compiled
to both ARMv8 and RISC-V target archi-
tecture assembly files under the -O0, -O1,
-O2, and -O3 optimization flags using cross-
compilers aarch64-linux-gnu-gcc and
riscv64-linux-gu-gcc. The resulting dataset is shared on HuggingFace3.

3https://huggingface.co/datasets/celinelee/paired arm risc

6



Inference of the system is evaluated on 3 different test sets, summarized in Table 3. Code is emulated
in Docker images with QEMU Bellard (2005). Project Euler is constructed from 45 C implementa-
tions of Project Euler mathematical challenge problems4. Benchmarks is 16 C implementations of
programs in The Computer Language 23.03 Benchmarks Game5. Unix Commands is 11 C imple-
mentations of Basic Unix commands6.

For verification, all test sets are cross-compiled to the ARMv8 and RISC-V architectures under the
-O0 flag. System performance is measured by execution output match. We sample the top 100
candidate guesses for a given full assembly file.

System We experiment with two different types of generative language models: a smaller trans-
former encoder-decoder model with a bidirectional encoder and autoregressive decoder based on the
BART architecture (Lewis et al., 2019), and a larger transformer decoder-only models pre-trained
on code (Li et al., 2023; Rozière et al., 2023). The first model class is trained from scratch where
the second is pretrained. All language models are trained on one NVIDIA RTX A6000 GPU. The
encoder-decoder models are trained for 156 hours total and the pre-trained decoder-only models are
fine-tuned for 240 hours total. Pre-trained models are fine-tuned with LoRA (Hu et al., 2022). De-
tails of training are shown in Table 4. All resulting models are shared on Huggingface 7 8. The γ
value we use as the threshold for weak guesses is 0.9.

The symbolic solver is built with Rosette (Torlak & Bodik, 2013), a programming language for
synthesis and verification built on top of the Z3 (de Moura & Bjørner, 2008) SMT solver.

Baselines We consider several alternate approaches to code translation and assembly transpilation.
With Few-shot learning (Brown et al., 2020), we prompt GPT-4 (OpenAI, 2023) with instructions
and a couple examplar input-output assembly pairs to obtain a transpilation for a given input assem-
bly file. The prompt for the Few-shot experiments is composed of an instruction to translate from the
specified source to the specified target architecture ISA, and 4 pairs of implementations in the respec-
tive source and target hardware architectures. See details of the specific prompt in Appendix D.1.
Transpilers are manually-engineered transpilers that convert the given source assembly to the given
target assembly. These are programmatically written for the specified source-to-target-hardware, so
for source-target hardware pairs for which we cannot find a transpiler, we cannot obtain numbers
for this baseline. We use the engineered ArmV8-to-RISCV64 transpiler written by members of the
IBM Research Haifa team 9. We did not find a transpiler from RISC-V to ARMv8. LM only meth-
ods, FT StarCoder (Li et al., 2023), FT CodeLlama (Rozière et al., 2023), Encoder-Decoder (Lewis
et al., 2019), are the purely neural approaches to machine translation, in which we train or fine-tune
a language model with the paired assembly data. The Encoder-Decoder method is equivalent to just
the GUESS method of our approach.

6 RESULTS AND ANALYSIS

Performance of our methods on the test sets are shown in Table 1. GUESS & SKETCH outperforms
all alternative approaches. The Few-shot approach, even with the largest existing language model to-
day, GPT-4, cannot successfully perform most transpilations. GUESS & SKETCH even outperforms
the engineered Transpiler, which fails to translate programs for which it cannot recognize even one
instruction. We run several GUESS-only models, comparing from-scratch training to pre-trained
models. Interestingly, the fine-tuned pre-trained large language models perform much worse than
even just the trained smaller encoder-decoder model. The best-performing baselines is the Encoder-
Decoder approach, which we use for the full GUESS & SKETCH. Further experiments testing the
performance gain of GUESS & SKETCH over the Encoder-Decoder approach on more test programs
are shared in Appendix B, and support the same 10% increase in correct transpilations.

4https://github.com/eagletmt/project-euler-c
5https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
6https://github.com/yadu007/Basic-Unix-Commands-Implementation
7https://huggingface.co/celinelee/bartlarge risctoarm cloze2048
8https://huggingface.co/celinelee/bartlarge armtorisc cloze2048
9https://github.com/schorrm/arm2riscv

7



RISC-V to ARMv8 ARMv8 to RISC-V

Method Proj. Euler Benchmx Unix Cmds Proj. Euler Benchmx Unix Cmds

Few-shot (GPT4) 11.1% 0 18.2% 4.44% 0 27.3%
Transpiler - - - 24.4% 12.5% 54.5%
FT StarCoder 8.9% 0 36.4% 8.9% 0 36.4%
FT CodeLlaMa 11.1% 0 36.4% 2.2% 0 36.4%
Encoder-Decoder 68.9% 6.3% 36.4% 66.7% 6.25% 81.2%
GUESS & SKETCH 80% 18.8% 81.2% 75.6% 25.0% 81.2%

Table 1: Main Transpilation results on full program accuracy (Project Euler, Benchmarks, and Unix
Commands test sets).

Few-shot Starcoder CodeLlama Transpiler Enc-Dec GUESS &
SKETCH

Process Length 2 7 7 0 6 6
Failure 0 0 0 34 0 0

Compile ISA 62 50 57 0 2 2
References 3 5 5 0 11 1

Semantics Copying 0 0 0 0 1 1
Logic 1 5 3 0 3 3
Memory 10 10 9 0 2 2
Math 7 3 0 0 2 3

Correct 5 10 6 11 61 70

Table 2: Analysis of failures by different transpilation methods. Collected on the Project Euler test
set. Categories are listed in order of bottleneck precedence.

Error Analysis Table 2 classifies assembly transpilation errors under one of several categories,
determined by bottleneck failure reason: mathematic, copying, ISA, references, logic, memory, and
length. See descriptions of each in Appendix C and examples in Appendix C.1.

Enc-Dec Output: 
...

  .align  3
.LC1:
  .string  "%d\n"
  .text

...
  lla    a5,.LC1
  fld    fa4,0(a5)
  fmv.d    fa1,fa4
  fmv.d    fa0,fa5
  call    pow@plt

...
<no double-word 
memory block>

...
.LC1:
  .string  "%d\n"

...
  fmov    d1, 5.0e+0
  bl pow

...

Guess & Sketch: 
...

  .align  3
.LC1:
  .string  "%d\n"
  .text

...
  lla    a5,.LC2
  fld    fa4,0(a5)
  fmv.d    fa1,fa4
  fmv.d    fa0,fa5
  call    pow@plt

...
.LC2
  .word 0
  .word 1075052544

Output: RISC-V

Target Output:
...

    lw    a5,-24(s0)
    mv    a1,a5
    lw    a5,-20(s0)
    mv    a2,a5
    sext.w    a3,a2
    sext.w    a5,a1
    bge    a3,a5,.L7

...

Enc-Dec Output: 
...

    lw    a5,-24(s0)
    mv    a4,a5
    lw    a5,-20(s0)
    sext.w    a4,a4
    sext.w    a5,a5
    bge    a4,a5,.L7

...

Output: RISC-V

Input: ARMv8 
...

ldr    w0,[sp,40]
ldr    w2,[sp,44]
ldr    w1,[sp,44]
cmp   w2,w0
csel   w0,w1,w0,ge

...

Input: ARMv8 

Figure 4: Example outputs.

The encoder-decoder model
(GUESS) makes few ISA mis-
takes, but runs into a number of
errors in semantics and out-of-
scope references, some of which
are resolved by the solver in
GUESS & SKETCH. However,
unless the semantics of all of
its erroneous subsequences are
resolved, an incorrect transpi-
lation is not corrected. That is,
even though mathematically er-
roneous subsequences are being
resolved across the examples in
the test sets, if the bottleneck
problem is not resolved or not
all errors are properly aligned
and solved, the transpilation still
fails.

Interestingly the other ap-
proaches fail to transpile or compile before even reaching semantics. For few-shot, the model
generates invalid instructions, despite the prompt including a translation instructions as well as
multiple exemplar transpilations. Fine-tuning models generate invalid assembly from pretraining
despite the fine-tuning phase. On the other hand, the manually engineered transpiler is unable to
process many examples at all.

8



Project Euler
RISC-V to ARMv8 ARMv8 to RISC-V

Encoder-Decoder 30.1 34.3
GUESS & SKETCH 21.3 25.3

Table 3: Average number of samples used by the encoder-decoder and GUESS & SKETCH ap-
proaches for the Project Euler test set. The range for k is k = [1, 100]. (Lower is better.)

Figure 4 shows two example outputs. The left shows a guess that is resolved. The language model
output (bottom, left) predicts tokens for the incorrect global memory reference, highlighted in yel-
low. According to the model cross-attention, these tokens most align to those of the corresponding
fmov instruction in the input assembly (top), highlighted in purple. However, in the predicted full
assembly program, no memory location is produced with the double-word IEEE representation for
the desired float 5.0e+0. After resolution with GUESS & SKETCH, a correct memory location is
generated and the memory reference is updated (bottom, right), highlighted in green. The example
on the right shows a problem that GUESS & SKETCH does not resolve. The LM output (bottom, left)
predicts tokens for the register values with low confidence, highlighted in red. A correct solution is
shown (bottom, right). The register use and logic flow is inconsistent.

Sampling Aside from solving more examples in the test dataset, GUESS & SKETCH also reduces
the number of samples needed from the underlying LM. For a set of test examples, they are correctly
transpiled using the encoder-decoder approach only after sufficiently many samples. Using GUESS
& SKETCH, a handful of these are successfully transpiled with fewer samples. Table 3 shows the
average number of samples from the LM used by the encoder-decoder approach and the GUESS &
SKETCH approach during evaluation of the Project Euler test set. Examples that achieve a correct
transpilation after the kth sample are logged to use k samples, and examples that do not achieve a
correct transpilation within 100 samples use 100 samples.

7 LIMITATIONS

While GUESS & SKETCH is significantly more effective than the baseline approaches, there are still
several remaining open challenges.

• The SKETCH method is dependent on alignment with the source sequence. If GUESS fails to
provide an accurate alignment than the sketch may be unable to correct the output issue.

• Memory management issues are hard for the sketch solver. These include reasoning about val-
ues on the stack at any given point in the program, register choice decisions that are incorrectly
propagated during autoregressive generation, and loading memory addresses into the register.

• The best performing model is a mid-size encoder-decoder, which is strong at pattern matching,
but likely cannot perform programmatic reasoning. Potentially larger code models could better
solve some of the symbolic transpilation issues, if instruction hallucinations could be reduced.

• GUESS & SKETCH is limited in length by the context length of generative language models. Using
convolutional methods such as SLeD (Ivgi et al., 2022) could resolve these mistakes in practice.

8 CONCLUSION

In this work, we present GUESS & SKETCH, a neurosymbolic approach to assembly-to-assembly
transpilation. GUESS & SKETCH extracts alignment and confidence information from a language
model to guide a symbolic solver. We demonstrate the efficacy of this approach on three different
test sets of assembly programs in the ARMv8 and RISC-V architectures. Future work to build on
this approach is to identify and use patterns in the decoder attention of the language model that may
be helpful for the solver, such as live variable analysis (Aho et al., 2006) patterns. Other future work
may include transpiling to or from higher levels of code optimization and devising a mechanism to
reason about more elements of the machine state, such as values on the stack.

9



ACKNOWLEDGMENTS

Justin Chiu, Amrit Baveja, Hao Tang, Yair Schiff, Omer Gul, Kevin Ellis, Ameesh Shah, Sahil
Bhatia, Adwait Godbole

REFERENCES

Aus BASIC mach C:B to C transpiler. Amiga-Magazin, 1988(6):101.

URL https://developer.apple.com/documentation/apple-silicon/
about-the-rosetta-translation-environment.

Ieee standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985, pp. 1–20, 1985. doi:
10.1109/IEEESTD.1985.82928.

The occam transpiler. Byte Magazine, 14(13):350, 1989.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA, 2006.
ISBN 0321486811.

Ehsan K. Ardestani and Jose Renau. Esesc: A fast multicore simulator using time-based sampling. In
2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA),
pp. 448–459, 2013. doi: 10.1109/HPCA.2013.6522340.

Jordi Armengol-Estapé, Jackson Woodruff, Chris Cummins, and Michael F. P. O’Boyle. Slade: A
portable small language model decompiler for optimized assembler, 2023.

Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference, ATEC ’05, pp. 41, USA, 2005. USENIX
Association.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation,
2018. URL https://openreview.net/forum?id=rkxY-sl0W.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis of Systems, pp.
337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language

10

https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=rkxY-sl0W


Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for pro-
gramming and natural languages. In Findings of the Association for Computational Linguis-
tics: EMNLP 2020, pp. 1536–1547, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139. URL https://aclanthology.
org/2020.findings-emnlp.139.

Daya Guo, Alexey Svyatkovskiy, Jian Yin, Nan Duan, Marc Brockschmidt, and Miltiadis Allamanis.
Learning to complete code with sketches. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=q79uMSC6ZBT.

John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2011. ISBN
012383872X.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jingmei Hu, Eric Lu, David A. Holland, Ming Kawaguchi, Stephen Chong, and Margo Seltzer.
Towards porting operating systems with program synthesis. ACM Trans. Program. Lang. Syst.,
45(1), mar 2023. ISSN 0164-0925. doi: 10.1145/3563943. URL https://doi.org/10.
1145/3563943.

Maor Ivgi, Uri Shaham, and Jonathan Berant. Efficient long-text understanding with short-text
models. 2022.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge, 2022.

Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-based statistical translation
of programming languages. In Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Software, Onward! 2014,
pp. 173–184, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450332101. doi: 10.1145/2661136.2661148. URL https://doi.org/10.1145/
2661136.2661148.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. The stack: 3 tb of permissively licensed source code. Preprint, 2022.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bo-
jar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the 45th Annual Meeting of the Association for Com-
putational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pp.
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics. URL
https://aclanthology.org/P07-2045.

Celine Lee, Justin Gottschlich, and Dan Roth. Toward code generation: A survey and lessons from
semantic parsing, 2021.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

11

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://openreview.net/forum?id=q79uMSC6ZBT
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1145/3563943
https://doi.org/10.1145/3563943
https://doi.org/10.1145/2661136.2661148
https://doi.org/10.1145/2661136.2661148
https://aclanthology.org/P07-2045


Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023.

Antonio Valerio Miceli-Barone, Fazl Barez, Ioannis Konstas, and Shay B. Cohen. The larger they
are, the harder they fail: Language models do not recognize identifier swaps in python, 2023.

Niels Möller and Torbjorn Granlund. Improved division by invariant integers. IEEE Transactions
on Computers, 60(2):165–175, 2011. doi: 10.1109/TC.2010.143.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Lexical statistical machine trans-
lation for language migration. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pp. 651–654, New York, NY, USA, 2013. Associa-
tion for Computing Machinery. ISBN 9781450322379. doi: 10.1145/2491411.2494584. URL
https://doi.org/10.1145/2491411.2494584.

Maxwell I. Nye, Luke B. Hewitt, Joshua B. Tenenbaum, and Armando Solar-Lezama. Learning
to infer program sketches. CoRR, abs/1902.06349, 2019. URL http://arxiv.org/abs/
1902.06349.

OpenAI. Gpt-4 technical report, 2023.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable atten-
tion model for natural language inference. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing, pp. 2249–2255, Austin, Texas, November
2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1244. URL https:
//aclanthology.org/D16-1244.

David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990. ISBN 1558800698.

Alec Radford and Ilya Sutskever. Improving language understanding by generative pre-training. In
arxiv, 2018.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. Advances in Neural Information Processing Systems, 33,
2020.

Baptiste Roziere, Jie Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. Leveraging automated unit tests for unsupervised code translation. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=cmt-6KtR4c4.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code, 2023.

Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and accurate microarchitectural simulation of
thousand-core systems. In Proceedings of the 40th Annual International Symposium on Computer
Architecture, ISCA ’13, pp. 475–486, New York, NY, USA, 2013. Association for Computing
Machinery. ISBN 9781450320795. doi: 10.1145/2485922.2485963. URL https://doi.
org/10.1145/2485922.2485963.

12

https://doi.org/10.1145/2491411.2494584
http://arxiv.org/abs/1902.06349
http://arxiv.org/abs/1902.06349
https://aclanthology.org/D16-1244
https://aclanthology.org/D16-1244
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2485922.2485963


Moshe Schorr, Matan Ivgi, Hillel Mendelsonl, Shay Aviv, Hernan Theiler, and Tom Kolan.
arm2riscv. https://github.com/schorrm/arm2riscv, 2020.

Armando Solar-Lezama. The sketching approach to program synthesis. In Zhenjiang Hu (ed.),
Programming Languages and Systems, pp. 4–13, Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg. ISBN 978-3-642-10672-9.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Com-
binatorial sketching for finite programs. SIGARCH Comput. Archit. News, 34(5):404–415, oct
2006a. ISSN 0163-5964. doi: 10.1145/1168919.1168907. URL https://doi.org/10.
1145/1168919.1168907.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Com-
binatorial sketching for finite programs. In Proceedings of the 12th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, ASP-
LOS XII, pp. 404–415, New York, NY, USA, 2006b. Association for Computing Machinery.
ISBN 1595934510. doi: 10.1145/1168857.1168907. URL https://doi.org/10.1145/
1168857.1168907.

Marc Szafraniec, Baptiste Roziere, Hugh James Leather, Patrick Labatut, Francois Charton, and
Gabriel Synnaeve. Code translation with compiler representations. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=XomEU3eNeSQ.

Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette. Onward!
2013, pp. 135–152, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450324724. doi: 10.1145/2509578.2509586. URL https://doi.org/10.1145/
2509578.2509586.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wenwen Wang, Stephen McCamant, Antonia Zhai, and Pen-Chung Yew. Enhancing cross-isa
dbt through automatically learned translation rules. SIGPLAN Not., 53(2):84–97, mar 2018.
ISSN 0362-1340. doi: 10.1145/3296957.3177160. URL https://doi.org/10.1145/
3296957.3177160.

A IMPLEMENTATION DETAILS OF GUESS & SKETCH FOR ASSEMBLY

Function boundaries. The length of assembly files often well exceeds the context window size
of the language model. To handle this issue, we perform translation through the language model by
separating functions from one another and translating them individually. This decision is grounded
in the fact that for the ISAs tested, most information in the functions is independent of instructions
in other functions. This is especially true with regard to the general structure of the computations
rather than specific low-level details and values. The language models are trained on these separated
assembly functions. In inference, the models are passed separated assembly functions, and the
resulting function translations are concatenated back together to compose the full assembly program.

A.1 ALIGNED SEQUENCES IN ASSEMBLY: PURE BASIC BLOCKS

Assembly basic blocks are sequences of code lines that have a single entry point and single exit
point. That is, there are no branching operations within the code sequence Patterson & Hennessy
(1990). We introduce pure basic blocks, a subset of basic blocks defined as sequences of assembly
code lines that have a single entry point, a single exit point, and no memory or stack management
within the code sequence. This constrains pure basic blocks to be code sequences in which all data is
either passed in via values already loaded into registers, or constant values coded into the sequence.

13

https://github.com/schorrm/arm2riscv
https://doi.org/10.1145/1168919.1168907
https://doi.org/10.1145/1168919.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://openreview.net/forum?id=XomEU3eNeSQ
https://openreview.net/forum?id=XomEU3eNeSQ
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3296957.3177160
https://doi.org/10.1145/3296957.3177160


Identifying out-of-scope references. In the context of assembly, out-of-scope references as po-
tential mistakes are classified as any piece of code that use or reference global memory. Examples
include the lla instruction in the RISC-V architecture or custom string or function definitions.

Extract pure basic blocks. From a given token in the sequence, we identify the surrounding
pure basic block by inspecting the neighboring assembly lines. We greedily search lines upward and
downward from the given token until one matches a section boundary definition, branching, memory
management, or stack management operation. The enclosing lines comprise the pure basic block.

We identify pure basic block inputs and outputs as values in relevant registers upon input and upon
exit. Free registers in the basic block are registers that are read from before they are assigned to,
and are considered inputs to the pure basic block. Values in the final registers of aligned pure basic
blocks are considered the outputs of the pure basic block.

For pure basic blocks with global references, semantics of the referenced entities are extracted from
the full program sequence by performing a string-matching search for the referenced label and its
following definition.

Translating pure basic blocks. We lift assembly blocks from their corresponding hardware lan-
guages into an intermediate form usable by the synthesis engine. In this work, pure basic blocks
that may be marked as potentially erroneous can be marked due to either global references or low-
confidence token predictions.

Potential errors due to global references are solved using a custom solver designed for resolving
global references. Pure basic blocks with global references must include the definition of the refer-
enced entity in its semantics. The aligned entity on the input side, whether retrieved from its global
definition or directly obtained from the input pure basic block, is translated into its bitvector repre-
sentation. The pure basic block sequence and the bitvector representation of the correct entity value
are passed to the global reference solver.

Potential errors due to low-confidence token predictions are solved using the Rosette Torlak & Bodik
(2013) program synthesis engine. Aligned input and output sketch subsequences xpx

and s are lifted
into Rosette functions Pxpx

and Ps, where Ps is a partial program with holes replaced by Rosette
symbolic constants. The lifting is done by mapping each assembly line to its Rosette counterpart
according to the semantics of the corresponding assembly hardware ISA.

Solving the sketch. The global reference solver solves for hole mappings in output pure basic
block sketch by either resolving the global reference label used or directly translating the entity
in the block. If the erroneous token in the output pure basic block is a reference label, the solver
searches for entity definitions in the full generated program sequence whose bitvector representation
matches the desired bitvector value set by the input sequence. If it finds a match, the label of the
identified definition replaces the hole left in the sketch. If the solver does not find a match, it creates
a new global definition with a unique label, and uses that label to replace the hole left in the sketch.
If the erroneous token in the output pure basic block is a numerical value, the solver translates the
desired bitvector value set by the input sequence into the representation expected by the ISA and
replaces the hole left in the sketch with the resulting value.

Sketches for errors due to low-confidence tokens are solved by Rosette. Rosette solves for the hole
mappings by ensuring that for all program inputs, the two functions are equivalent. This process is
shown in Figure 5.

A.2 MODEL TRAINING DETAILS

Details about training the generative language models are shared in Table 4

B ADDITIONAL EXPERIMENTS

To further test the benefit of GUESS & SKETCH over just the language model approach, we run
experiments with more Project Euler examples. We collect solutions to 82 additional unique Project

14



                           ARMv8 to Rosette

f?mov rd,imm        [rd (imm)]
sxtw rd,rs          [rd (sign-extend rs (bitvector 64))]
movk rd,hex,lsl imm [rd (concat (extract 63 32 rd) (bvor 

         (extract 31 0 rd) (bvshl hex imm)))] 
lsl rd,rs,imm       [rd (bvshl rs imm)]
lsr rd,rs,imm       [rd (bvlshr rs imm)]
asr rd,rs,imm       [rd (bvashr rs imm)]
f?add rd,rs1,rs1    [rd (bvadd rs1 rs2)]

...

                      RISC-V to Rosette

li rd,imm         [rd (imm)]
sext.w rd,rs      [rd (sign-extend rs (bitvector 64))]
slti rd,rs,imm    [rd (bool->bitvector (bvslt rs imm))]
slli rd,rs,imm    [rd (bvshl rs imm)]
srli rd,rs,imm    [rd (bvlshr rs imm)]
srai rd,rs,imm    [rd (bvashr rs imm)]
f?add rd,rs1,rs1  [rd (bvadd rs1 rs2)]
f?neg rd,rs       [rd (bvneg rs)]

...

<src_rosette_sequence>

<tgt_rosette_sequence>

<src_input_regs>
<src_output_reg>

<src_lang>

<tgt_input_regs>
<tgt_output_reg><tgt_lang>

Figure 5: Assembly instructions are mapped to Rosette instructions according to the semantics of
the corresponding assembly hardware ISA (sample shown at top). Holes in the sequence (indicated
in dashed red rectangles) are translated into Rosette symbolic constants. The resulting Rosette in-
structions, along with the input and output registers, are plugged into a Rosette function template
(bottom) to generate a full Rosette program whose solution produces a corrected mapping from
holes to values.

Model (# params) L.R. Batch No. Steps LoRA r LoRA Modules Quant.

Enc-Decoder (400M) 3e-5 8 520k - - -
Starcoder-Base (15.5B) 5e-6 16 2.9k 16 c_proj,c_attn,q_attn int8
CodeLlama (13B) 5e-6 16 2.9k 16 q_proj,v_proj int8

Table 4: Training details for language models used.

Euler problems implemented in C 10, and compile them to the ARMv8 and RISC-V ISAs under
the -O0 optimization flag. The average number of lines in these programs is 246. The results of
running the strongest baseline and our method are shown in Table 5. GUESS & SKETCH continues
to provide performance gains averaging approximately 10%.

C CATEGORIZATION OF FAILED TRANSPILATIONS

Failed transpilations are categorized under one of several bottleneck failure reasons, listed in order
of precedence. Process failures include length and process failure, in which the very process of
transpilation fails on the given input. If an example does not encounter process failure, the next
category is compilation failures including using the incorrect ISA instructions or global references.
If the example successfully compiles, the next category of failures it may encounter is semantic
failures including mathematic reasoning, copying, operational logic, and memory mis-management.
These categories are further described below.

Length. Some transpilation methods suffer from long input and output sequences. For example,
current attention-based language models generally have a context window limit, so sequences that
exceed that context window length will not be able to be processed by the language model.

Process failure. Examples that fall under this category are ones where the transpilation process
fails when processing the input, such as the rules-based transpiler that breaks down upon receiving
an input that it cannot parse.

10https://github.com/LaurentMazare/ProjectEuler/tree/master

15



Method RISC-V to ARMv8 ARMv8 to RISC-V

Encoder-Decoder 34.1% 37.8%
GUESS & SKETCH 41.5% 51.2%

Table 5: Performance on More Project Euler problems.

Incorrect ISA. In assembly transpilation, the produced sequences must use exactly the instruc-
tions and entities available to the hardware in question. Failure examples that fall under this category
produce sequences mistakenly use syntax that is incorrect or that actually belongs to a different ISA.

Global references. Assembly programs might make references to entities that are invalid, or oth-
erwise use or define global reference labels incorrectly. In these cases, the program will fail.

Mathematic. Math errors are ones in which the translation process fails to correctly perform the
required mathematic reasoning for a translation. Examples include translating code idioms such as
different implementations of division (Möller & Granlund, 2011), addition and subtraction of large
constants, and translation of float values to their IEEE 754 representations (iee, 1985).

Copying. Copying errors are ones in which part of the input sequence fails to be copied to the out-
put sequence. Examples include copying of constant strings, constant numeric values, and custom
function names.

Incorrect operation or register logic. The produced assembly sequence may use syntactically
valid but semantically incorrect logic. These logical errors involve incorrect register or operation
use, and the subsequent propagation of such mistakes.

Memory mis-management. Assembly code must be able to reason about values in memory and
manage memory access. Errors in this category are indicated by attempts to access memory at
incorrect or invalid stack or memory locations, which may yield stash smashing, stack overflow, or
segmentation faults in the latter, and unexpected values in either case.

C.1 EXAMPLE ERRONEOUS TRANSPILATIONS

In this section, we include more example erroneous transpilations from different methods.

Mistakes from fine-tuned code LLMs. Pre-trained code language models, even after fine-tuning
with examples in domain, tend to make more ISA mistakes than do other methods. Figure 6 shows
two examples of erroneous generated code from a fine-tuned Starcoder-Base method. Figure 6a
shows an example of the fine-tuned Starcoder-Base method producing code that is largely correct,
but violates syntactic rules of the target hardware (RISC-V) by using added-register offsets for the
lbu instructions. The syntax of RISC-V 64 does not allow register value addition for loading
unsigned bytes by address. It also only allows subtraction by a specified register value rather than
an immediate. Figure 6b shows code that allocates then uses a large stack space, but in doing
so actually violates syntactic rules of the target hardware (RISC-V) by using an immediate value
outside the legal 12-bit immediate ranges for the addi and sd instructions.

D BASELINE IMPLEMENTATION DETAILS

D.1 PROMPTING GPT-4

The prompt used to extract translations from GPT-4 for Arm to RISC-V is as follows. For function
translations:

You a r e a b l e t o t r a n s l a t e as sembly code from ARMv8 t o RISC−V 6 4 .

ARMv8:

16



LLM output: RISC-V 
...

    addi  a4,s0,-40
    lbu   a5,0(a4+a5)
    sub   a5,a5,64
    lw    a4,-64(s0)

...

(a) Arguments are invalid.

...
  main:    
    addi sp,sp,-8272
    sd   ra,8264(sp)
    sd   r0,8256(sp)
    sd   s1,8248(sp)
    addi s0,sp,8272

...

(b) Offset values are out of range.

Figure 6: The fine-tuned pre-trained code models tend to use instructions from ISAs other than the
one which it is directed to use. Underlined arguments indicate invalid productions.

main :\ n . LFB0 :\ n\ t . c f i s t a r t p r o c \n\ t s t p \ tx29 , x30 , [ sp , −48]!\ n\ t .
c f i d e f c f a o f f s e t 48\n\ t . c f i o f f s e t 29 , −48\n\ t . c f i o f f s e t 30 , −40\n
\ tmov\ tx29 , sp\n\ t a d r p \ tx0 , : g o t : s t a c k c h k g u a r d \n\ t l d r \ tx0 , [ x0 ,
# : g o t l o 1 2 : s t a c k c h k g u a r d ]\ n\ t l d r \ tx1 , [ x0 ]\ n\ t s t r \ tx1 , [ sp , 40]\ n
\ tmov\ tx1 , 0\n\ t a d r p \ tx0 , . LC0\n\ t a d d \ tx0 , x0 , : l o12 : . LC0\n\ t b l \
t p r i n t f \n\ t a d d \ tx0 , sp , 24\n\ tmov\ tx1 , x0\n\ t a d r p \ tx0 , . LC1\n\ t a d d \
tx0 , x0 , : l o12 : . LC1\n\ t b l \ t i s o c 9 9 s c a n f \n\ t l d r \ tw0 , [ sp , 24]\ n\ tmov
\ tw1 , 34953\n\ tmovk\ tw1 , 0x8888 , l s l 16\n\ t s m u l l \ tx1 , w0 , w1\n\ t l s r \
tx1 , x1 , 32\n\ t a d d \ tw1 , w0 , w1\n\ t a s r \ tw1 , w1 , 4\n\ t a s r \ tw0 , w0 , 31\n
\ t s u b \ tw1 , w1 , w0\n\ tmov\ tw0 , 1500\n\ tmul \ tw0 , w1 , w0\n\ t s t r \ tw0 , [ sp
, 28]\ n\ t l d r \ tw1 , [ sp , 24]\ n\ tmov\ tw0 , 34953\n\ tmovk\ tw0 , 0x8888 , l s l
16\n\ t s m u l l \ tx0 , w1 , w0\n\ t l s r \ tx0 , x0 , 32\n\ t a d d \ tw0 , w1 , w0\n\ t a s r

\ tw2 , w0 , 4\n\ t a s r \ tw0 , w1 , 31\n\ t s u b \ tw2 , w2 , w0\n\ tmov\ tw0 , w2\n\
t l s l \ tw0 , w0 , 4\n\ t s u b \ tw0 , w0 , w2\n\ t l s l \ tw0 , w0 , 1\n\ t s u b \ tw2 , w1 ,
w0\n\ tmov\ tw0 , w2\n\ t l s l \ tw0 , w0 , 2\n\ t a d d \ tw0 , w0 , w2\n\ t l s l \ tw0 , w0
, 3\n\ t s t r \ tw0 , [ sp , 32]\ n\ t l d r \ tw1 , [ sp , 28]\ n\ t l d r \ tw0 , [ sp , 32]\ n\
t a d d \ tw0 , w1 , w0\n\ t s t r \ tw0 , [ sp , 36]\ n\ t l d r \ tw1 , [ sp , 36]\ n\ t a d r p \
tx0 , . LC2\n\ t a d d \ tx0 , x0 , : l o12 : . LC2\n\ t b l \ t p r i n t f \n\ tmov\ tw0 , 0\n\
tmov\ tw1 , w0\n\ t a d r p \ tx0 , : g o t : s t a c k c h k g u a r d \n\ t l d r \ tx0 , [ x0 , # :
g o t l o 1 2 : s t a c k c h k g u a r d ]\ n\ t l d r \ tx3 , [ sp , 40]\ n\ t l d r \ tx2 , [ x0 ]\ n\
t s u b s \ tx3 , x3 , x2\n\ tmov\ tx2 , 0\n\ t b e q \ t . L3\n\ t b l \ t s t a c k c h k f a i l \n
. L3 :\ n\ tmov\ tw0 , w1\n\ t l d p \ tx29 , x30 , [ sp ] , 48\n\ t . c f i r e s t o r e 30\n\ t
. c f i r e s t o r e 29\n\ t . c f i d e f c f a o f f s e t 0\n\ t r e t \n\ t . c f i e n d p r o c \n

RISC−V 6 4 :
main :\ n\ t a d d i \ t s p , sp , −48\n\ t s d \ t r a , 4 0 ( sp ) \n\ t s d \ t s 0 , 3 2 ( sp ) \n\ t a d d i \ t s 0 , sp

, 4 8\ n\ t l a \ t a5 , s t a c k c h k g u a r d \n\ t l d \ t a4 , 0 ( a5 ) \n\ t s d \ t a4 , −24( s0 ) \n
\ t l i \ t a4 , 0\n\ t l l a \ t a0 , . LC0\n\ t c a l l \ t p r i n t f @ p l t \n\ t a d d i \ t a5 , s0 , −40\n\
tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC1\n\ t c a l l \ t i s o c 9 9 s c a n f @ p l t \n\ t l w \ t a5 , −40(
s0 ) \n\ tmv\ t a4 , a5\n\ t l i \ t a5 , 3 0\ n\ t d ivw \ t a5 , a4 , a5\n\ t s e x t .w\ t a4 , a5\n\
t l i \ t a5 ,1500\ n\ tmulw\ t a5 , a4 , a5\n\ t sw\ t a5 , −36( s0 ) \n\ t l w \ t a5 , −40( s0 ) \n\
tmv\ t a4 , a5\n\ t l i \ t a5 , 3 0\ n\ tremw\ t a5 , a4 , a5\n\ t s e x t .w\ t a5 , a5\n\ tmv\ t a4 ,
a5\n\ tmv\ t a5 , a4\n\ t s l l i w \ t a5 , a5 , 2\ n\ taddw\ t a5 , a5 , a4\n\ t s l l i w \ t a5 , a5
, 3\ n\ t sw\ t a5 , −32( s0 ) \n\ t l w \ t a5 , −36( s0 ) \n\ tmv\ t a4 , a5\n\ t l w \ t a5 , −32( s0 )
\n\ taddw\ t a5 , a4 , a5\n\ t sw\ t a5 , −28( s0 ) \n\ t l w \ t a5 , −28( s0 ) \n\ tmv\ t a1 , a5\n
\ t l l a \ t a0 , . LC2\n\ t c a l l \ t p r i n t f @ p l t \n\ t l i \ t a5 , 0\ n\ tmv\ t a4 , a5\n\ t l a \ t a5
, s t a c k c h k g u a r d \n\ t l d \ t a3 , −24( s0 ) \n\ t l d \ t a5 , 0 ( a5 ) \n\ t x o r \ t a5 , a3
, a5\n\ t l i \ t a3 , 0\n\ t b e q \ t a5 , ze ro , . L3\n\ t c a l l \ t s t a c k c h k f a i l @ p l t \n
. L3 :\ n\ tmv\ t a0 , a4\n\ t l d \ t r a , 4 0 ( sp ) \n\ t l d \ t s 0 , 3 2 ( sp ) \n\ t a d d i \ t s p , sp
, 4 8\ n\ t j r \ t r a \n

ARMv8:
main :\ n . LFB6 :\ n\ t . c f i s t a r t p r o c \n\ t s t p \ tx29 , x30 , [ sp , −64]!\ n\ t .

c f i d e f c f a o f f s e t 64\n\ t . c f i o f f s e t 29 , −64\n\ t . c f i o f f s e t 30 , −56\n
\ tmov\ tx29 , sp\n\ t a d r p \ tx0 , : g o t : s t a c k c h k g u a r d \n\ t l d r \ tx0 , [ x0 ,
# : g o t l o 1 2 : s t a c k c h k g u a r d ]\ n\ t l d r \ tx1 , [ x0 ]\ n\ t s t r \ tx1 , [ sp , 56]\ n

17



\ tmov\ tx1 , 0\n\ t a d r p \ tx0 , . LC0\n\ t a d d \ tx0 , x0 , : l o12 : . LC0\n\ t b l \
t p r i n t f \n\ t a d d \ tx0 , sp , 20\n\ tmov\ tx1 , x0\n\ t a d r p \ tx0 , . LC1\n\ t a d d \
tx0 , x0 , : l o12 : . LC1\n\ t b l \ t i s o c 9 9 s c a n f \n\ t l d r \ tw0 , [ sp , 20]\ n\ tmov
\ tw1 , w0\n\ t a d r p \ tx0 , . LC2\n\ t a d d \ tx0 , x0 , : l o12 : . LC2\n\ t b l \ t p r i n t f \n
\ t a d r p \ tx0 , . LC3\n\ t a d d \ tx0 , x0 , : l o12 : . LC3\n\ t b l \ t p r i n t f \n\ t a d d \ tx0 ,

sp , 19\n\ tmov\ tx1 , x0\n\ t a d r p \ tx0 , . LC4\n\ t a d d \ tx0 , x0 , : l o12 : . LC4\n
\ t b l \ t i s o c 9 9 s c a n f \n\ t l d r b \ tw0 , [ sp , 19]\ n\ tmov\ tw1 , w0\n\ t a d r p \ tx0
, . LC5\n\ t a d d \ tx0 , x0 , : l o12 : . LC5\n\ t b l \ t p r i n t f \n\ t a d r p \ tx0 , . LC6\n\
t a d d \ tx0 , x0 , : l o12 : . LC6\n\ t b l \ t p r i n t f \n\ t a d d \ tx0 , sp , 24\n\ tmov\ tx1 ,

x0\n\ t a d r p \ tx0 , . LC7\n\ t a d d \ tx0 , x0 , : l o12 : . LC7\n\ t b l \
t i s o c 9 9 s c a n f \n\ t l d r \ td0 , [ sp , 24]\ n\ t a d r p \ tx0 , . LC8\n\ t a d d \ tx0 , x0
, : l o12 : . LC8\n\ t b l \ t p r i n t f \n\ t a d r p \ tx0 , . LC9\n\ t a d d \ tx0 , x0 , : l o12 : .
LC9\n\ t b l \ t p r i n t f \n\ t a d r p \ tx0 , : g o t : s t d i n \n\ t l d r \ tx0 , [ x0 , # : g o t l o 1 2
: s t d i n ]\ n\ t l d r \ tx1 , [ x0 ]\ n\ t a d d \ tx0 , sp , 32\n\ tmov\ tx2 , x1\n\ tmov\ tw1
, 20\n\ t b l \ t f g e t s \n\ t a d d \ tx0 , sp , 32\n\ tmov\ tx1 , x0\n\ t a d r p \ tx0 , .
LC10\n\ t a d d \ tx0 , x0 , : l o12 : . LC10\n\ t b l \ t p r i n t f \n\ tmov\ tw0 , 0\n\ tmov\
tw1 , w0\n\ t a d r p \ tx0 , : g o t : s t a c k c h k g u a r d \n\ t l d r \ tx0 , [ x0 , # :
g o t l o 1 2 : s t a c k c h k g u a r d ]\ n\ t l d r \ tx3 , [ sp , 56]\ n\ t l d r \ tx2 , [ x0 ]\ n\
t s u b s \ tx3 , x3 , x2\n\ tmov\ tx2 , 0\n\ t b e q \ t . L3\n\ t b l \ t s t a c k c h k f a i l \n
. L3 :\ n\ tmov\ tw0 , w1\n\ t l d p \ tx29 , x30 , [ sp ] , 64\n\ t . c f i r e s t o r e 30\n\ t
. c f i r e s t o r e 29\n\ t . c f i d e f c f a o f f s e t 0\n\ t r e t \n\ t . c f i e n d p r o c \n

RISC−V 6 4 :
main :\ n\ t a d d i \ t s p , sp , −64\n\ t s d \ t r a , 5 6 ( sp ) \n\ t s d \ t s 0 , 4 8 ( sp ) \n\ t a d d i \ t s 0 , sp

, 6 4\ n\ t l a \ t a5 , s t a c k c h k g u a r d \n\ t l d \ t a4 , 0 ( a5 ) \n\ t s d \ t a4 , −24( s0 ) \n
\ t l i \ t a4 , 0\n\ t l l a \ t a0 , . LC0\n\ t c a l l \ t p r i n t f @ p l t \n\ t a d d i \ t a5 , s0 , −60\n\
tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC1\n\ t c a l l \ t i s o c 9 9 s c a n f @ p l t \n\ t l w \ t a5 , −60(
s0 ) \n\ tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC2\n\ t c a l l \ t p r i n t f @ p l t \n\ t l l a \ t a0 , . LC3\
n\ t c a l l \ t p r i n t f @ p l t \n\ t a d d i \ t a5 , s0 , −61\n\ tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC4\n
\ t c a l l \ t i s o c 9 9 s c a n f @ p l t \n\ t l b u \ t a5 , −61( s0 ) \n\ t s e x t .w\ t a5 , a5\n\ tmv\
t a1 , a5\n\ t l l a \ t a0 , . LC5\n\ t c a l l \ t p r i n t f @ p l t \n\ t l l a \ t a0 , . LC6\n\ t c a l l \
t p r i n t f @ p l t \n\ t a d d i \ t a5 , s0 , −56\n\ tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC7\n\ t c a l l \
t i s o c 9 9 s c a n f @ p l t \n\ t f l d \ t f a 5 , −56( s0 ) \n\ t fmv . x . d\ t a1 , f a 5 \n\ t l l a \ t a0
, . LC8\n\ t c a l l \ t p r i n t f @ p l t \n\ t l l a \ t a0 , . LC9\n\ t c a l l \ t p r i n t f @ p l t \n\ t l a \
t a5 , s t d i n \n\ t l d \ t a4 , 0 ( a5 ) \n\ t a d d i \ t a5 , s0 , −48\n\ tmv\ t a2 , a4\n\ t l i \ t a1
, 2 0\ n\ tmv\ t a0 , a5\n\ t c a l l \ t f g e t s @ p l t \n\ t a d d i \ t a5 , s0 , −48\n\ tmv\ t a1 , a5\n
\ t l l a \ t a0 , . LC10\n\ t c a l l \ t p r i n t f @ p l t \n\ t l i \ t a5 , 0\ n\ tmv\ t a4 , a5\n\ t l a \
t a5 , s t a c k c h k g u a r d \n\ t l d \ t a3 , −24( s0 ) \n\ t l d \ t a5 , 0 ( a5 ) \n\ t x o r \ t a5 ,

a3 , a5\n\ t l i \ t a3 , 0\n\ t b e q \ t a5 , ze ro , . L3\n\ t c a l l \
t s t a c k c h k f a i l @ p l t \n . L3 :\ n\ tmv\ t a0 , a4\n\ t l d \ t r a , 5 6 ( sp ) \n\ t l d \ t s 0
, 4 8 ( sp ) \n\ t a d d i \ t s p , sp , 6 4\ n\ t j r \ t r a \n

ARMv8:
b :\ n\ t . z e r o \ t 8 \n\ t . g l o b a l \ t c \n\ t . a l i g n \ t 3 \n\ t . t y p e \ t c , %o b j e c t \n\ t . s i z e \

t c , 8\n

RISC−V 6 4 :
b :\ n\ t . z e r o \ t 8 \n\ t . g l o b l \ t c \n\ t . a l i g n \ t 3 \n\ t . t y p e \ t c , @object\n\ t . s i z e \ t c

, 8\n

ARMv8:
foo :\ n . LFB0 :\ n\ t . c f i s t a r t p r o c \n\ t s t p \ tx29 , x30 , [ sp , −16]!\ n\ t .

c f i d e f c f a o f f s e t 16\n\ t . c f i o f f s e t 29 , −16\n\ t . c f i o f f s e t 30 , −8\n\
tmov\ tx29 , sp\n\ t a d r p \ tx0 , g l o b a l \n\ t a d d \ tx0 , x0 , : l o12 : g l o b a l \n\ t b l \
t b a r \n\ t a d r p \ tx0 , g l o b a l 2 \n\ t a d d \ tx0 , x0 , : l o12 : g l o b a l 2 \n\ t b l \ t b a r \
n\ t a d r p \ tx0 , : g o t : g l o b a l 3 \n\ t l d r \ tx0 , [ x0 , # : g o t l o 1 2 : g l o b a l 3 ]\ n\
t b l \ t b a r \n\ t a d r p \ tx0 , g l o b a l 5 \n\ t a d d \ tx0 , x0 , : l o12 : g l o b a l 5 \n\ t b l \
t b a r \n\ t a d r p \ tx0 , g l o b a l 6 \n\ t a d d \ tx0 , x0 , : l o12 : g l o b a l 6 \n\ t b l \ t b a r \
n\ t nop \n\ t l d p \ tx29 , x30 , [ sp ] , 16\n\ t . c f i r e s t o r e 30\n\ t . c f i r e s t o r e
29\n\ t . c f i d e f c f a o f f s e t 0\n\ t r e t \n\ t . c f i e n d p r o c \n

RISC−V 6 4 :
foo :\ n\ t a d d i \ t s p , sp , −16\n\ t s d \ t r a , 8 ( sp ) \n\ t s d \ t s 0 , 0 ( sp ) \n\ t a d d i \ t s 0 , sp

, 1 6\ n\ t l l a \ t a0 , g l o b a l \n\ t c a l l \ t b a r @ p l t \n\ t l l a \ t a0 , g l o b a l 2 \n\ t c a l l \
t b a r @ p l t \n\ t l a \ t a0 , g l o b a l 3 \n\ t c a l l \ t b a r @ p l t \n\ t l l a \ t a0 , g l o b a l 5 \n\

18



t c a l l \ t b a r @ p l t \n\ t l l a \ t a0 , g l o b a l 6 \n\ t c a l l \ t b a r @ p l t \n\ t nop \n\ t l d \ t r a
, 8 ( sp ) \n\ t l d \ t s 0 , 0 ( sp ) \n\ t a d d i \ t s p , sp , 1 6\ n\ t j r \ t r a \n

ARMv8:
{ i n s e r t i n p u t code t o t r a n s l a t e }

RISC−V 6 4 :

For outer file translations:

You a r e a b l e t o t r a n s l a t e as sembly code from ARMv8 t o RISC−V 6 4 .

ARMv8:
\ t . a r c h armv8 −a\n\ t . f i l e \ t ” program19928025 . c ”\n\ t . t e x t \n\ t . s e c t i o n \ t .

r o d a t a \n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ” E n t e r your age : ”\n\ t . a l i g n \
t 3 \n . LC1 :\ n\ t . s t r i n g \ t ”%d ”\n\ t . a l i g n \ t 3 \n . LC2 :\ n\ t . s t r i n g \ t ”You a r e %
d y e a r s o l d .\\ n ”\n\ t . a l i g n \ t 3 \n . LC3 :\ n\ t . s t r i n g \ t ” E n t e r your g r a d e :
”\n\ t . a l i g n \ t 3 \n . LC4 :\ n\ t . s t r i n g \ t ”%c ”\n\ t . a l i g n \ t 3 \n . LC5 :\ n\ t . s t r i n g
\ t ” Your g r a d e i s : %c ”\n\ t . a l i g n \ t 3 \n . LC6 :\ n\ t . s t r i n g \ t ” E n t e r your gpa
: ”\n\ t . a l i g n \ t 3 \n . LC7 :\ n\ t . s t r i n g \ t ”% l f ”\n\ t . a l i g n \ t 3 \n . LC8 :\ n\ t .
s t r i n g \ t ” Your gpa i s : %l f \\n ”\n\ t . a l i g n \ t 3 \n . LC9 :\ n\ t . s t r i n g \ t ” E n t e r

your name : ”\n\ t . a l i g n \ t 3 \n . LC10 :\ n\ t . s t r i n g \ t ” Your name i s %s ”\n\ t .
t e x t \n\ t . a l i g n \ t 2 \n\ t . g l o b a l \ tma in \n\ t . t y p e \ tmain , %f u n c t i o n \n{main } .
LFE6 :\ n\ t . s i z e \ tmain , . − main\n\ t . i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1
˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” , @progb i t s \n

RISC−V 6 4 :
\ t . f i l e \ t ” program19928025 . c ”\n\ t . o p t i o n p i c \n\ t . t e x t \n\ t . s e c t i o n \ t . r o d a t a

\n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ” E n t e r your age : ”\n\ t . a l i g n \ t 3 \n .
LC1 :\ n\ t . s t r i n g \ t ”%d ”\n\ t . a l i g n \ t 3 \n . LC2 :\ n\ t . s t r i n g \ t ”You a r e %d
y e a r s o l d .\\ n ”\n\ t . a l i g n \ t 3 \n . LC3 :\ n\ t . s t r i n g \ t ” E n t e r your g r a d e : ”\n
\ t . a l i g n \ t 3 \n . LC4 :\ n\ t . s t r i n g \ t ”%c ”\n\ t . a l i g n \ t 3 \n . LC5 :\ n\ t . s t r i n g \ t ”
Your g r a d e i s : %c ”\n\ t . a l i g n \ t 3 \n . LC6 :\ n\ t . s t r i n g \ t ” E n t e r your gpa :
”\n\ t . a l i g n \ t 3 \n . LC7 :\ n\ t . s t r i n g \ t ”% l f ”\n\ t . a l i g n \ t 3 \n . LC8 :\ n\ t .
s t r i n g \ t ” Your gpa i s : %l f \\n ”\n\ t . a l i g n \ t 3 \n . LC9 :\ n\ t . s t r i n g \ t ” E n t e r

your name : ”\n\ t . a l i g n \ t 3 \n . LC10 :\ n\ t . s t r i n g \ t ” Your name i s %s ”\n\ t .
t e x t \n\ t . a l i g n \ t 1 \n\ t . g l o b l \ tma in \n\ t . t y p e \ tmain , @func t ion \n{main}\ t
. s i z e \ tmain , . − main\n\ t . i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 )
1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” , @progb i t s \n

ARMv8:
\ t . a r c h armv8 −a\n\ t . f i l e \ t ” program12490936 . c ”\n\ t . t e x t \n\ t . s e c t i o n \ t .

r o d a t a \n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ” E n t e r t h e d i s t a n c e t h e van
has t r a v e l l e d : ”\ n\ t . a l i g n \ t 3 \n . LC1 :\ n\ t . s t r i n g \ t ”%d ”\n\ t . a l i g n \ t 3 \n .
LC2 :\ n\ t . s t r i n g \ t ”Amount = %d ”\n\ t . t e x t \n\ t . a l i g n \ t 2 \n\ t . g l o b a l \ tma in
\n\ t . t y p e \ tmain , %f u n c t i o n \n{main } . LFE0 :\ n\ t . s i z e \ tmain , . − main\n\ t .
i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t .
n o t e .GNU− s t a c k , ” ” , @progb i t s \n

RISC−V 6 4 :
\ t . f i l e \ t ” program12490936 . c ”\n\ t . o p t i o n p i c \n\ t . t e x t \n\ t . s e c t i o n \ t . r o d a t a

\n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ” E n t e r t h e d i s t a n c e t h e van has
t r a v e l l e d : ”\ n\ t . a l i g n \ t 3 \n . LC1 :\ n\ t . s t r i n g \ t ”%d ”\n\ t . a l i g n \ t 3 \n . LC2 :\
n\ t . s t r i n g \ t ”Amount = %d ”\n\ t . t e x t \n\ t . a l i g n \ t 1 \n\ t . g l o b l \ tma in \n\ t .
t y p e \ tmain , @func t ion \n{main}\ t . s i z e \ tmain , . − main\n\ t . i d e n t \ t ”GCC: (
Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k
, ” ” , @progb i t s \n

ARMv8:
\ t . a r c h armv8 −a\n\ t . f i l e \ t ” program14079072 . c ”\n\ t . t e x t \n\ t . g l o b a l \ t b \n\ t .

b s s \n\ t . a l i g n \ t 3 \n\ t . t y p e \ tb , %o b j e c t \n\ t . s i z e \ tb , 8\n{b}{ c}{d}{ e}{ f
} . LFE0 :\ n\ t . s i z e \ t f , . − f \n\ t . i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1
˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” , @progb i t s \n

RISC−V 6 4 :

19



\ t . f i l e \ t ” program14079072 . c ”\n\ t . o p t i o n p i c \n\ t . t e x t \n\ t . g l o b l \ t b \n\ t . b s s
\n\ t . a l i g n \ t 3 \n\ t . t y p e \ tb , @object\n\ t . s i z e \ tb , 8\n{b}{ c}{d}{ e}{ f }\ t .
s i z e \ t f , . − f \n\ t . i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\
n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” , @progb i t s \n

ARMv8:
\ t . a r c h armv8 −a\n\ t . f i l e \ t ” program17748089 . c ”\n\ t . t e x t \n\ t . s e c t i o n \ t .

r o d a t a \n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ”%f \\n%f \\n%f ”\n\ t . a l i g n \ t 3 \n .
LC1 :\ n\ t . s t r i n g \ t ”% l f ”\n\ t . t e x t \n\ t . a l i g n \ t 2 \n\ t . g l o b a l \ tma in \n\ t .
t y p e \ tmain , %f u n c t i o n \n{main } . LFE0 :\ n\ t . s i z e \ tmain , . − main\n\ t . i d e n t \
t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU−
s t a c k , ” ” , @progb i t s \n

RISC−V 6 4 :
\ t . f i l e \ t ” program17748089 . c ”\n\ t . o p t i o n p i c \n\ t . t e x t \n\ t . s e c t i o n \ t . r o d a t a

\n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ”%f \\n%f \\n%f ”\n\ t . a l i g n \ t 3 \n . LC1 :\ n
\ t . s t r i n g \ t ”% l f ”\n\ t . t e x t \n\ t . a l i g n \ t 1 \n\ t . g l o b l \ tma in \n\ t . t y p e \ tmain
, @func t ion \n{main}\ t . s i z e \ tmain , . − main\n\ t . i d e n t \ t ”GCC: ( Ubuntu
11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” ,
@progb i t s \n

ARMv8:
{ i n s e r t i n p u t code t o t r a n s l a t e }

RISC−V 6 4 :

The reverse direction reverses source and target language specifications accordingly.

20


	Introduction
	Related Work
	Background
	Transpilation
	Generative Language Models
	Sketching

	Neurosymbolic Transpilation: Guess & Sketch
	Guess: Structured Candidates from a Generative Model
	Sketch: Reason Over Aligned Candidates

	Experimental Setup
	Results and Analysis
	Limitations
	Conclusion
	Implementation Details of Guess & Sketch for Assembly
	Aligned Sequences in Assembly: Pure Basic Blocks
	Model Training Details

	Additional Experiments
	Categorization of Failed Transpilations
	Example Erroneous Transpilations

	Baseline Implementation Details
	Prompting GPT-4


