
A Calculus for Unreachable Code
PETER ZHONG, PLT, Northwestern University, U.S.A.

SHU-HUNG YOU, PLT, Northwestern University, U.S.A.

SIMONE CAMPANONI, Northwestern University, U.S.A.

ROBERT BRUCE FINDLER, PLT, Northwestern University, U.S.A.

MATTHEW FLATT, University of Utah, U.S.A.

CHRISTOS DIMOULAS, PLT, Northwestern University, U.S.A.

In Racket, the LLVM IR, Rust, and other modern languages, programmers and static analyses can hint, with

special annotations, that certain parts of a program are unreachable. Same as other assumptions about

undefined behavior; the compiler assumes these hints are correct and transforms the program aggressively.

While compile-time transformations due to undefined behavior often perplex compiler writers and develop-

ers, we show that the essence of transformations due to unreachable code can be distilled in a surprisingly small

set of simple formal rules. Specifically, following the well-established tradition of understanding linguistic

phenomena through calculi, we introduce the first calculus for unreachable. Its term-rewriting rules that

take advantage of unreachable fall into two groups. The first group allows the compiler to delete any code

downstream of unreachable, and any effect-free code upstream of unreachable. The second group consists

of rules that eliminate conditional expressions when one of their branches is unreachable. We show the

correctness of the rules with a novel logical relation, and we examine how they correspond to transformations

due to unreachable in Racket and LLVM.

ACM Reference Format:
Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas.

2024. A Calculus for Unreachable Code. 1, 1 (July 2024), 26 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 THE FLEETING ESSENCE OF UNREACHABLE
Modern compilers routinely take advantage of undefined behavior. Specifically, they assume that

a program never performs operations that exhibit undefined behavior, and then they use this

assumption to optimize the program. After all, a program that lives outside the confines of defined

behavior is meaningless. Hence, the effect of optimizations on its behavior is a moot point. While

the use of undefined behavior in semantics is controversial, and with good reason (CVE-2014-0160

2014), undefined behavior is widely used and, as Jung (2021) eloquently argued, not all forms of

undefined behavior are the same.

In this paper, we attempt to bring a sound semantics footing of a particular form of unde-

fined behavior: unreachable. Programmers and tools that transform code, such as static analyses,

introduce the construct unreachable in programs to claim that some part of the program can

Authors’ addresses: Peter Zhong, PLT, Northwestern University, U.S.A., peterzhong2023@u.northwestern.edu; Shu-Hung

You, PLT, Northwestern University, U.S.A., shu-hung.you@eecs.northwestern.edu; Simone Campanoni, Northwestern

University, U.S.A., simonec@eecs.northwestern.edu; Robert Bruce Findler, PLT, Northwestern University, U.S.A., robby@cs.

northwestern.edu; Matthew Flatt, University of Utah, U.S.A., mflatt@cs.utah.edu; Christos Dimoulas, PLT, Northwestern

University, U.S.A., chrdimo@northwestern.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

XXXX-XXXX/2024/7-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: July 2024.

ar
X

iv
:2

40
7.

04
91

7v
1

 [
cs

.P
L

]
 6

 J
ul

 2
02

4

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

(define (func x)
(if (pair? x)

(car x)
(unsafe-assert-unreachable)))

define i32 @func(i32 %0) {
1: %2 = icmp sgt i32 %0, 0

br i1 %2, label %3, label %4
3: ret i32 0 ; preds = %1
4: unreachable ; preds = %1
}

Fig. 1. Two Flavors of unreachable: Racket (Left) and LLVM IR (Right)

never be evaluated. Concretely, figure 1 depicts two code snippets that demonstrate unreachable
in two different linguistic contexts. In the Racket snippet, unsafe-assert-unreachable signals
to the Racket compiler that the else-branch of the if expression can never be reached. Hence,

unsafe-assert-unreachable gives the Racket compiler the freedom to optimize away the entire

if expression, effectively asserting that x is always a pair. In the same spirit, LLVM’s unreachable
instruction informs the compiler that the control-flow of a program never reaches that instruction.

Therefore, in the LLVM IR snippet in figure 1, all three basic blocks can be collapsed into one. In

other words, same as for other forms of undefined behavior, unreachable describes an assumption

about the evaluation of a program that a compiler can take advantage of while optimizing the

program. If the assumption is true, then the program is transformed to an equivalent, possibly more

performant, new version. If the assumption is false, then the program is meaningless to begin with

and the semantics of the language gives the compiler a free hand to produce any code whatsoever.

The discussion so far suggests that the phrase “the meaning of unreachable” is an oxymoron.

However, we show that staple tools of PL semanticists, such as calculi and equational theories, can

faithfully describe the interplay between unreachable, compile-time transformations and program

behavior, and hence, reveal the essence of unreachable through the way compilers use it.

Standing on the shoulders of fifty years of PL tradition (Plotkin 1975), we turn to the 𝜆 calculus

and we construct the first calculus that captures the essence of unreachable. In our unreachable
calculus, we describe the legal basic steps that a compiler performs when transforming a program

due to unreachable as local term-rewriting rules. At a high level, there are two groups of rules:

those that eliminate unreachable and those that propagate it through a program. The first group of

rules dictates how a compiler can discard computations around unreachable and these are the the

same as rules that discard computations around expressions that are guaranteed to signal errors.

The second group describes how a compiler can leverage unreachable to eliminate control-flow

paths that cannot be reached. This group consists of just a single rule and its symmetric counterpart,

showing how if expressions and unreachable interact.

There are two questions about the unreachable calculus. The first question is correctness. Specif-

ically, do the rules of the calculus preserve program semantics — as induced by the standard

reduction of the calculus — under the assumption that evaluation of the program never reaches

unreachable? The answer is affirmative but the proof is subtle because the assumption about

unreachable is not compositional. Even when it is true that a particular program does not reach

unreachable no matter its input, there may be subexpressions that, if they were to be evaluated

directly, would reach unreachable. Worse, the guarantee that ensures the entire program cannot

reach unreachable may be arbitrarily complex. We show how to handle this complexity via the

construction of a novel logical relation, while keeping the rules of the calculus simple and intuitive.

The second question is about generality. Does the simplicity of the calculus keep it from capturing

the optimizations in production compilers? To answer this question, we focus on the two compilers:

Racket’s and LLVM. For Racket, we performed an audit of the Racket codebase, which revealed that

all of the rewrites that Racket performs because of unreachable map to the rules of our calculus.

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 3

For LLVM, we cannot draw a similarly direct conclusion because LLVM is too different from our

𝜆-based calculus. Instead, inspired by an audit of the LLVM codebase and additions to LLVM

codebase at the same time as the addition of unreachable we design a transformation for a subset

of LLVM IR (technically Vminus (Zhao et al. 2013)) that captures some of the ways that LLVM

exploits unreachable. To do so, we compose our transformation with a version of Kelsey (1995)’s

functions that translate SSA to and from the 𝜆 calculus.

Overall, this paper identifies unreachable as an undefined behavior whose semantics can, sur-

prisingly, be captured via a simple set of rules. Even better, these rules match how compiler writers

conceptualize optimization as local, context-insensitive rewrites. In short, we see this paper as a

first step towards a systematic demystification of undefined behavior.

The remainder of the paper is organized as follows. Section 2 explains the essence of unreachable,
and of our calculus, through examples. Section 3 presents the unreachable calculus while section 4

proves its correctness. Section 5 discusses the extension of the calculus with arbitrary semantics-

preserving rules that are useful when proving equivalences with the calculus. Section 6 shows how

our calculus can shed light to other forms of undefined behavior beyond unreachable as evidence
for our approach’s value in understanding undefined behavior. Sections 7 and 8 connect our calculus

to Racket and LLVM, respectively. The last two sections discuss related work and conclude.

2 THE ESSENCE OF UNREACHABLE, BY EXAMPLE
From a compiler engineering perspective, the value of unreachable is that it contributes to the

clean separation between the different passes of the compilation process. For example, a static

analysis pass can deduce that some part of a program is unreachable, and mark it as such with

unreachable to facilitate a subsequent pass that aims to optimize the program. Given that the ability

of compilers to reliably detect unreachable code is limited, programmers can also take advantage

of the same mechanism to share with the compiler facts about whether some parts of a program

are unreachable. Once the programmer (or the analysis) has communicated that some code is

unreachable, the compiler can take advantage of this information in various different ways.

The simplest such way is by treating unreachable as erroneous code, or more generally, as code

that never returns. Specifically, the compiler can erase terminating, effect-free computations that

happens before unreachable, and all computation that is guaranteed to happen after it. For example,

the Racket compiler can simplify the expression

(begin (+ x 1)
(unsafe-assert-unreachable)
(+ y 2))

to just (unsafe-assert-unreachable), where (unsafe-assert-unreachable) is a syntactic

form that programmers use to declare that some part of an expression is unreachable.
1

Treating unreachable as erroneous code, however, misses optimization opportunities because it

ignores the semantics of unreachable code. To see how, consider the following Racket code:

(define (m-dist p)
(match p
[(cons x y) (+ (abs x) (abs y))]))

The m-distance function computes the Manhattan distance for a point represented as a pair of

(real) numbers. Its body consists of use of the match which roughly expands to a conditional and

appropriate uses of accessor functions:

1
Racket also offers assert-unreachable, which is guaranteed to throw an error when evaluated. Similar to Racket, Rust

also has two variants, one that allows aggressive optimization and one that is safe, for testing and debugging.

, Vol. 1, No. 1, Article . Publication date: July 2024.

4 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

(define (m-dist p)
(if (pair? p)

(+ (abs (car x)) (abs (cdr x)))
(error 'match-failure)))

In general the two accessor functions in the above snippet, car and cdr, come with checks that

defensively inspect their argument to make sure it is a pair. However, the Racket compiler can

deduce that the uses of the accessor functions in the snippet are guarded by the pair? (on a variable

that isn’t modified). Hence, the compiler replaces them with their unsafe variants:

(define (m-dist p)
(if (pair? p)

(+ (abs (unsafe-car p)) (abs (unsafe-cdr p)))
(error 'match-failure)))

And that’s how far the Racket compiler can go on its own. However, if the author of the code

knows that m-dist is only applied to points, i.e., pairs, then, they can convey this information

to the Racket compiler by adding to the match expression in the body of m-dist a catch-all case
that uses unsafe-assert-unreachable, the Racket variant of unreachable that has undefined

behavior, giving the compiler the license to assume that it is never reached. Rust has a similar

construct, unreachable_unchecked, which also has undefined behavior if it is ever reached.

(define (m-dist p)
(match p
[(cons x y) (+ (abs x) (abs y))]
[_ (unsafe-assert-unreachable)]))

As in the steps as above, the Racket compiler simplifies the body of m-dist to:

(define (m-dist p)
(if (pair? p)

(+ (abs (unsafe-car p)) (abs (unsafe-cdr p)))
(unsafe-assert-unreachable)))

Since, the else-branch of the conditional is marked as unreachable, the Racket compiler can

assume that in a program that uses m-dist, m-dist consumes only pairs. Hence, the compiler can

transform the m-dist to eliminate the unreachable branch and replace it with a begin expression:

(define (m-dist p)
(begin (pair? p)

(+ (abs (unsafe-car p)) (abs (unsafe-cdr p)))))

In short, the Racket compiler applies one of the fundamental rules of unreachable:

(if e_1 e_2 (unsafe-assert-unreachable))
=
(begin e_1 e_2)

The use of the rule unlocks one more opportunity for simplifying (m-dist). Since pair? has no

side effects, the Racket compiler drops it to obtain the final version of m-dist:

(define (m-dist p)
(+ (abs (unsafe-car p)) (abs (unsafe-cdr p))))

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 5

e ::= x | c | λ𝑥 .𝑒 | op 𝑒 𝑒 | 𝑒 𝑒 | (if 𝑒 𝑒 𝑒) | (begin 𝑒 𝑒) | unreachable | error𝑘
c ::= n | false | true n ∈ numbers op ∈ primitive operations

Fig. 2. The Syntax of the unreachable Calculus

𝑒 →𝑠 𝑒 𝑒 Rs 𝑒

E ::= [] | op E 𝑒 | op 𝑣 E | (if E 𝑒 𝑒) | E 𝑒 | 𝑣 E | (begin E 𝑒)

v ::= c | λ𝑥 .𝑒 a ::= c | λ𝑥 .𝑒 | unreachable | error𝑘

(if false 𝑒1 𝑒2) Rs 𝑒2
S.1

𝑣 . false
(if 𝑣 𝑒1 𝑒2) Rs 𝑒1

S.2 ((λ𝑥 .𝑒) 𝑣) Rs 𝑒 [𝑣/𝑥]
S.3

(begin 𝑣 𝑒) Rs 𝑒
S.4

𝛿 (𝑜𝑝, 𝑣1, 𝑣2) ≡ 𝑐
(op 𝑣1 𝑣2) Rs 𝑐

S.5

𝑒 Rs 𝑒
′

E [𝑒] →𝑠 E [𝑒′]
S.6

E . []
E [unreachable] →𝑠 unreachable

S.7

E . []
E [error𝑘] →𝑠 error𝑘

S.8

𝑣1 . λ𝑥 .𝑒

(𝑣1 𝑣2) Rs error𝛽
S.9

(𝑜𝑝, 𝑣1, 𝑣2) ∉ dom(𝛿)
(op 𝑣1 𝑣2) Rs error𝛿

S.10

Fig. 3. The Standard Reduction of the unreachable Calculus

Surprisingly, the two examples in this section are sufficient to describe the full essence of the

compile-time treatment of unreachable: either compilers treat unreachable same as an error (first

example), or as the justification for simplifying the branches of conditionals (second example).

The following section gives a formal account of this insight with the unreachable calculus and its

compile-time reductions.

3 THE ESSENCE OF UNREACHABLE, FORMALLY
Our calculus extends the call-by-value 𝜆 calculus with a construct unreachable and unreachable-
specific term rewriting rules. Specifically, there are two groups of such rules: the first, which extends

the standard reduction of the call-by-value 𝜆 calculus, corresponds to the run time behavior of

unreachable; the second corresponds to legal compile-time transformations of unreachable.

3.1 The Unreachable Calculus and its Standard Reduction
Figure 2 presents the syntax of the unreachable calculus. Expressions consist of variables, constants,

𝜆 expressions, binary operators, conditionals, sequencing, and a family of different errors (indexed

by 𝑘). The only unique syntactic element is unreachable, which represents annotations that indicate
unreachable code like Racket’s unsafe-assert-unreachable.
Figure 3 describes the standard reduction of the calculus. It starts with a standard definition of

evaluation contexts that ensure a left-to-right order of evaluation. The 𝑣 non-terminal describes

values and 𝑎 final answers. The remainder of the figure defines the notions of reduction Rs, whose

, Vol. 1, No. 1, Article . Publication date: July 2024.

6 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

𝑒 →𝑐 𝑒𝑒 →𝑝 𝑒′

𝑒 →𝑐 𝑒
′

𝑒 →𝑢 𝑒′

𝑒 →𝑐 𝑒
′

C ::= [] | op C 𝑒 | op 𝑒 C | (ifC 𝑒 𝑒) | (if 𝑒 C 𝑒) | (if 𝑒 𝑒 C)
| C 𝑒 | 𝑒 C | λ𝑥 .C | (beginC 𝑒) | (begin 𝑒 C)

Fig. 4. The Compile-time Relation (and the definition of contexts)

compatible closure over evaluation contexts is the core of the standard reduction →𝑠 (“s” for

standard).

The notions of reduction of the calculus aremostly as expected. Similar to Racket, the unreachable
calculus employs “truthy” values in its conditionals. Hence, rule S.1 reduces an if expression to its

else-branch if the test position reduces to the value false. Any other value causes the conditional to

reduce to its then-branch (rule S.2); we use ≡ for syntactic equality, here and throughout the paper.

The Rs relation also includes 𝛽-value (rule S.3) and the usual sequencing rule that discards the first

sub-expression of a begin expression when it is a value (rule S.4). Rule S.5 defers to the 𝛿 function

to handle calls to primitive operators.

Rules S.9 and S.10 introduce errors. When a function application involves a value other than a 𝜆

expression in the function position, it reduces to a specific error with the label 𝛽 . Similarly, when a

primitive operator encounters arguments that do not make sense, it reduces to an error with the

label 𝛿 . We equip the calculus with a family of errors in order to account for the common linguistic

setting where there are multiple, semantically distinct types of side-effects besides non-termination.

Rules S.6 and S.8 form a typical definition of the standard reduction →𝑠 in a language with

errors. Rule S.6 lifts the notions of reduction to evaluation contexts. Rule S.8 discards the evaluation

context around an error to terminate the reduction.

Rule S.7 is the only rule that is specific to unreachable. It treats unreachable the same as an

error. The rule is based on Rust’s and Racket’s safe variants of unreachable that are supposed to

be used to check assumptions about code unreachability during debugging. After all, from the

perspective of a compiler, which is the perspective we examine in this paper, programs that evaluate

unreachable are plain wrong, and hence evaluating unreachable should result in some form of

error. Furthermore, as we discuss further in section 4, this run time behavior of unreachable plays
an important role in the compositional proof of the correctness of the compile-time tranformations

that the unreachable calculus captures.

3.2 Compile-Time Transformations as Reduction Relations
Figure 4 shows the relation→𝑐 (“c” for compile), which captures compile-time transformations due

to unreachable. This relation does not define a program transformation algorithm that a compiler

might use; instead it describes the set of valid basic transformations steps that a compiler is allowed

to perform. In other words, the relation is a specification of how a correct compiler may take

advantage of unreachable in order to simplify a program.

The →𝑐 relation is broken down into two pieces: →𝑝 (“p” for propagate), which captures

transformations of unreachable that are legal for a safe variant of unreachable, namely when

it behaves like an error, and→𝑢 (“u” for undefined), which captures the undefined behavior of

unreachable, namely how it interacts with conditional expressions. Figure 4 also gives the definition

of contexts, which are used in the definitions of both→𝑝 and→𝑢 .

Figure 5 presents→𝑝 . Rules P.1 to P.5 in figure 5 allow the compiler to propagate unreachable
downstream and upstream in a compound expression. Specifically, rules P.2 and P.4 enable the

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 7

𝑒 Rp 𝑒 𝑒 →𝑝 𝑒

Safe(𝑒)
(begin 𝑒 unreachable) Rp unreachable

P.1 (begin unreachable 𝑒) Rp unreachable
P.2

((λ𝑥 .unreachable) 𝑒) Rp (begin 𝑒 unreachable)
P.3

(unreachable 𝑒) Rp unreachable
P.4

(𝑒 unreachable) Rp (begin 𝑒 unreachable)
P.5

𝑒 Rp 𝑒′

C [𝑒] →𝑝 C [𝑒′]
Ctx.P

𝑒′ Rp 𝑒

C [𝑒] →𝑝 C [𝑒′]
CtxSym.P

Fig. 5. The Compile-time Unreachable Propagation Relations

𝑒 𝑅𝑢 𝑒 𝑒 →𝑢 𝑒

(if 𝑒𝑐 unreachable 𝑒𝑓) 𝑅𝑢 (begin 𝑒𝑐 𝑒𝑓)
U.1

(if 𝑒𝑐 𝑒𝑡 unreachable) 𝑅𝑢 (begin 𝑒𝑐 𝑒𝑡)
U.2

𝑒 Ru 𝑒′

C [𝑒] →𝑢 C [𝑒′]
Ctx.U

Fig. 6. The Compile-time Unreachable Undefined Behavior Relations

compiler to eliminate all expressions that follow unreachable. In essence, they capture the idea

that all computation downstream of unreachable code is also unreachable since computation never

progresses past unreachable. Similarly, the compiler can eliminate all expressions that precede

unreachable, as long as they are safe. Roughly, safe expressions are those that evaluate to a value,

i.e., they have no side-effects:

Definition 3.1 (safety). An expression 𝑒 is safe, written as Safe(𝑒), if for all closing substitutions

𝜗 , we have 𝜗 (𝑒) →∗𝑠 𝑣 .

Given this definition of safe expressions, rule P.1 embodies how a compiler benefits from the

combination of safe expressions and unreachable. It allows unreachable to “eat” safe expressions

upstream. After all, if the value-result of a safe expression is not used, then it can be discarded

without affecting the rest of the evaluation. However, rule P.1 is restricted and operates only on

begin expressions. To mitigate this restriction, rules P.3 and P.5 reshape expressions that contain

unreachable into begin expressions. Since a compiler should be able to perform transformations in

any context, the Ctx.P rule lifts all of the Rp rules to arbitrary contexts. Also, all of the transforma-

tions in Rp are legal in either direction, so CtxSym.P adds in the symmetric variants.

Figure 6 presents→𝑢 . Rules U.1 and U.2 in figure 6 define the essential notions of reduction and

they capture the undefined behavior of unreachable, matching the behavior of Racket’s unsafe-
assert-unreachable and Rust’s unreachable_unchecked. They specify how a compiler can

eliminate unreachable branches of conditionals. In other words, they are the formal counterparts of

the essential transformation steps that the Racket compiler performs in the examples from section 2.

The Ru axioms are sound in any context but, unlike→𝑝 , they are not sound in reverse. The

issue is that the 𝑅𝑝 notions of reductions eliminate immaterial pieces of an expression. However, a

symmetric→𝑢 reduction would inject arbitrary expressions back, possibly affecting the meaning

, Vol. 1, No. 1, Article . Publication date: July 2024.

8 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

of the expression. For instance, the compiler is only justified to transform (if 𝑒 3 unreachable) to
(begin 𝑒 3) because it assumes that this unreachable is indeed unreachable. Reversing the reduction,
though, introduces an unreachable for which the compiler knows nothing about. This asymmetry

is the source of the main challenge for proving the correctness of the compile-time reductions, and

we revisit the issue in section 4.

4 THE CORRECTNESS OF THE COMPILE-TIME REDUCTIONS
The simplicity of the compile-time reductions of the unreachable calculus comes with a price:

establishing their correctness is challenging. The root of the challenge is that unreachable is a kind

of undefined behavior, and this affects radically what the correctness of the reductions means. In

general, the ultimate correctness criterion of any program transformation is that it preserves the

meaning of programs. However, transformations that take advantage of undefined behavior, such as

those captured by→𝑐 , are supposed to preserve the meaning only of programs that do not exhibit

undefined behavior; the rest are outside the universe of programs a compiler should handle. In other

words, in a program that exhibits undefined behavior,→𝑐 has the liberty to alter the program’s

behavior. It is this liberty that impedes a compositional proof of correctness for the reductions.

Specifically, a compositional proof requires reasoning about whether a compiler preserves the

meaning of a piece of a program in isolation from the rest of the program, but undefined behavior

can only be determined for a whole program.

Fortunately, unreachable is a rather “well-behaved” undefined behavior. In particular, the small

set of intuitive compile-time reductions from section 3 have the property that they preserve the

meaning of any expression in any context under certain conditions. In turn, these conditions can

be described with a nonstandard, novel logical relation that hides the complexity of the proof of

correctness, keeping the syntax and the reductions of the calculus simple.

To get a sense of the correctness theorem we are aiming for, consider two complete programs 𝑒

and 𝑒′ such that 𝑒 →𝑐 𝑒
′
, i.e., where 𝑒′ is a program that the compiler is allowed to transform 𝑒 into.

Accordingly, if the evaluation of 𝑒 does not exhibit undefined behavior, we wish to ensure that 𝑒′

does not exhibit undefined behavior either and that 𝑒′ and 𝑒 either both diverge or both terminate

with the same result.

Translating this informal description into a formal statement requires making the notion of

undefined behavior precise, using the standard reduction relation:

Definition 4.1 (Undefined Behavior). The behavior of a closed expression 𝑒 is undefined, written

as Undef(𝑒), if 𝑒 →∗𝑠 unreachable.

which leads to the formal definition of compiler correctness:

Proposition 4.2. For all closed expressions 𝑒, 𝑒′ such that 𝑒 →∗𝑐 𝑒′, if ¬Undef(𝑒) then
• ¬Undef(𝑒′),
• ∀𝑐. (𝑒 →∗𝑠 𝑐 ⇐⇒ 𝑒′ →∗𝑠 𝑐),
• (∃𝑒1 . 𝑒 →∗𝑠 λ𝑥 .𝑒1) ⇐⇒ (∃𝑒′

1
. 𝑒′ →∗𝑠 λ𝑥 .𝑒′1), and

• ∀𝑘. (𝑒 →∗𝑠 error𝑘 ⇐⇒ 𝑒′ →∗𝑠 error𝑘).

Remark. Because both 𝑒 and 𝑒′ do not terminate with unreachable, the conclusion of proposition 4.2
implies that non-termination is preserved by→𝑐 ; 𝑒

′
diverges if and only if 𝑒 diverges.

The standard, logical-relations based approach to proving proposition 4.2 is to define a step-

indexed syntax-based binary relation that uses the standard reduction to reduce expressions to

values. This logical relation captures a notion of logical approximation such that two expressions

that approximate each other are contextually equivalent. Soundness of the logical relation with

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 9

𝑓src := λ𝑝𝑥 .(994 + (if (𝑝 𝑥) unreachable𝑥))
𝑓opt := λ𝑝𝑥 .(994 + (begin (𝑝 𝑥) 𝑥))
𝑓src (λ𝑦.false) 𝑛 →∗𝑠 994 + 𝑛 𝑓src (λ𝑦.true) 𝑛 →∗𝑠 unreachable
𝑓opt (λ𝑦.false) 𝑛 →∗𝑠 994 + 𝑛 𝑓opt (λ𝑦.true) 𝑛 →∗𝑠 994 + 𝑛

Fig. 7. Examples of Semantics-Altering Transformations Due to→𝑢 Reductions.

respect to contextual equivalence is established by showing its Fundamental Property, i.e., any

expression 𝑒 , if ¬Undef(𝑒), then 𝑒 is related to itself.

Once that is done, one would attempt to prove the compile-time reductions correct by showing

that the left-hand side and the right-hand side of each reduction rule logically approximate each

other or, more precisely, if ¬Undef(𝑒) and 𝑒 →𝑐 𝑒
′
, then 𝑒 is related to 𝑒′ and 𝑒′ is related to 𝑒 .

Unfortunately, this approach does not work because of the way Undef is defined. Consider the

situation where we know that some application expression 𝑒𝑠 𝑒
′
𝑠 that reduces via→𝑐 to 𝑒𝑐 𝑒

′
𝑐 and

we wish to show that 𝑒𝑐 𝑒
′
𝑐 is related to 𝑒𝑠 𝑒

′
𝑠 . In this case, we do not benefit from the ¬Undef(𝑒𝑠 𝑒′𝑠)

assumption. In essence, ¬Undef
(
𝑒𝑠 𝑒
′
𝑠

)
does not translate to facts about the pieces of 𝑒𝑠 𝑒

′
𝑠 that we

can map to the the pieces of 𝑒𝑐 𝑒
′
𝑐 to complete the proof inductively.

Functions 𝑓src, 𝑓opt in Figure 7 demonstrate the issue. Consider a pair of programs (𝑒, 𝑒′) :≡
(𝑓src (λ𝑦.𝑏) 𝑛, 𝑓opt (λ𝑦.𝑏) 𝑛). Given that 𝑒′ →∗𝑠 994 + 𝑛 for all 𝑛 and 𝑏, we would like to be able to

use the logical relation to deduce that 𝑒 →∗𝑠 994 + 𝑛 based entirely on the fact that (𝑓src, 𝑓opt) are
related. But as figure 7 demonstrates, 𝑒 exhibits undefined behavior when 𝑏 ≡ false. In fact, the

conditions under which 𝑒 exhibits undefined behavior become involved if we consider an arbitrary

argument 𝑝 that can exhibit undefined behavior:

𝑓src

(
λ𝑦.(if (𝑦 = 0) unreachable𝑏)

)
𝑛 →∗𝑠 994 + 𝑛 ⇐⇒ 𝑏 ≡ false ∧ 𝑛 . 0

𝑓opt (λ𝑦.(begin (𝑦 = 0) 𝑏)) 𝑛 →∗𝑠 994 + 𝑛
Put differently, the assumption ¬Undef(𝑒) has turned into an arbitrary constraint on the arguments

of the two functions, which is unclear how to incorporate in a logical relation.

The literature on logical relations suggests a way around the problem. One can approximate a

global property, such as Undef, with an inductively-defined approximate predicate. For example,

RustBelt (Jung et al. 2018) takes advantage of Rust’s type system and ensures the absence of

undefined behavior based on a semantic type judgment. In other words, such predicates aim to

break the whole-program property into compositional facts about the structural pieces of an

expression. Unfortunately, such an approach does not work here in a straightforward manner

because Undef simply is not compositional.

Instead of attempting to come up with some conservative inductive substitute for Undef, we

follow a different path that aims to keep the calculus as close to the way compiler writers use the

full-blown, non-compositional definition of undefined behavior when reasoning about compiler

transformations. We define forward- and backward-aproximation logical relations that, when

an expression does not exhibit undefined behavior, relate it with its transformed version after a

sequence of→𝑐 reductions, and vice versa. In fact, we define four such relations: two for→𝑢 and

two for→𝑝 reductions. Uncharacteristically, the forward and backward approximations for→𝑢

reductions do not mirror each other. This complicates showing their soundness but achieves the

goal of hiding all complexity away from the calculus.

Before delving into the details of the logical relations, we first introduce well-formedness judg-

ments for managing free variables since the fundamental properties for the logical relations assume

, Vol. 1, No. 1, Article . Publication date: July 2024.

10 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

𝑥 ∈ Δ
W.Var

Δ ⊩ 𝑥
Δ ⊩ 𝑒

Δ, 𝑥 ⊩ 𝑒
W.Lambda

Δ ⊩ λ𝑥 .𝑒

Δ′ ⊇ Δ
C.Id

Δ′ ⊩ [] : Δ
Δ′, 𝑥 ⊩ 𝐶 : Δ

C.Lambda

Δ′ ⊩ λ𝑥 .𝐶 : Δ
Δ′ ⊩ 𝐶 : Δ

Δ′ ⊩ 𝐶 : Δ Δ′ ⊩ 𝑒𝑡 Δ′ ⊩ 𝑒𝑓
C.IfC

Δ′ ⊩ (if𝐶 𝑒𝑡 𝑒𝑓) : Δ

Fig. 8.Well-formed Expressions and Contexts (Selected Rules)

open expressions. Figure 8 presents a few selected inference rules. The complete list of wellformed-

ness rules can be found on Appendix B. In the figure, Δ and Δ′ denote sets of variables. The

judgment Δ ⊩ 𝑒 holds if the set of free variables in the expression 𝑒 is a subset of Δ. The judgment

Δ′ ⊩ 𝐶 : Δ asserts that the context 𝐶 maps an expression that refers to variables in Δ into an

expression that refers to variables in Δ′. Put differently, if Δ ⊩ 𝑒 and Δ′ ⊩ 𝐶 : Δ then Δ′ ⊩ 𝐶 [𝑒].
The remainder of this section establishes the correctness of the→𝑐 reductions. The first two

subsections describe the forward and backward approximation logical relations for→𝑢 reductions

and their soundness. Then, the final subsection discusses the correctness of the→𝑝 reductions to

complete the proof of correctness of our compile-time reductions.

4.1 Forward Approximation of→𝑢 Reductions
As a first step to prove the correctness of→𝑢 reductions, we design the binary Forward-Approximation

Logical Relation. In detail, for all 𝑖 ≥ 0, we define the step-indexed logical relation for values and

closed expressions asV→𝑢

𝑖
and E→𝑢

𝑖
, respectively. In the definition, the notation 𝑒 →𝑗

𝑠 𝑒
′
means

that 𝑒 reduces to 𝑒′ using exactly 𝑗 steps under the standard reduction of the calculus.

Definition 4.3 (Forward-Approximation Logical Relation).

V→𝑢

𝑖
= {(λ𝑥 .𝑒1, λ𝑥 .𝑒2) | ∀𝑗 < 𝑖 . ∀𝑣1 𝑣2. (𝑣1, 𝑣2) ∈ V→𝑢

𝑗
, (𝑒1 [𝑣1/𝑥] , 𝑒2 [𝑣2/𝑥]) ∈ E→𝑢

𝑗
}

∪ {(𝑐, 𝑐)}
E→𝑢

𝑖
= {(𝑒1, 𝑒2) | ∀𝑗 < 𝑖 . ∀𝑎1. (¬Undef(𝑒1)) ∧ 𝑒1 →𝑗

𝑠 𝑎1 ⇒
∀𝑒′

2
. 𝑒2 →∗𝑢 𝑒′

2
⇒

∃𝑎2. 𝑒′2 →∗𝑠 𝑎2 ∧ ((𝑎1, 𝑎2) ∈ V
→𝑢

𝑖− 𝑗 ∨ ∃𝑘. 𝑎1 ≡ 𝑎2 ≡ error𝑘)}

Remark. The definition ofV→𝑢

𝑖
usesV→𝑢

𝑗
and E→𝑢

𝑗
for 𝑗 that is strictly less than 𝑖 , and that the

definition of E→𝑢

𝑖
usesV→𝑢

𝑖− 𝑗 for 0 ≤ 𝑗 < 𝑖 . Thus the mutually-referential relations are well-founded.

The value relationV→𝑢

𝑖
is standard. Two values (𝑣1, 𝑣2) are related byV→𝑢

𝑖
at step 𝑖 ≥ 0 if 𝑣1

and 𝑣2 are the same constant 𝑐 , or if they are both lambdas and, for all 𝑗 < 𝑖 , applying arguments

that are related at 𝑗 steps produces expressions related at 𝑗 steps.

The expression relation E→𝑢

𝑖
, in contrast, is not standard. It is crafted to resemble one of the

directions of proposition 4.2, but specialized to→𝑢 reductions. Specifically, under the assumption

that ¬Undef(𝑒1) and 𝑒1 evaluates to an answer after 𝑗 < 𝑖 standard reduction steps, 𝑒1 is related to

𝑒2 at step index 𝑖 if all expressions 𝑒′
2
that are results of simplifying 𝑒2 with→𝑢 reductions evaluate

to answers that are related to 𝑒1’s answer. Two answers are related if they are the same error, or if

they are related values at step index 𝑖 − 𝑗 .

In other words, the expression approximation aims to establish directly that after some→𝑢

reductions the resulting expression approximates the meaning of the initial one. For that reason,

the expression approximation has two built-in assumptions that are not found in standard logical

relations: ¬Undef(𝑒1) and 𝑒2 →∗𝑢 𝑒′
2
. As discussed above, in a standard logical relation the first

would be an assumption for its Fundamental Property, while the second would be an assumption

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 11

of a separate theorem that uses the soundness of the logical relation to prove that→𝑢 reductions

are correct.

Equipped with these relations, we are ready to prove the Fundamental Property of E→𝑢
. As

usual, it states that any open expression 𝑒 is related to itself:

Lemma 4.4 (Fundamental Property of E→𝑢
). For all 𝑒, 𝑖 ≥ 0, Δ and 𝛾 , if Δ ⊩ 𝑒 and 𝛾 ∈ G→𝑢

𝑖
[Δ]

then (𝛾1 (𝑒), 𝛾2 (𝑒)) ∈ E→𝑢

𝑖
.

Remark. G→𝑢

𝑖
is the standard relation on pairs of substitutions that map the same identifier to

values related byV→𝑢

𝑖
. The complete definition can be found on page 4 of Appendix E.

Proof Sketch. We prove the Fundamental Property by induction on 𝑒 . In most cases, the trans-

formation 𝛾2 (𝑒) →∗𝑢 𝑒′
2
does not change the outermost shape of 𝛾2 (𝑒) and hence the proofs are

straightforward. When 𝑒 :≡ (if 𝑒𝑐 unreachable 𝑒𝑓), the branch-elimination transformation may

reduce 𝛾2 ((if 𝑒𝑐 unreachable 𝑒𝑓)) to (begin𝛾2 (𝑒𝑐) 𝛾2 (𝑒𝑓)).2 In this case, we need to prove that the

latter reduces to a related answer based on the assumption that 𝛾1 ((if 𝑒𝑐 unreachable 𝑒𝑓)) →𝑗
𝑠 𝑎1

and 𝑎1 . unreachable. As it turns out, this variation poses no issue to the proof because the

sub-expressions reduce in a related manner by induction. The complete proof can be found on page

6 of Appendix E. □

A consequence of the Fundamental Property is the forward direction of proposition 4.2 specialized

to→𝑢 : when 𝑒 does not exhibit undefined behavior, for any transformation 𝑒 →∗𝑢 𝑒′, if 𝑒 terminates

then 𝑒′ terminates with a related answer.

Corollary 4.5. Assume Δ ⊩ 𝑒 and 𝑒 →∗𝑢 𝑒′. For all𝐶 , 𝑎, if ⊩ 𝐶 : Δ,¬Undef(𝐶 [𝑒]) and𝐶 [𝑒] →∗𝑠 𝑎
then there exists 𝑎′ and 𝑗 ≥ 0 such that 𝐶 [𝑒′] →∗𝑠 𝑎′ and either (𝑎, 𝑎′) ∈ V

→𝑢

𝑗
or 𝑎 ≡ 𝑎′ ≡ error𝑘 .

Proof Sketch. Assume 𝐶 [𝑒] →𝑖
𝑠 𝑎. Because→𝑢 allows us to apply the transformation in any

context, composing 𝐶 with each of the expressions in 𝑒 →∗𝑢 𝑒′ yields 𝐶 [𝑒] →∗𝑢 𝐶 [𝑒′]. Now, the
Fundamental Property of E→𝑢

gives (𝐶 [𝑒],𝐶 [𝑒]) ∈ E→𝑢

𝑖+1 . By ¬Undef(𝐶 [𝑒]), 𝐶 [𝑒] →𝑖
𝑠 𝑎 and

𝐶 [𝑒] →∗𝑢 𝐶 [𝑒′], we conclude that there exists 𝑎2 such that 𝐶 [𝑒′] →∗𝑠 𝑎2 and either (𝑎, 𝑎2) ∈ V→𝑢

1

or 𝑎 ≡ 𝑎2 ≡ error𝑘 . The complete proof can be found on page 4 of Appendix E. □

4.2 Backward Approximation of→𝑢 Reductions
Having established the forward direction of proposition 4.2 for →𝑢 , we turn to the backward

one. That is, we would like to show that the behavior of the original expression approximates the

behavior of the transformed expression, assuming that the original expression does not exhibit

undefined behavior: if 𝑒 →∗𝑢 𝑒′ and ¬Undef(𝑒) then
• ¬Undef(𝑒′),
• ∀𝑐. (𝑒 →∗𝑠 𝑐 ⇐= 𝑒′ →∗𝑠 𝑐),
• (∃𝑒1. 𝑒 →∗𝑠 λ𝑥 .𝑒1) ⇐= (∃𝑒′

1
. 𝑒′ →∗𝑠 λ𝑥 .𝑒′1), and

• ∀𝑘. (𝑒 →∗𝑠 error𝑘 ⇐= 𝑒′ →∗𝑠 error𝑘).
However, as discussed at the beginning of this section, the ¬Undef(𝑒) assumption complicates

designing a backward-approximation logical relation. In an ideal world, we would like to proceed

by induction on 𝑒′, as our assumption tells us a lot about how it evaluates. Unfortunately, our

assumption also includes ¬Undef(𝑒), which is not helpful when we are working by induction on

𝑒′.

2
The actual proof needs to generalize 𝛾2 (𝑒𝑐) and 𝛾2 (𝑒𝑓) further. See proposition 4.8.

, Vol. 1, No. 1, Article . Publication date: July 2024.

12 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

As it turns out, the treatment of unreachable by the standard reduction of our calculus as an

error offers a way forward. While ¬Undef(𝑒) is not compositional, Undef(𝑒) is. In detail, if we

know whether the sub-expressions of Undef(𝑒) evaluate to unreachable, we can decide whether

𝑒 →∗𝑠 unreachable based on the structure of 𝑒 . Accordingly, while working by induction on 𝑒′

in the proof, it is easier to establish an additional proof goal Undef(𝑒) than it is to discharge

the premise that the sub-expressions of 𝑒 do not evaluate to unreachable (when applying the

inductive hypothesis). Therefore, we reshape the statement of backward approximation: we omit

conjunct ¬Undef(𝑒) from the premise and include Undef(𝑒) as another disjunct in the conclusion

of backward approximation. This gives us an equivalent proposition, but that is conducive to proof

by induction.

To prove the reshaped property, we construct a logical relation that guarantees the original

expression produces a related answer to that of the transformed expression, but also permits the

original expression to exhibit undefined behavior, just as we did for the forward logical relation.

Definition 4.6 (Backward-Approximation Logical Relation).

V𝑢←
𝑖

= {(𝜆𝑥.𝑒1, 𝜆𝑥 .𝑒2) | ∀𝑗 < 𝑖 . ∀𝑣1 𝑣2 . (𝑣1, 𝑣2) ∈ V𝑢←
𝑗
⇒ (𝑒1 [𝑣1/𝑥] , 𝑒2 [𝑣2/𝑥]) ∈ E𝑢←

𝑗
}

∪ {(𝑐, 𝑐)}
E𝑢←
𝑖

= {(𝑒1, 𝑒2) | ∀𝑗 < 𝑖 . ∀𝑒′
2
, 𝑎2. 𝑒2 →∗𝑢 𝑒′

2
∧ 𝑒′

2
→𝑗

𝑠 𝑎2 ⇒
Undef(𝑒1) ∨
(∃𝑎1 . 𝑒1 →∗𝑠 𝑎1 ∧ ((𝑎1, 𝑎2) ∈ V𝑢←

𝑖− 𝑗 ∨ ∃𝑘. 𝑎1 ≡ 𝑎2 ≡ error𝑘))}

Same as for the forward-approximation logical relation, the value relation V𝑢←
𝑖

is standard,

but the expression relation E𝑢←
𝑖

is not. For any pair of related expressions (𝑒1, 𝑒2), the antecedent
of E𝑢←

𝑖
is that 𝑒2 →∗𝑢 𝑒′

2
and 𝑒′

2
terminates with the answer 𝑎2 after 𝑗 standard reduction steps.

The consequent then asserts that either 𝑒1 exhibits undefined behavior, or 𝑒1 also terminates with

a related answer 𝑎1. In particular, E𝑢←
𝑖

relates 𝑎1 and 𝑎2 if they are related values or the same

error. Consequently, if 𝑎2 ≡ unreachable, i.e. 𝑒′
2
triggers undefined behavior, 𝑒1 must end up with

undefined behavior as unreachable is not related to any other answers.

As with E→𝑢
, we prove the Fundamental Property for E𝑢←

.

Lemma 4.7 (Fundamental Property for E𝑢←
). For all 𝑒, 𝑖 ≥ 0, Δ and 𝛾 , if Δ ⊩ 𝑒 and 𝛾 ∈

G𝑢←
𝑖
[Δ] then (𝛾1 (𝑒), 𝛾2 (𝑒)) ∈ E𝑢←

𝑖
.

Remark. Similar to the Fundamental Property for the forward logical approximation, G𝑢←
𝑖
[Δ] is

the set of closing substitutions mapping 𝑥 ∈ Δ to a pair of values related byV𝑢←
𝑖

.

Proof Sketch. By induction on 𝑒 . Similar to the Fundamental Property of E→𝑢
, we discuss

the case of conditional expressions. The proofs for the other constructs follow from routine case

analysis and the inductive hypothesis. Let 𝑒 :≡ (if 𝑒𝑐 𝑒𝑡 𝑒𝑓), 𝑖 ≥ 0 and 𝛾 ∈ G𝑢←
𝑖
[Δ] be given. We

need to prove that

∀𝑗 < 𝑖 . ∀𝑒′
2
𝑎2. (if𝛾2 (𝑒𝑐) 𝛾2 (𝑒𝑡) 𝛾2 (𝑒𝑓))→∗𝑢 𝑒′

2
∧ 𝑒′

2
→𝑗

𝑠 𝑎2 ⇒
Undef(if𝛾1 (𝑒𝑐) 𝛾1 (𝑒𝑡) 𝛾1 (𝑒𝑓)) ∨
(∃𝑎1. (if𝛾1 (𝑒𝑐) 𝛾1 (𝑒𝑡) 𝛾1 (𝑒𝑓))→∗𝑠 𝑎1 ∧ ((𝑎1, 𝑎2) ∈ V𝑢←

𝑖− 𝑗 ∨ ∃𝑘. 𝑎1 ≡ 𝑎2 ≡ error𝑘))

By proposition 4.8, (if𝛾2 (𝑒𝑐) 𝛾2 (𝑒𝑡) 𝛾2 (𝑒𝑓))→∗𝑢 𝑒′
2
can be decomposed into three reduction sequences

𝛾2 (𝑒𝑐) →∗𝑢 𝑒′𝑐 , 𝛾2 (𝑒𝑡) →∗𝑢 𝑒′𝑡 and 𝛾2 (𝑒𝑓) →∗𝑢 𝑒′
𝑓
such that either (i) 𝑒′

2
≡ (if 𝑒′𝑐 𝑒

′
𝑡 𝑒
′
𝑓
), (ii) 𝑒′

2
≡

(begin 𝑒′𝑐 𝑒
′
𝑡) and 𝑒′

𝑓
≡ unreachable, or (iii) 𝑒′

2
≡ (begin 𝑒′𝑐 𝑒

′
𝑓
) and 𝑒′𝑡 ≡ unreachable. Among all

situations, we focus on case (iii) since it contains an application of→𝑢 to the whole expression.

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 13

Now, if 𝑎2 equals some value 𝑣 ′
𝑓
, the evaluation (begin 𝑒′𝑐 𝑒

′
𝑓
)→𝑗

𝑠 𝑎2 must have the pattern

(begin 𝑒′𝑐 𝑒
′
𝑓
)→𝑗𝑐

𝑠 (begin 𝑣 ′𝑐 𝑒
′
𝑓
)→𝑠 𝑒

′
𝑓
→𝑗𝑓

𝑠 𝑣 ′
𝑓
.

Therefore 𝑒′𝑐 →
𝑗𝑐
𝑠 𝑣 ′𝑐 and 𝑒

′
𝑓
→

𝑗 ′
𝑓

𝑠 𝑣 ′
𝑓
for some steps 𝑗 ′𝑐 and 𝑗 ′

𝑓
. Together with the transformations

𝛾2 (𝑒𝑐) →∗𝑢 𝑒′𝑐 and 𝛾2 (𝑒𝑓) →∗𝑢 𝑒′
𝑓
, the induction hypothesis yields

Undef(𝛾1 (𝑒𝑐)) ∨ (∃𝑎𝑐 . 𝛾1 (𝑒𝑐) →∗𝑠 𝑎𝑐 ∧ ((𝑎𝑐 , 𝑣 ′𝑐) ∈ V𝑢←
𝑖− 𝑗𝑐 ∨ ∃𝑘. 𝑎𝑐 ≡ 𝑣 ′𝑐 ≡ error𝑘))

Undef

(
𝛾1 (𝑒𝑓)

)
∨ (∃𝑎𝑓 . 𝛾1 (𝑒𝑓) →∗𝑠 𝑎𝑓 ∧ ((𝑎𝑓 , 𝑣 ′𝑓) ∈ V

𝑢←
𝑖− 𝑗𝑐−1− 𝑗𝑓 ∨ ∃𝑘. 𝑎𝑓 ≡ 𝑣 ′

𝑓
≡ error𝑘)) (★)

Because 𝑣 ′𝑐 (𝑣 ′
𝑓
) is a value, the error𝑘 case in (★) cannot happen. The answer 𝑎𝑐 (𝑎𝑓) accord-

ingly is related to 𝑣 ′𝑐 (𝑣 ′
𝑓
). As a result, if Undef(𝛾1 (𝑒𝑐)) or Undef

(
𝛾1 (𝑒𝑓)

)
, i.e. a subexpression

triggers undefined behavior, the treatment of unreachable by the standard reduction guaran-

tees that Undef(if𝛾1 (𝑒𝑐) 𝛾1 (𝑒𝑡) 𝛾1 (𝑒𝑓)). Otherwise, we have 𝛾1 (𝑒𝑐) →∗𝑠 𝑎𝑐 ∧ (𝑎𝑐 , 𝑣 ′𝑐) ∈ V𝑢←
𝑖− 𝑗𝑐 and

𝛾1 (𝑒𝑓) →∗𝑠 𝑎𝑓 ∧ (𝑎𝑓 , 𝑣 ′𝑓) ∈ V
𝑢←
𝑖− 𝑗𝑐−1− 𝑗𝑓 . The evaluation of (if𝛾1 (𝑒𝑐) 𝛾1 (𝑒𝑡) 𝛾1 (𝑒𝑓)) thus depends on

whether 𝑎𝑐 is false or not.
When 𝑎𝑐 is false, (if𝛾1 (𝑒𝑐) 𝛾1 (𝑒𝑡) 𝛾1 (𝑒𝑓)) reduces 𝛾1 (𝑒𝑓). Hence the fact (𝑎𝑓 , 𝑣 ′𝑓) ∈ V

𝑢←
𝑖− 𝑗𝑐−1− 𝑗𝑓

entails our desired conclusion. When 𝑎𝑐 is truthy, (if𝛾1 (𝑒𝑐) 𝛾1 (𝑒𝑡) 𝛾1 (𝑒𝑓)) reduces to 𝛾1 (𝑒𝑡). Since
𝛾2 (𝑒𝑡) →∗𝑢 𝑒′𝑡 and 𝑒′𝑡 ≡ unreachable in case (iii), 𝑒𝑡 itself must be unreachable. Hence, the full

expression (if𝛾1 (𝑒𝑐) 𝛾1 (𝑒𝑡) 𝛾1 (𝑒𝑓)) terminates with unreachable. Nevertheless, exhibiting undefined
behavior is precisely one of the expected behaviors.

At this point, we have covered the sub-case 𝑎2 ≡ 𝑣 ′
𝑓
of case (iii). The sub-case where 𝑎2 is

unreachable is proved with the same strategy. The complete proof can be found on page 5 of

Appendix F. □

The proof of the Fundamental Property for E𝑢←
relies on the following property of sequences of

→𝑢 reductions:

Proposition 4.8. If (if 𝑒𝑐 𝑒𝑡 𝑒𝑓) →∗𝑢 𝑒′, there exists three transformation sequences 𝑒𝑐 →∗𝑢 𝑒′𝑐 ,
𝑒𝑡 →∗𝑢 𝑒′𝑡 and 𝑒𝑓 →∗𝑢 𝑒′

𝑓
such that one of the following holds:

• 𝑒′ ≡ (if 𝑒′𝑐 𝑒
′
𝑡 𝑒
′
𝑓
)

• 𝑒′ ≡ (begin 𝑒′𝑐 𝑒
′
𝑡) and 𝑒

′
𝑓
≡ unreachable, or

• 𝑒′ ≡ (begin 𝑒′𝑐 𝑒
′
𝑓
) and 𝑒′𝑡 ≡ unreachable

Proof Sketch. By induction on (if 𝑒𝑐 𝑒𝑡 𝑒𝑓)→∗𝑢 𝑒′. The complete proof can be found on page 12

of Appendix C. □

Analogously to the Fundamental Property for the forward-approximation relation, a corollary

of the Fundamental Property for E𝑢←
is the backward direction of proposition 4.2 specialized to

→𝑢 : either the transformed program and the original program evaluate to related answers, or the

original program exhibits undefined behavior:

Corollary 4.9. Assume that Δ ⊩ 𝑒 and 𝑒 →∗𝑢 𝑒′. For all𝐶 and 𝑎′, if ⊩ 𝐶 : Δ and𝐶 [𝑒′] →∗𝑠 𝑎′ then
either Undef(𝐶 [𝑒]) or there exists 𝑎 and 𝑗 ≥ 0 such that 𝐶 [𝑒] →∗𝑠 𝑎 and either (𝑎, 𝑎′) ∈ V→𝑢

𝑗
or 𝑎 ≡

𝑎′ ≡ error𝑘 .

Remark. In corollary 4.9, 𝑎′ can be unreachable in which case the conclusion is Undef(𝐶 [𝑒]).

, Vol. 1, No. 1, Article . Publication date: July 2024.

14 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

Proof Sketch. Assume 𝐶 [𝑒′] →𝑖
𝑠 𝑎
′
. Similar to corollary 4.5, we compose 𝐶 with each expres-

sion in 𝑒 →∗𝑢 𝑒′ to obtain 𝐶 [𝑒] →∗𝑢 𝐶 [𝑒′]. By the Fundamental Property for E𝑢←
, (𝐶 [𝑒],𝐶 [𝑒]) ∈

E𝑢←
𝑖+1 . The fact that 𝐶 [𝑒] →∗𝑢 𝐶 [𝑒′] and 𝐶 [𝑒′] →𝑖

𝑠 𝑎′ yields Undef(𝐶 [𝑒]) or that there exists 𝑎1
such that 𝐶 [𝑒] →∗𝑠 𝑎1 and either (𝑎1, 𝑎′) ∈ V𝑢←

1
or 𝑎1 ≡ 𝑎′ ≡ error𝑘 . The complete proof can be

found on page 2 of Appendix F. □

4.3 Completing the Proof of Correctness of the Compile-Time Reductions
The fundamental properties of the two above logical relations entail only one piece of the correctness

of our compile-time reduction relation. After all,→𝑐 includes→𝑝 as well as→𝑢 .

Fortunately, and unlike the challenging→𝑢 reductions,→𝑝 reductions preserve the meaning of

expressions in all contexts without any conditions. Hence, the proof of proposition 4.2 specialized

to→𝑝 , i.e. the correctness of the→𝑝 reductions, can be established the standard way we discuss

at the beginning of this section — with a standard logical relation. Indeed, the correctness of the

→𝑝 reductions is a simple collorary of lemma 5.3, which we discuss in Section 5 that introduces

extensions of the compile-time reduction with useful, semantics-preserving but unrelated-to-

unreachable transformations. To avoid repetition, we omit further discussion herein. The interested

reader can also find the the full formal details in page 28 of Appendix G and Appendix H.

With the correctness of→𝑢 and→𝑝 in hand, we proceed to prove the correctness of→𝑐 . In

fact, we establish a a generalized compiler correctness theorem that adapts proposition 4.2 to open

expressions, formalizing the intuitive idea that compiler transformations preserve the semantics of

program pieces. In keep with the nature of undefined behavior, the theorem only holds for contexts

𝐶 that close an expression 𝑒 so that ¬Undef(𝐶 [𝑒]):

Theorem 4.10 (Generalized Compiler Correctness).

Assume that Δ ⊩ 𝑒 and 𝑒 →∗𝑐 𝑒′. For all 𝐶 such that ⊩ 𝐶 : Δ, if ¬Undef(𝐶 [𝑒]) we have
• ¬Undef(𝐶 [𝑒′]),
• ∀𝑐. 𝐶 [𝑒] →∗𝑠 𝑐 ⇐⇒ 𝐶 [𝑒′] →∗𝑠 𝑐 ,
• (∃𝑒1 .𝐶 [𝑒] →∗𝑠 λ𝑥 .𝑒1) ⇐⇒ (∃𝑒′

1
.𝐶 [𝑒′] →∗𝑠 λ𝑥 .𝑒′1), and

• ∀𝑘. 𝐶 [𝑒] →∗𝑠 error𝑘 ⇐⇒ 𝐶 [𝑒′] →∗𝑠 error𝑘

Proof Sketch. By induction on 𝑒 →∗𝑐 𝑒′ and application of corollary 4.5 and corollary 4.9 for

each→𝑢 reduction. For→𝑝 reductions, we apply lemma 5.3. The complete proof can be found on

Appendix J. □

5 EXTENDING THE CALCULUS WITH ADDITIONAL RULES
The→𝑢 and→𝑝 reductions capture the essence of unreachable but they are not sufficient to describe

realistic compile-time transformations. Production compilers combine common transformations

such as Common Subexpression Elimination, Loop Unrolling, and Strength Reduction with the

unreachable-related transformations; the transformations work in tandem, as one transformation

may open up additional optimization opportunities for another. For this reason, we add extra rules

to the unreachable calculus that enhance its power to capture realistic program transformations.

In fact, any extra rule is compatible with the calculus under one requirement: the new rule must be

sound with respect to contextual equivalence as induced by the standard reduction of the calculus.

As an example of extra compile-time rules, rules M.1 to M.5 in Figure 9 make available at compile-

time the standard notions of reduction of the calculus from Figure 3. In essence, they allow the

compiler to partially “compute” forward and backward in any sub-expression of a program:

• M.1 corresponds to the reverse notion of reduction S.2. It enables a compiler to “reverse the

evaluation” of conditional expressions whose test is known to be not false. The else-branch

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 15

𝑒 →𝑐 𝑒 Δ ⊢ 𝑒 Rm 𝑒 𝑒 →𝑚 𝑒

𝑒 →𝑚 𝑒′

𝑒 →𝑐 𝑒
′

Δ ⊩ 𝑒𝑡 Δ ⊩ 𝑒𝑓 𝑣 . false

Δ ⊢ 𝑒𝑡 Rm (if 𝑣 𝑒𝑡 𝑒𝑓)
M.1

Δ ⊩ 𝑒𝑓 Δ ⊩ 𝑒𝑡

Δ ⊢ 𝑒𝑓 Rm (if false 𝑒𝑡 𝑒𝑓)
M.2

Δ, 𝑥 ⊩ 𝑒 Δ ⊩ 𝑒′ Safe(𝑒′)
Δ ⊢ 𝑒 [𝑒′/𝑥] Rm (λ𝑥 .𝑒) 𝑒′

M.3

Δ ⊩ 𝑒1 Δ ⊩ 𝑒2 Safe(𝑒1)
Δ ⊢ (begin 𝑒1 𝑒2) Rm 𝑒2

M.4

𝛿 (𝑜𝑝, 𝑣1, 𝑣2) = 𝑐

Δ ⊢ 𝑐 Rm (op 𝑣1 𝑣2)
M.5

· ⊩ 𝐶 : Δ Δ ⊢ 𝑒 Rm 𝑒′

C [𝑒] →𝑚 C [𝑒′]
Ctx.M

· ⊩ 𝐶 : Δ Δ ⊢ 𝑒′ Rm 𝑒

C [𝑒] →𝑚 C [𝑒′]
CtxSym.M

Fig. 9. Compile-Time Transformations Based on Standard Reduction

of the produced conditional expression can be any arbitrary expression as long as it doesn’t

introduce free variables not accounted for by Δ — even expressions that contain unreachable.
• M.2 is the reverse of notion of reduction S.1, and similarly to M.1 produces conditional

expression that in this case have a test that is equal to false.

• M.3 is a generalized reversed beta reduction. Specifically, it allows any safe sub-expression to

be lifted out of an expression, which, in the compiler realm, is useful for modeling transfor-

mations such as Common Subexpression Elimination.

• M.4 corresponds to the notion of reduction S.4. It permits the compiler to drop all expres-

sions in a sequence of expressions except the last one as long as these dropped expressions

evaluate to a value. This rule together with rules U.1 and U.2 plays an important rule for the

simplification of the examples in Section 2.

• M.5 is the reverse of notion of reduction S.5, which allows for the backward “evaluation” of

arithmetic expressions.

• Ctx.M and CtxSym.M define the symmetric and compatible closure (over contexts) of the

above rules. Hence, they allow compilers to use all these rules forward and backward, and in

any part of a program.

In addition to the forward and backward compile-time partial evaluation of expressions, compilers

come with a large number of transformation rules that move the sub-expressions of a program.

Figure 10 contains a collection of such rules.

• M.6 and M.7 enable the compiler to move computation from the context of a sequence and a

conditional expression respectively to tail position. The E
+
represents a generalized version

of evaluation context which admits variables.

• M.8 allows the compiler to optimize conditional expressions whose test is a variable (say

𝑥). If the else-branch of the expression is ever evaluated, then it must be the case that 𝑥 is

false. Note the same is not correct for the then-branch and true due to the truthiness of the

language.

• M.9 permits the compiler to collapse certain conditional expressions whose test is a trivial

conditional statement as well. This is helpful for modeling optimizations for languages with

conditional select statements such as the LLVM IR.

, Vol. 1, No. 1, Article . Publication date: July 2024.

16 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

Δ ⊩ C : Δ Δ ⊢ 𝑒 Rm 𝑒 Δ ⊩ 𝑒
v
+
::= x | v

E
+
::= [] | op E+ 𝑒 | op 𝑣+ E+ | (if E+ 𝑒 𝑒) | E+ 𝑒 | 𝑣+ E+ | (begin E+ 𝑒)

Δ ⊩ E+ : Δ Δ ⊩ 𝑒𝑓 Δ ⊩ 𝑒𝑠

Δ ⊢ E+
[
(begin 𝑒𝑓 𝑒𝑠)

]
Rm (begin 𝑒𝑓 (E+ [𝑒𝑠]))

M.6

Δ ⊩ E+ : Δ Δ ⊩ 𝑒𝑐 Δ ⊩ 𝑒𝑓 Δ ⊩ 𝑒𝑡

Δ ⊢ E+
[
(if 𝑒𝑐 𝑒𝑓 𝑒𝑠)

]
Rm (if 𝑒𝑐 (E+ [𝑒𝑓]) (E+ [𝑒𝑠]))

M.7

Δ, 𝑥 ⊩ 𝑒𝑡 Δ, 𝑥 ⊩ 𝑒𝑓

Δ ⊢ (if𝑥 𝑒𝑡 𝑒𝑓) Rm (if𝑥 𝑒𝑡 (𝑒𝑓 [false/𝑥]))
M.8

Δ ⊩ 𝑒𝑐 Δ ⊩ 𝑒𝑡 Δ ⊩ 𝑒𝑓

Δ ⊢ (if (if 𝑒𝑐 true false) 𝑒𝑡 𝑒𝑓) Rm (if 𝑒𝑐 𝑒𝑡 𝑒𝑓)
M.9

Δ ⊩ 𝑒1 Δ ⊩ 𝑒2 Δ ⊩ 𝑒3

Δ ⊢ (if (𝑥 =𝑛1) 𝑒1 (if (𝑥 =𝑛2) 𝑒1 𝑒3)) Rm (if (𝑥 =𝑛2) 𝑒1 (if (𝑥 =𝑛1) 𝑒1 𝑒3))
M.10

Fig. 10. Additional 𝑅𝑚 rules

• M.10 empowers the compiler to change the order of equality checks in nested conditional

expressions when the branches involved are syntactically identical. Such rearrangements of

checks can model the behavior of transformations of switch statements in the LLVM IR.

To establish the correctness of→𝑚 , we demonstrate that each of its rules preserves contextual

equivalence (as induced by the standard reduction of the calculus). We do so following the standard

recipe that we discuss at the beginning of Section 4: we define a standard binary step-indexed

logical relation for the calculus, we prove it sound with respect to contextual approximation, and

then we use the logical relation to prove correct each rule of→𝑚 . Specifically, for all 𝑖 ≥ 0, we

define value and expression logical approximation at step 𝑖 to beV→𝑠

𝑖
and E→𝑠

𝑖
.

Definition 5.1 (Standard Logical Relation).

V→𝑠

𝑖
= {(𝜆𝑥 .𝑒1, 𝜆𝑥 .𝑒2) | ∀𝑗 < 𝑖 . ∀𝑣1 𝑣2. (𝑣1, 𝑣2) ∈ V→𝑠

𝑗
⇒ (𝑒1 [𝑣1/𝑥] , 𝑒2 [𝑣2/𝑥]) ∈ E→𝑠

𝑗
}

∪ {(𝑐, 𝑐)}
E→𝑠

𝑖
=

{
(𝑒1, 𝑒2)

��� ∀𝑗 < 𝑖 . ∀𝑎1. 𝑒1 →𝑗
𝑠 𝑎1 ⇒

∃𝑎2 . 𝑒2 →∗𝑠 𝑎2 ∧(
(𝑎1, 𝑎2) ∈ V→𝑠

𝑖− 𝑗 ∨ (𝑎1 ≡ 𝑎2 ≡ unreachable) ∨ (∃𝑘. 𝑎1 ≡ 𝑎2 ≡ error𝑘)
) }

The relationsV→𝑠
and E→𝑠

are straight-forward adaptations of standard binary step-indexed

logical relations for proving contextual equivalences in functional languages. According toV→𝑠
,

base values, errors, and unreachable are only related to themselves. Two functions are related only

when, given related arguments, they produce related results. E→𝑠
relates closed expressions 𝑒 , 𝑒′

as long as 𝑒 approximates 𝑒′ after at most 𝑖 steps under the standard reduction of the calculus. As

usual, the step indices guarantee that the relations are well-founded.

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 17

E→𝑠
relates only closed expressions for a given number of steps. To prove contextual approxi-

mation for a pair of expressions, a stronger statement that generalizes over open expressions and

arbitrary number of steps is necessary. Hence, we define logical approximation Δ ⊢ 𝑒1 ⪯ 𝑒2:

Definition 5.2 (Logical Approximation). For all Δ, 𝑒1, 𝑒2 such that Δ ⊩ 𝑒1 and Δ ⊩ 𝑒2, we say that

𝑒1 logically approximates 𝑒2, Δ ⊢ 𝑒1 ⪯ 𝑒2, iff

∀𝑖 ≥ 0. ∀𝛾 ∈ G→𝑠

𝑖
[Δ] . (𝛾1 (𝑒1), 𝛾2 (𝑒2)) ∈ E→𝑠

𝑖
.

where G→𝑠

𝑖
[Δ] is as in Section 4 except that it draws pairs of values fromV→𝑠

.

Due to the compatibility lemmas of the standard logical relation, logical approximation is sound

with respect to contextual approximation. The complete proof is on page 28 of Appendix G.

Lemma 5.3 (Soundness). If Δ ⊢ 𝑒 ⪯ 𝑒′ and · ⊩ 𝐶 : Δ then

• Undef(𝐶 [𝑒]) =⇒ Undef(𝐶 [𝑒′]),
• ∀𝑐. 𝐶 [𝑒] →∗𝑠 𝑐 =⇒ 𝐶 [𝑒′] →∗𝑠 𝑐 ,
• (∃𝑒1 . 𝐶 [𝑒] →∗𝑠 λ𝑥 .𝑒1) =⇒ (∃𝑒′

1
. 𝐶 [𝑒′] →∗𝑠 λ𝑥 .𝑒′1), and

• ∀𝑘. 𝐶 [𝑒] →∗𝑠 error𝑘 =⇒ 𝐶 [𝑒′] →∗𝑠 error𝑘 .

Finally, given the soundness of the standard logical relation, we prove that the→𝑚 reductions are

correct by demonstrating that all expressions before and after each reduction logically approximate

each other. For instance, to prove M.1 is correct, we show:

• If 𝑣 . false, Δ ⊩ 𝑒𝑡 and Δ ⊩ 𝑒𝑓 then Δ ⊢ 𝑒𝑡 ⪯ (if 𝑣 𝑒𝑡 𝑒𝑓)
• If 𝑣 . false, Δ ⊩ 𝑒𝑡 and Δ ⊩ 𝑒𝑓 then Δ ⊢ (if 𝑣 𝑒𝑡 𝑒𝑓) ⪯ 𝑒𝑡 .

The complete proof can be found on page 14 of Appendix H, where the proof for other 𝑅𝑚 rules

are also located.

6 BEYOND UNREACHABLE CODE
Beyond simple unreachability, unreachable can model a broad range of undefined behaviors,

including division by zero, arithmetic overflow and under flow, and null pointer dereferencing. In

particular, we can use unreachable to encode undefined behaviors due to uses of primitive operators

with an illegal argument. For instance, integer division is well-defined over all integers unless the

divisor is zero. Therefore, a compiler can assume that the erroneous divisor is never supplied to the

operation. In other words, calls to division with a zero divisor are unreachable.

Abstractly, if some operation P is undefined over some portion of its domain Xundef , then we

can encode such an operation as a conditional wrapper of the raw operation P𝑟 :
P = λ𝑥 .(if (𝑥 ∈ Xundef) unreachable (P𝑟 𝑥))

As a result, with an→𝑢 reduction, a call (P 𝑥) reduces to (P𝑟 𝑥) only if 𝑥 ∉ Xundef . In essence,

the insertion of unreachable signals to the compiler that the undefined behavior never occurs,

and therefore, the compiler is allowed to optimize away the checks, exposing the raw operation.

The beauty of this encoding, however, is that it other transformations that match the kinds of

optimizations that compilers do, but without needing any new unreachable-specific rules.
To see how this captures more than simply eliminating the checks, we explore the undefined

behavior of signed integer addition. According to the C standard (International Organization for

Standardization 2011), “If during the evaluation of an expression, the result is not mathematically

defined or not in the range of representable values for its type the behavior is undefined”. Put

differently, if the result of signed integer addition would be greater than INT_MAX or smaller than

INT_MIN, then the addition exhibits undefined behavior. For instance, consider the C code snippet x
< x + 1. If a C compiler decides to implement + by deferring to the underlying machine arithmetic,

, Vol. 1, No. 1, Article . Publication date: July 2024.

18 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

and that arithmetic is two’s complement, then the code snippet is equivalent to x == INT_MAX.
If, however, the compiler decides that overflow is undefined behavior, and therefore assuming it

assumes that overflow never happen, then it is justified to compile to a constant expression that

is always true. Indeed, gcc v7.5 (with the default options) produces code semantically (but not

syntactically) equivalent to comparing x with INT_MAX, but gcc v8.1 (with the default options)

compiles the snippet to 1.
Our calculus can capture both of these possibilities. To do so, the calculus is extended with

primitive operators, =Z, ≠Z, <Z and +Z, where each operator corresponds to its mathematical

counterpart, which is well-defined for all (mathematical) integers. Additionally, 𝑥 +int 𝑦, which is

akin to C’s signed integer addition, is a shorthand for the conditional expression

(if (MAXint <Z 𝑥 +Z 𝑦)
unreachable
(if (𝑥 +Z 𝑦 <Z MINint)

unreachable
(𝑥 +Z 𝑦)))

Given these operators, our calculus is able to equate the expression 𝑥 <Z (𝑥 +int 1) with both the

expressions 𝑥 ≠Z MAXint and true. First, the unreachable calculus can equate 𝑥 <Z (𝑥 +int 1) with
true by eliminating unreachables in 𝑥 +int 1 with→𝑢 reductions. Second, the calculus can equate

𝑥 <Z (𝑥 +int 1) with 𝑥 ≠Z MAXint with successive applications of→𝑚 reductions. The basic idea

is that an→𝑚 reduction can perform a reverse standard reduction to introduce a conditional that

checks whether 𝑥 is MAXint or not. This transformation enables further→𝑚 reductions in each of

the two branches taking advantage of the assumption that the result of the conditional’s check is

different for the then and else branch. The complete proof can be found on Appendix K.

7 UNREACHABLE IN RACKET ON CHEZ
The simplicity of the unreachable calculus raises the question of its relation to production compilers.

In this section, we look at the relation between the reduction rules of our calculus and the way

Racket’s compiler transforms unreachable code.

Racket’s core compiler is Chez Scheme. Overall, Chez Scheme iterates through a sequence of

source-to-source passes a configurable number of times (the default is two). Chez Scheme’s support

for unreachable is primarily in the cptypes pass, which performs source-to-source optimizations

based on type inference. In addition, transformations that involve simplifications for unused

variables or expressions are also part of the earlier cp0 source-to-source pass.

The notions of reduction in Figure 6 and Figure 5 map to specific lines in the implementation of

Chez Scheme (the corresponding full files are part of the supplemental Appendix M):

Rules U.1 and U.2 correspond directly to the case that matches if forms in the implementations

of the cptypes pass. Specifically, the cptypes pass optimizes recursively both branches of an if
form. Together with the optimized branches, the pass returns additional information, including a

type. If the pass determines than one of the branches never returns then the corresponding type is

'bottom. The pass uses the unsafe-unreachable? predicate to identify a non-returning branch

due to unreachable, and then replaces the if form with a call to make-seq, which constructs a seq
expression, the same as our calculus’s begin expression. Hence, the pass eliminates the branches

of a conditional that do not terminate because they are unreachable in exactly the same way that

the U.1 and U.2 rules simplify conditionals.

Rule P.1 corresponds to uses of the make-seq function. In detail, the cp0 pass uses make-seq to

optimize seq forms; it acts as a smart constructor that, same as rule P.1, drops from a sequence those

expressions that are “simple” and whose result is unused. There’s also a limited variant of the same

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 19

simplification in the cptypes pass; the duplication aims to reduce the number of optimizer-pass

iterations needed in practice.

Rule P.2 corresponds to a case that matches seq forms in the cptypes pass. This case handles all

expressions at the beginning of a seq form that do not return. Specifically, if the first expression of

a seq does not return, then all subsequent expressions are ignored:

(define-pass cptypes
[(seq ,e1 ,e2)
(let-values ([(e1 ty1) (recur e1)]

[(e2 ty2) (recur e2)])
(cond

[(predicate-implies? ty1 'bottom) (unwrapped-error e1)]
[else (values (make-seq e1 e2) ty)]))] ...)

In the code snippet, the call to unwrapped-error aims to adjust e1 in some contexts to preserve

non-tail positioning. The adjustment does not apply to unreachable. Hence, same as rule P.2, the

pass replaces the seq form with unreachable.

Rule P.3 corresponds to how the cp0 pass simplifies code with unused bindings using begin
forms. Specifically, a loop of the letify function of the cp0 pass gathers unused bindings and uses

residualize-seq to lift their right-hand-side expressions to an enclosing sequence.

Rules P.4 and P.5 correspond to the fold-call/other function of the cptypes pass. The function
recursively optimizes a list containing the function and argument expressions of an application. If,

after the recursive optimizations, any of these sub-expressions has type 'bottom, the application
is replaced by that non-returning sub-expression. Unlike the calculus that has a fixed order of

evaluation, order of evaluation in Chez Scheme is unspecified. As a result, the pass can treat all other

sub-expressions as being downstream the non-returning sub-expression. Therefore, it discards

them similar to the way rules P.4 and P.5 simplify applications in the calculus.

In sum, the rules of the calculus accurately describe the five places in the source of the Racket

compiler that take advantage of unreachable for optimizations.

8 UNREACHABLE IN LLVM
The LLVM Intermediate Representation (LLVM IR) represents programs as control-flow graphs

(CFGs). Unlike expression-based languages, CFGs break down programs into basic blocks that each

consists of of a linear sequence of instructions. Transfer of control between basic blocks is dictated

by the edges of the CFG.

As such, compile-time transformations are no longer transformations of the structure of expres-

sions but transformations of the structure of the CFG. Despite this difference, CFG transformations

due to unreachable follow similar intuitions as those in our calculus. Since the unreachable is never
executed, the LLVM compiler can prune any branches of control transfer operations that lead to

unreachable and erase code preceding unreachable.
In this section, we establish a connection between these transformations and our calculus.

Specifically, we prove a function that performs those two transformations correct, using the→𝑐

reductions of our calculus.

8.1 unreachable Transformations in LLVM, Informally
LLVM uses static single-assignment (SSA) form, thus a basic block in LLVM starts with a (possibly

empty) sequence of 𝜙 nodes that assign different values to variables depending on the predecessor

executed at run time. The 𝜙 nodes are followed by a series of instructions that typically define

variables using the result of their computation. The last instruction of a basic block is called a

terminator designating where the control should transfer to afterwards. Examples of terminators

, Vol. 1, No. 1, Article . Publication date: July 2024.

20 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

define i32 @intsqrt(i32 %in) {
start:
 br label %loop

loop:
 %x = phi i32 [%x1, %body], [0, %start]
 %isin = icmp sle i32 %x, %in
 br i1 %isin, label %body, label %fail

body:
 %sq = mul nsw i32 %x, %x
 %x1 = add nsw i32 %x, 1
 %found = icmp sge i32 %sq, %in
 br i1 %found, label %ret, label %loop

ret:
 ret i32 %x

fail:
 unreachable
}

start:
br label %loop

loop:
%x = phi i32 [%x1, %body], [0, %start]
%isin = icmp sle i32 %x, %in
br i1 %isin, label %body, label %fail

body:
%sq = mul nsw i32 %x, %x
%x1 = add nsw i32 %x, 1
%found = icmp sge i32 %sq, %in
br i1 %found, label %ret, label %loop

fail:
unreachable

ret:
ret i32 %x

Fig. 11. LLVM Code Illustrating the Control Flow Graph Representation

in LLVM include a return statement, an unconditional branch, a conditional branch, and the

unreachable instruction.
As a concrete example, figure 11 contains an LLVM IR function, @intsqrt, and its CFG. The

@intsqrt function loops through the natural numbers, returning the first integer that is no smaller

than the square root of %in. The block loop: starts with a 𝜙 node that assigns a value to variable

%x, the loop induction variable, counting up through the naturals. If the run-time predecessor of

block loop: is block start:, then %x is 0; if the predecessor is block body: (following the long

curved back edge), %x becomes equal to %x1, which will hold %x + 1. Subsequently, the loop checks

the exit condition to determine whether %x <= %in, and the br terminator either transfers control

to the body of loop or to fail: Note that the loop increments %x, and the annotation nsw signals
that no overflow happens,

3
hence, control transfers to fail: only if the input is negative.

As the block fail: contains the unreachable instruction, LLVM assumes that the block is

never executed. Thus, LLVM removes it and its incoming edge, leaving only an unconditional br
instruction in loop:. This simplification allows LLVM to erase the now-dead %isin definition, and

merge loop: and body: since they are each other’s unique predecessor and successor.

8.2 unreachable Transformations in Extended Vminus
We designed a transformation inspired by the optimization passes added along with the unreach-
able instruction to the LLVM (LLVM Project 2021) codebase in 2004.

4

That code, upon spotting an unreachable terminator in the current block, erases all preceding

instructions and prunes all the incoming edges, and so our transformation follows suit.

At the same time, other commits
5
to LLVM added the ability to replace instructions that obviously

cannot be reached with unreachable. Our transformation does not capture this second capability

of LLVM.

3
More precisely, signed overflow would produce a poison value.

4
https://github.com/llvm/llvm-project/commit/5edb2f32d00d39f7d9fd98b90ff440b5dbbdcb45

5
https://github.com/llvm/llvm-project/commit/8ba9ec9bbbf6625b149ae1ceeb46876553cd2f11 and https://github.com/llvm/

llvm-project/commit/a67dd32004bcc1a0a6fa2f0342e584187f5a403d

, Vol. 1, No. 1, Article . Publication date: July 2024.

https://github.com/llvm/llvm-project/commit/5edb2f32d00d39f7d9fd98b90ff440b5dbbdcb45
https://github.com/llvm/llvm-project/commit/8ba9ec9bbbf6625b149ae1ceeb46876553cd2f11
https://github.com/llvm/llvm-project/commit/a67dd32004bcc1a0a6fa2f0342e584187f5a403d
https://github.com/llvm/llvm-project/commit/a67dd32004bcc1a0a6fa2f0342e584187f5a403d

A Calculus for Unreachable Code 21

f ::= fun {𝑏}
b ::= (𝑙 𝜙 𝑐 tmn)
𝜙 ::= 𝑟 = phi [val 𝑗 , 𝑙 𝑗]

𝑗

c ::= 𝑟 ≔ val1 𝑜𝑝 val2 | call error()
val ::= 𝑟 | 𝑛
tmn ::= br val 𝑙1 𝑙2 | ret val

| br 𝑙 | unreachable
𝑙 ∈ Label 𝑟 ∈ Register

Procedure SimplifyFunctionCFG(𝑓)
repeat
changed ← false;

foreach block (𝑙 𝜙 𝑐 tmn) ∈ 𝑓 do
if tmn = unreachable then
changed |= simplifyUnreachable(𝑓 , 𝑙) ;

until not changed;
return 𝑓

Procedure simplifyUnreachable(𝑓 , 𝑙)
changed ← false;

let ⌊𝑙 𝜙 𝑐 unreachable⌋ = 𝑓 [𝑙];
while 𝑐 = 𝑐′ ++[𝑐′′] and 𝑐′′ ≠ (call error()) do
𝑐 ← 𝑐′;
changed ← true;

if 𝑐 ≠ [] then // if 𝑐 is not empty

𝑓 [𝑙] ←
(
𝑙 𝜙 𝑐 unreachable

)
;

return changed

foreach predecessor (𝑙0 𝜙0 𝑐0 tmn0) ∈ 𝑓 do
if tmn0 = (br val0 𝑙 𝑙1) or (br val0 𝑙1 𝑙) then
𝑓 [𝑙0] ←

(
𝑙0 𝜙0 𝑐0 (br 𝑙1)

)
;

else if tmn0 = (br 𝑙) then
𝑓 [𝑙0] ←

(
𝑙0 𝜙0 𝑐0 unreachable

)
;

if 𝑙 is not the entry block then
DeleteDeadBlock(𝑓 , 𝑙)

else 𝑓 [𝑙] ← (𝑙 [] [] unreachable) ;
return true

Fig. 12: The syntax of Extended Vminus and the unreachable transformations

Figure 12 shows our transformation. We extend the syntax of Vminus (Zhao et al. 2013) with

additional terminators and commands highlighted in yellow.
6
Vminus is a minimal model of LLVM

IR for studying SSA-based optimizations. While Vminus omits features like memory access and

function calls, it is sufficient for our purposes since LLVM primarily transforms unreachable
instructions by rearranging basic blocks and erasing commands.

A program in Vminus is a function (𝑓) that contains a list of basic blocks (𝑏). Each basic block is

a 4-tuple consisting of a label (𝑙), a list of 𝜙 nodes (𝜙), a list of commands (𝑐) and a terminator (tmn).

A command 𝑐 either assigns the result of a binary operation to a fresh variable or calls the error
function to end the execution. We use call error() to model commands that do not transfer control

to the next command in the basic block.
7
Following Zhao et al. (2013)’s notation, an overlined

non-terminal represents a list of the underlying non-terminal. The notation 𝑙 .𝑖 denotes the 𝑖-th

command in block 𝑙 , and 𝑓 [𝑙] = ⌊𝑏⌋ represents a look up of the block labeled 𝑙 in 𝑓 . The notation

⌊𝑏⌋ asserts that the lookup succeeds with the result 𝑏.

SimplifyFunctionCFG(𝑓) is the entry point of our transformation. It iteratively updates 𝑓 until

reaching a fixed point. In each iteration, SimplifyFunctionCFG scans through the basic blocks to

identify basic blocks terminating with unreachable. For any such basic block 𝑙 , SimplifyFunction-
CFG invokes simplifyUnreachable to remove commands and paths leading up to 𝑙 ’s unreachable.
This includes simplifying the commands in block 𝑙 and possibly the branch instructions in the

predecessors of 𝑙 .

The simplifyUnreachable(𝑓 , 𝑙) transformation exploits the intuition that an unreachable instruc-
tion should never be reached; otherwise the behavior of the program is undefined. Specifically,

simplifyUnreachable does two simplifications. First, it scans the commands in 𝑙 from the end of the

6
We also omit the type annotations and use integers as the only constant values.

7call error() terminates the program much like the exit function. It is unrelated to exceptions.

, Vol. 1, No. 1, Article . Publication date: July 2024.

22 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

Hproc (𝑓) = λ𝑥 .
(
Hjump (𝑓 , 𝑙0) 0

)
where𝑥 is fresh and 𝑙0 is the label of the entry block

Hjump (𝑓 , 𝑙) = λ𝑟1 . . . 𝑟𝑛 . Hcs (𝑓 , 𝑙, 𝑐)
where 𝑓 [𝑙] = ⌊𝑙 𝜙 𝑐 tmn⌋ and 𝜙 = (𝑟1 = phi [val 𝑗1 , 𝑙 𝑗1]

𝑗1) . . . (𝑟𝑛 = phi [val 𝑗𝑛 , 𝑙 𝑗𝑛]
𝑗𝑛)

if 𝜙 = [], we introduce a dummy fresh variable 𝑟0

Hcs : 𝑓 𝑙 𝑐 −→ 𝑒

Hcs (𝑓 , 𝑙, ((call error()), 𝑐′)) = (begin error Hcs (𝑓 , 𝑙, 𝑐′))
Hcs (𝑓 , 𝑙, ((𝑟 ≔ val1 op val2), 𝑐′)) = (let ([𝑟 (op val1 val2)]) Hcs (𝑓 , 𝑙, 𝑐′))
Hcs (𝑓 , 𝑙, []) = (letrec ([𝑙1 Hjump (𝑓 , 𝑙1)] . . . [𝑙𝑚 Hjump (𝑓 , 𝑙𝑚)])

Hterm (𝑓 , 𝑙))
where 𝑙1 . . . 𝑙𝑚 are the children of node 𝑙 in the dominator tree

Hterm : 𝑓 𝑙 −→ 𝑒

Hterm (𝑓 , 𝑙) = val if 𝑓 [𝑙] = ⌊𝑙 𝜙 𝑐 (ret val)⌋
Hterm (𝑓 , 𝑙) = unreachable if 𝑓 [𝑙] = ⌊𝑙 𝜙 𝑐 unreachable⌋
Hterm (𝑓 , 𝑙) = (𝑙 ′ val′) if 𝑓 [𝑙] = ⌊𝑙 𝜙 𝑐 (br 𝑙 ′)⌋

where 𝑓 [𝑙 ′] = ⌊𝑙 ′ 𝜙 ′ 𝑐′ tmn
′⌋, getIncomingValueForBlock(𝜙 ′, 𝑙) = val

′

when 𝜙 ′ = [], we supply a dummy argument 0

Hterm (𝑓 , 𝑙) = (if val (𝑙 ′ val′) (𝑙 ′′ val′′)) if 𝑓 [𝑙] = ⌊𝑙 𝜙 𝑐 (br val 𝑙 ′ 𝑙 ′′)⌋
where 𝑓 [𝑙 ′] = ⌊𝑙 ′ 𝜙 ′ 𝑐′ tmn

′⌋, getIncomingValueForBlock(𝜙 ′, 𝑙) = val
′

𝑓 [𝑙 ′′] = ⌊𝑙 ′′ 𝜙 ′′ 𝑐′′ tmn
′′⌋, getIncomingValueForBlock(𝜙 ′′, 𝑙) = val

′′

we supply 0 as a dummy argument if there are no 𝜙 nodes as in the case for (br 𝑙 ′)
getIncomingValueForBlock : 𝜙 𝑙 −→ val

getIncomingValueForBlock(𝜙, 𝑙) = val𝑖where 𝜙 = (𝑟 = phi [val1, 𝑙1] . . . [val𝑛, 𝑙𝑛]) and 𝑙 = 𝑙𝑖

Fig. 13: Translating Extended Vminus Functions to the Unreachable Calculus

list. If the scanned command (𝑐′′) always transfers control to the next instruction in 𝑙 , it is erased

from 𝑙 . The scan ends when simplifyUnreachable hits a command that may not transfer control the

next command. Second, simplifyUnreachable prunes the incoming edges. For each predecessor 𝑙0 of

𝑙 , simplifyUnreachable removes 𝑙 from the branch targets of 𝑙0. If 𝑙0’s terminator is an unconditional

branch, simplifyUnreachable replaces it with unreachable.

8.3 Translating Extended Vminus to The Unreachable Calculus
The transformation from section 8.2 is based on the same insights about unreachable as the→𝑢

and→𝑝 reductions of our calculus. As such, it should be correct despite the fact that it belongs to a

different linguistic setting than that of the calculus.

To use the calculus to prove that it is correct, we leverage Kelsey (1995)’s algorithm that translates

programs from SSA to 𝜆 expressions and back. In detail, we adapt their algorithm to work on

Extended Vminus programs and use it to show that the transformation in fig. 12 given a program

A produces program B such that the translation of A is equal to the translation of B under→𝑐

reductions.

fig. 13 gives the complete definition of the translation.Hproc translates a function 𝑓 in Extended

Vminus to a (closed) function λ𝑥 .𝑒 in the unreachable calculus. It comprises three auxiliary functions:

Hjump translates a basic block to a 𝜆 function,Hcs takes a list of commands and morally translates

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 23

them into a nested let expression, and finally Hterm translates the terminator of a block into

an appropriate expression in our calculus. In the definition of Hcs , (let ([𝑥 𝑒1]) 𝑒2) is a syntactic
sugar for (λ𝑥 .𝑒2) 𝑒1 and letrec is implemented using the Y combinator. Appendix L details the

implementation.

The key idea behindHproc is the encoding of the CFG of a given program.Hjump encodes each

basic block as a single function, while Hterm adds edges that represent branches using function

applications. For each basic block handled byHjump, the variables defined by the 𝜙 nodes become

the formal parameters of the resulting function, and the incoming values of the 𝜙 nodes are turned

into the arguments in the function applications thatHterm uses to encode branch instructions.

Having translated individual basic block and the edges of the CFG, the translation assembles

the results ofHjump into a single expression while respecting the variable scoping rules of Vminus

programs. To ensure that variables are defined before they are referenced, Vminus requires a variable

definition to appear in a block that dominates all the blocks that use the variable. Intuitively, block

𝑙 dominates block 𝑙 ′, written as 𝑙 ≽ 𝑙 ′, if block 𝑙 appears in every path from the entry to block 𝑙 ′.
The dominance relation between basic blocks form a so-called dominator tree (Lengauer and Tarjan

1979; Lowry and Medlock 1969): if block 𝑙 dominates 𝑙 ′ then 𝑙 is an ancestor of 𝑙 ′ in the dominator

tree. Conversely, if 𝑙 has children 𝑙1, . . . , 𝑙𝑚 in the dominator tree, then 𝑙 dominates all 𝑙𝑖 and each

functionHjump (𝑓 , 𝑙𝑖) should be able to reference the variables that block 𝑙 defines. Therefore,Hcs

arranges the results of Hjump into nested letrecs in accordance with the dominator tree of the

control flow graph to preserve correct scoping of the variables.

With the definition of the translation in hand, we can prove the correctness of its correctness by

establishing the correctness of simplifyUnreachable:

Theorem 8.1. Let 𝑓 [𝑙] = ⌊𝑙 𝜙 𝑐 unreachable⌋ and 𝑓 ′ be the new function after running the

transformation simplifyUnreachable(𝑓 , 𝑙). If 𝑙 is reachable from the entry point of 𝑓 thenHproc (𝑓) →∗𝑐
Hproc (𝑓 ′).

Proof. Because block 𝑙 is reachable from the entry point of 𝑓 and has no successor, it must be a

leaf node in the dominator tree. Thus,Hcs (𝑓 , 𝑙, 𝑐) is a subexpression ofHproc (𝑓). To analyze how

simplifyUnreachable changes 𝑓 , we take cases on whether 𝑐 contains call error() or not.
If 𝑐 does not contain call error(), simplifyUnreachable prunes all incoming edges of block 𝑙

and deletes the entire block from 𝑓 . Let 𝑓 [𝑙0] = ⌊𝑙0 𝜙0 𝑐0 tmn0⌋ be any predecessor of 𝑙 . If

tmn0 = (br val0 𝑙 𝑙1), its translation isHterm (𝑓 , 𝑙0) = (if val0 (𝑙 val) (𝑙1 val1)) where the arguments

are extracted from the 𝜙 nodes in block 𝑙 and 𝑙1.

By inlining the translation of block 𝑙 with a series of →𝑐 reductions, we obtain the expres-

sion (if val0 (Hjump (𝑓 , 𝑙) val) (𝑙1 val1)). However, the body of Hjump (𝑓 , 𝑙), Hcs (𝑓 , 𝑙, 𝑐), reduces to
unreachable under→𝑐 since it is a nested let expression whose body,Hterm (𝑓 , 𝑙), is unreachable.
Thus the entire if expression simplifies to (𝑙1 val1), which is precisely the translation of (br 𝑙1).
The case where tmn0 = (br 𝑙) is also similar.

Finally, after all predecessors of 𝑙 are updated,Hjump (𝑓 , 𝑙) has no reference and thus its binding

can be dropped, resultingHproc (𝑓 ′).
In this proof, we have used several letrec identities such as inlining a definition and dropping an

unreferenced binding. Appendix L proves these identities using the→𝑚 rules from Figure 9.

The case where 𝑐 includes call error() is similar to the simplification ofHcs (𝑓 , 𝑙, 𝑐) in the previous

case except that unreachable stops erasing the let bindings after reaching the expression error.
Say 𝑐 equals 𝑐′ ++[call error()] ++ 𝑐′′ such that 𝑐′′ contains no call error() commands, we know that

simplifyUnreachable(𝑓 , 𝑙) changes block 𝑙 to (𝑙 𝜙 (𝑐′ ++[call error()]) unreachable). Therefore we

, Vol. 1, No. 1, Article . Publication date: July 2024.

24 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

need to prove

Hcs (𝑓 , 𝑙, 𝑐′ ++[call error()] ++ 𝑐′′) →∗𝑐 Hcs (𝑓 ′, 𝑙, 𝑐′ ++[call error()]).
Note thatHterm (𝑓 , 𝑙) = Hterm (𝑓 ′, 𝑙) = unreachable, so this is straightforward asHcs translates 𝑐

′′

to a nested let expression whose body is just unreachable. Thus simplifyUnreachable preserves the
behavior of the program. □

As a final remark in this section, the approach to proving CFG transformations correct via

translation to the 𝜆 calculus does not scale to proving realistic compilers correct. Of course, this is

not the goal of this section but we discuss it here to eliminate any confusion. Beyond the obvious

shortcoming that the 𝜆 calculus and imperative features are not well-aligned, there is an additional

and subtle technical challenge at play. While the reductions of the unreachable calculus leave the
overall structure of expressions unchanged, unreachable tranformations in Extended Vminus, and

LLVM, can modify the dominator tree of a program in complex ways. Hence, relating the result

of a series of reductions with the result of an unreachable tranformations in Extended Vminus

requires equating expressions with arbitrarily different structure. Put differently, the compile-time

semanctics of the unreachable calculus do not map directly to the unreachable tranformations in

Extended Vminus, at least via translations, like Kelsey’s, that depend on the dominator tree of the

input program. We conjecture that this discrepancy is due to the translation, but we cannot exclude

a misalignment between the unreachable calculus and the CFG-based world of Extended Vminus

and LLVM.

9 RELATEDWORK
Our work is the first that develops an equational theory for unreachable.
Other techniques that examine the correctness of compilers have to also deal, one way or

another, with the semantics of unreachable and other undefined behaviors. CompCert (Leroy

2009a,b) gives semantics to undefined behavior implicitly, by specifying defined behavior with a

co-inductive structure. Based on this structure, the CompCert project proves correct whole-program

transformations in a realistic C compiler. While the linguistic setting and the scale of CompCert

are not comparable with this work, the reductions of our calculus equate (open) expressions in all

contexts rather than whole programs. Furthermore, the correctness of our reductions assumes the

intuitive predicate ¬Undef, instead of CompCert’s co-inductive definition of defined behavior.

Similar to CompCert, Jung et al. (2020) give a definition for defined behavior in Rust, namely the

Stacked Borrows pattern. Any program that violates this pattern is considered to exhibit undefined

behavior. The authors show that Stacked Borrows is sufficient to validate optimizations in the Rust

compiler involving both safe and unsafe code, and that it admits realistic Rust programs. Instead of

an approximate predicate, our calculus relies on a precise definition of undefined behavior.

Vellvm (Zakowski et al. 2021; Zhao et al. 2012, 2013) is a long-running project for the formal

verification of transformations in LLVM. It covers various versions of undefined behavior, including

unreachable, by reducing them to a basic notion of undefined behavior similar to the discussion

in section 6. The latest version of Vellvm relies on interaction trees (Xia et al. 2020), and we

conjecture it can prove correct equivalences that correspond to the compile-time reductions of our

calculus. However, such proofs would need to establish equalities between denotations of LLVM

code fragments, rather than the syntax-based equivalences of our calculus, which we claim match

the way compiler writers reason about code through local rewriting steps.

Dahiya and Bansal (2017) presents a simulation relation for C programs that takes undefined

behavior into account. Their work considers a number of different forms of undefined behavior,

but not unreachable.

, Vol. 1, No. 1, Article . Publication date: July 2024.

A Calculus for Unreachable Code 25

Mears (2021)’s proposals favor the addition of a construct like unreachable to C and C++. The

authors note the advantages of introducing such a construct for optimizations. Similar to Racket

and Rust, the authors point out that for debugging purposes, the proposed construct could be

treated as an exception at run time.

As a final note, a considerable body of work focuses on program checkers that detect undefined

behavior, including unreachable. Some checkers rely on static analysis (Dietz et al. 2012; Jourdan

et al. 2015; Wang et al. 2016), while others on testing (Regehr 2011). Here we focus on two of these

works. Hathhorn et al. (2015) describes a model checker that detects undefined behavior based on a

formal semantics for undefined behavior in C. RustBelt (Jung et al. 2018) proves the absence of one

kind of undefined behavior from Rust programs, data races. It relies on semantic type soundness,

which admits programs that the conventional syntactic type soundness rejects. While all these

techniques define what certain kinds of undefined behavior mean in different settings, they seek to

eliminate unexpected undefined behavior as opposed to explaining the optimization opportunities

that undefined behavior provides.

10 CONCLUSION
This paper gives a formal account of the essence of unreachable. Specifically, it confronts head on

that unreachable is a form of undefined behavior, and hence, a compiler may take advantage of

it to legally transform a program in a way that causes it to evaluate differently. For that reason,

the paper presents a pair of specifications for a programming language: one that covers how

programs evaluate normally and a separately-defined and strikingly simple one that covers what

transformations are legal for a compiler. We prove that, despite its simplicity, the specification of

the compiler is correct: its rules preserve the meaning of programs (according to normal evaluation),

under the assumption that the original programs do not exhibit undefined behavior, i.e., they do not

evaluate unreachable. Importantly, the correctness of the compile-time transformations depends on

this precise definition of undefined behavior, rather than an approximation that aims to facilitate the

proofs. In other words, our formal specification of unreachable provides simple rewriting rules that

capture how compiler writers reason about undefined behavior and how they use this reasoning to

justify transformation implementations.

Taking a step back, we hope that our approach can provide a template for others who wish

to formally state and prove meta-theoretic properties that correctly capture aspects of undefined

behavior. While undefined behavior has a reputation as an unruly phenomenon, our work shows

that there are well-behaved undefined behaviors. Similar to unreachable, we conjecture that other
aspects of undefined behavior can be described precisely and intuitively. Hence, we see this work

as the first step towards demystifying undefined behavior.

REFERENCES
CVE-2014-0160. 2014. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160 The Heartbleed Bug.

Retrieved: July, 2022. Discovered by Neel Mehta from Google.

Manjeet Dahiya and Sorav Bansal. Modeling Undefined Behaviour Semantics for Checking Equivalence Across

Compiler Optimizations. In Proc. Haifa Verification Conference, 2017. https://doi.org/10.1007/978-3-319-

70389-3_2

Will Dietz, Peng Li, John Regehr, and Vikram Adve. Understanding Integer Overflow in C/C++. In Proc.

International Conference on on Software Engineering, 2012. https://doi.org/10.1109/ICSE.2012.6227142

Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the Undefinedness of C. ACM Conference on

Programming Language Design and Implementation, 2015. https://doi.org/10.1145/2737924.2737979

International Organization for Standardization. ISO/IEC 14882:2011 C++ Standard. 2011. https://www.iso.org/

standard/50372.html

, Vol. 1, No. 1, Article . Publication date: July 2024.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://doi.org/10.1007/978-3-319-70389-3_2
https://doi.org/10.1007/978-3-319-70389-3_2
https://doi.org/10.1109/ICSE.2012.6227142
https://doi.org/10.1145/2737924.2737979
https://www.iso.org/standard/50372.html
https://www.iso.org/standard/50372.html

26 Peter Zhong, Shu-Hung You, Simone Campanoni, Robert Bruce Findler, Matthew Flatt, and Christos Dimoulas

Jacques Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie. A Formally-

Verified C Static Analyzer. In Proc. ACM Symposium on Principles of Programming Languages, pp. 247–259,

2015. https://doi.org/10.1145/2676726.2676966

Ralf Jung. Undefined Behavior deserves a better reputation. 2021. https://blog.sigplan.org/2021/11/18/

undefined-behavior-deserves-a-better-reputation/ Retrieved: July, 2022.

Ralf Jung, Hoanghai Dang, Jeehoon Kang, and Derek Dreyer. Stacked borrows: an aliasing model for Rust.

Proceedings of the ACM on Programming Languages (POPL) 4, pp. 41:1–41:32, 2020. https://doi.org/10.

1145/3371109

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: securing the foundations

of the Rust programming language. Proceedings of the ACM on Programming Languages (POPL) 2, pp.

66:1–66:34, 2018. https://doi.org/10.1145/3158154

Richard A. Kelsey. A Correspondence between Continuation Passing Style and Static Single Assignment Form.

In Proc. Papers from the 1995 ACM SIGPLAN Workshop on Intermediate Representations, IR ’95, pp. 13–22,

1995. https://doi.org/10.1145/202530.202532

Thomas Lengauer and Robert Endre Tarjan. A Fast Algorithm for Finding Dominators in a Flowgraph. ACM

Transactions on Programming Languages and Systems 1(1), pp. 121–141, 1979. https://doi.org/10.1145/

357062.357071

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM 52, pp. 7:107–7:115,

2009a. https://doi.org/10.1145/1538788.1538814

Xavier Leroy. Mechanized Semantics for the Clight Subset of the C Language. Journal of Automated Reasoning

43, pp. 263–368, 2009b. https://doi.org/10.1007/s10817-009-9148-3

LLVM Project. LLVM 13.0.0 Release Notes. 2021. https://releases.llvm.org/13.0.0/docs/ReleaseNotes.html

Retrieved: Sep, 2021

Edward S. Lowry and C. W. Medlock. Object Code Optimization. Communications of the ACM 12(1), pp. 13–22,

1969. https://doi.org/10.1145/362835.362838

Melissa Mears. Function to mark unreachable code. 2021. http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2021/p0627r6.pdf

Godon D. Plotkin. {Call-by-name, call-by-value and the 𝜆-calculus. Theoretical Computer Science(1(2)), pp.

125–159, 1975.

John Regehr. Better Testing With Undefined Behavior Coverage. 2011. https://blog.regehr.org/archives/388

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. A Differential Approach to

Undefined Behavior Detection. Communications of the ACM 59(3), pp. 99–106, 2016. https://doi.org/10.

1145/2885256

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve

Zdancewic. Interaction Trees: rRepresenting Recursive and Impure Programs in Coq. Proceedings of the

ACM on Programming Languages (POPL) 4, pp. 51:1–51:32, 2020. https://doi.org/10.1145/3371119

Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic. Modular,

Compositional, and Executable Formal Semantics for LLVM IR. Proceedings of the ACM on Programming

Languages (ICFP) 5, pp. 67:1–67:30, 2021. https://doi.org/10.1145/3473572

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formalizing the LLVM Interme-

diate Representation for Verified Program Transformations. In Proc. ACM Symposium on Principles of

Programming Languages, POPL ’12, pp. 427–440, 2012. https://doi.org/10.1145/2103656.2103709

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formal Verification of SSA-Based

Optimizations for LLVM. In Proc. ACM Conference on Programming Language Design and Implementation,

PLDI ’13, pp. 175–186, 2013. https://doi.org/10.1145/2491956.2462164

, Vol. 1, No. 1, Article . Publication date: July 2024.

https://doi.org/10.1145/2676726.2676966
https://blog.sigplan.org/2021/11/18/undefined-behavior-deserves-a-better-reputation/
https://blog.sigplan.org/2021/11/18/undefined-behavior-deserves-a-better-reputation/
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3158154
https://doi.org/10.1145/202530.202532
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-009-9148-3
https://releases.llvm.org/13.0.0/docs/ReleaseNotes.html
https://doi.org/10.1145/362835.362838
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0627r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0627r6.pdf
https://blog.regehr.org/archives/388
https://doi.org/10.1145/2885256
https://doi.org/10.1145/2885256
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3473572
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2491956.2462164

	Abstract
	1 The Fleeting Essence of Unreachable
	2 The Essence of Unreachable, by Example
	3 The Essence of Unreachable, Formally
	3.1 The Unreachable Calculus and its Standard Reduction
	3.2 Compile-Time Transformations as Reduction Relations

	4 The Correctness of the Compile-Time Reductions
	4.1 Forward Approximation of u Reductions
	4.2 Backward Approximation of u Reductions
	4.3 Completing the Proof of Correctness of the Compile-Time Reductions

	5 Extending the Calculus with Additional Rules
	6 Beyond Unreachable Code
	7 Unreachable in Racket on Chez
	8 Unreachable in LLVM
	8.1 unreachable Transformations in LLVM, Informally
	8.2 unreachable Transformations in Extended Vminus
	8.3 Translating Extended Vminus to The Unreachable Calculus

	9 Related Work
	10 Conclusion
	References

