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ABSTRACT
For decades, architects have designed cache replacement policies
to reduce cache misses. Since not all cache misses affect proces-
sor performance equally, researchers have also proposed cache
replacement policies focused on reducing the total miss cost rather
than the total miss count. However, all prior cost-aware replace-
ment policies have been proposed specifically for data caching
and are either inappropriate or unnecessarily complex for instruc-
tion caching. This paper presents EMISSARY, the first cost-aware
cache replacement family of policies specifically designed for in-
struction caching. Observing that modern architectures entirely
tolerate many instruction cache misses, EMISSARY resists evicting
those cache lines whose misses cause costly decode starvations. In
the context of a modern processor with fetch-directed instruction
prefetching and other aggressive front-end features, EMISSARY ap-
plied to L2 cache instructions delivers an impressive 3.24% geomean
speedup (up to 23.7%) and a geomean energy savings of 2.1% (up
to 17.7%) when evaluated on widely used server applications with
large code footprints. This speedup is 21.6% of the total speedup
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obtained by an unrealizable L2 cache with a zero-cycle miss latency
for all capacity and conflict instruction misses.
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1 INTRODUCTION
Caches play a vital role in improving processor performance. For
many decades, research has focused on improving processor perfor-
mance by reducing cache misses [12, 14, 27, 29, 37, 38, 41, 45, 49, 52].
One important way to reduce cache misses for a given cache size,
line size, and associativity is to improve the cache replacement
policy. The classic LRU (least recently used) replacement policy
exploits temporal locality by evicting the line least recently ac-
cessed [48, 56]. Bélády’s OPT algorithm achieves the minimum
number of misses through ideal cache replacement, but it is not
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realizable because it requires perfect knowledge of future refer-
ences [15]. While theoretical in nature, OPT informs the design
of many practical cache replacement policies [27, 29, 41, 49]. Al-
most all previously proposed cache replacement policies use only
reference information.

Architects have long recognized that not all cache misses have
identical costs [30, 31, 35, 44, 50, 55]. Cost-aware cache replacement
policies recognize this and attempt to increase performance even at
the cost of increased cache misses. For modern architectures, many
misses do not impact performance at all. For example, an aggressive
out-of-order processor can entirely tolerate many first-level data
cache (L1D) misses without any negative performance impact [39].
Likewise, many modern processors have decoupled front-ends with
early fetch engines that can tolerate certain first-level instruction
cache (L1I) misses without causing decode starvation, a state in
which the head instruction of the queue feeding the decode stage
is not yet available [24, 25, 51].

The optimal cost-aware replacement policy (CSOPT) is the perfect-
knowledge cost-aware cache replacement algorithm [31]. Unfor-
tunately, CSOPT, like OPT, is not realizable in practice. Prior re-
search has produced realizable cost-aware data cache replacement
policies [35, 44, 50, 55]. For example, the MLP-aware Linear (LIN)
policy and related techniques prioritize lines that miss with lower
memory-level parallelism (MLP) [50]. Other techniques consider
load criticality as approximated by a variety of methods [35, 44, 55].
Since instruction fetch exhibits a different behavior, known cost-
aware data cache replacement policies cannot be effectively applied
to instruction caching.

This paper presents EMISSARY (Enhanced MISS-Awareness
Replacement Policy) to address the lack of cost-aware cache replace-
ment policies for instructions. Observing that modern architectures
entirely tolerate many L1I misses, EMISSARY prioritizes instruction
lines whose miss caused a decode starvation. These higher-priority
lines are preserved in L2 upon eviction from L1I. By avoiding de-
code starvation, EMISSARY consistently improves performance
and saves energy. EMISSARY has a minimal hardware footprint
because it does not track history, coordinate with prefetchers, make
predictions, or perform complex calculations.

A simple EMISSARY configuration on a baseline model with
a fetch-directed instruction prefetcher (FDIP) front-end, yields a
geomean speedup of 3.24% and proportional energy savings on 13
front-end-bound data center workloads. EMISSARY achieves 15% of
the speedup obtainable by an unrealizable model with a zero-cycle
miss latency for all capacity and conflict L2 instruction cache misses.
Furthermore, these results are significant in the context of the ag-
gressive front-end found in modern processors that are designed to
tolerate instruction cache misses. The aggressive FDIP model used
as the baseline for EMISSARY on its own provides an impressive
33.1% geomean speedup, creating a challenging environment for
any further improvements. Prior work shows that achieving perfor-
mance gains over FDIP’s highly effective baseline is difficult [25, 26].
In fact, a non-realizable perfect prefetcher implemented over an
FDIP baseline boosts performance by only 5.4% [25, 26].

Section 2 gives a high-level overview of the family of EMISSARY
techniques. Since EMISSARY is a bimodal technique (misses are
treated in one of two ways), this overview is contextualized with

prior bimodal techniques. That section also highlights the value of
persisting this bimodality over a line’s entire lifetime in the cache,
a feature the authors believe to be an EMISSARY first. Section 3
quantifies the extent to which different instruction cache lines tend
to have different decode starvation behaviors, an important charac-
teristic contributing to EMISSARY’s success. Using the observation
that bimodal selection and treatment are orthogonal, Section 4 in-
troduces a notation covering the space of EMISSARY techniques
and related prior works. Using this notation, it describes the EMIS-
SARY algorithm in detail. Section 5 outlines how and by how much
these policies outperform prior work in both speed and energy.
Since EMISSARY preserves instruction lines in the unified L2 cache,
Section 6 explains how it moderates its use to leave sufficient space
for data caching. Section 7 reviews the related work in-depth, and
Section 8 concludes.

2 AN OVERVIEW TOUR OF EMISSARY
This paper argues for treating instructions bimodally (i.e., treating
instruction cache lines whose misses impact performance differ-
ently from those that do not). Crafting a performant, low-complexity,
and energy-efficient cost-aware bimodal policy requires choosing
both a suitable bimodal selection policy (i.e., how to set the mode)
and a bimodal treatment policy (i.e., how to treat the modes differ-
ently). This section provides an overview tour of these elements
using Figure 1 to illustrate their impact on the performance, L2
instruction MPKI, commit-path decode rate, L2 data MPKI, and
commit-path issue rate for the tomcat [8] benchmark. (Note: While
§4 defines the notation in parentheses and §5 defines the exper-
imental environment; they are not necessary to understand this
section’s discussion.)

All policies apply only to L2 instruction lines rather than L1I be-
cause L1I misses are generally tolerated well in modern processors
with aggressive front-ends. Also, the longer average reuse intervals
in large programs make the L2 more appropriate (§3). All policies
may use decode starvation (i.e., the decode stage stalls waiting for
the head instruction in the queue to become available), and the
issue queue empty condition to make decisions.

In Figure 1, traditional LRU is labeledMRU Insert:Always as
insertion is always into MRU (most recently used) position without
any bimodality. Contrary to traditional LRU, a previously proposed
mechanism, called LIP, is an insertion policy in an LRU replace-
ment policy cache that always inserts lines in the LRU position
instead [49]. The BIP prior work adds bimodality to LIP using a
1/32 probability random signal [49]. To add bimodality based on
miss cost (i.e., decode starvation) to BIP, Figure 1 includes theMRU
Insert:StarvationDecodeOnly policy. Unfortunately, as shown in
Figure 1, MRU Insert:Starvation Decode Only performs slightly
worse than LRU. While this result suggests that decode starvation
is not a valuable bimodal selection signal, we observe that the prob-
lem is not the bimodality but that the bimodal treatment of a line is
short-lived, as it takes only a few subsequent references to remove
any MRU/LRU position differentiation.

To preserve the effect of the starvation signal longer, EMISSARY
cache replacement policies are persistently bimodal. Instead of dif-
ferentiating solely at insertion, EMISSARY replacement policies
treat high-priority lines (e.g., those whose misses caused decode
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Figure 1: Speedup vs L2 Instruction MPKI, Decode Rate, L2 Data MPKI, and Issue Rate of various cache replacement policies for
tomcat benchmark on a 1M 16-way L2 cache(with true LRU and no prefetchers).

starvation) differently for their entire lifetime in the cache. This is
partly done by not allowing insertions of low-priority lines (e.g.,
from a miss without decode starvation) to evict any of up to 𝑁 pro-
tected high-priority lines in the set. Only high-priority lines may be
protected in this way, but not all high-priority lines are protected
(i.e., when more than 𝑁 lines in a set are high-priority). EMISSARY
marks each line in the L1I cache with a priority bit, setting 𝑃 = 1
if high-priority. This bit is preserved in L2 upon eviction from L1I
and does not change as long as the line remains in either cache. The
EMISSARY configurations in Figure 1 support up to eight protected
lines (𝑁 = 8) per set in the L2 cache, leaving eight ways in the
16-way cache available for low-priority instruction and data lines.
Having low-priority lines bypass the cache was not found to be
effective, so all misses in EMISSARY result in an insertion. The
performance and decode rate impact of persistence is highlighted
by line a in Figure 1, which shows the power of persistence (i.e.,
Persistent:Starvation Decode Only overMRU Insert:Always).

Since available instructions in the instruction queue can hide
decode starvation, requiring both the decode starvation and the
empty issue queue signals to be true for bimodal selection will likely
result in a more judicious use of persistence. Line b in Figure 1
confirms this by highlighting the difference between the Persis-
tent:Starvation (Decode + IQEmpty) andPersistent:Starvation
Decode Only EMISSARY policies.

Preserving high-priority lines over longer periods keeps them
available for future accesses. Lines used only once, regardless of
miss cost, do not benefit from persistence and instead, unnecessar-
ily consume valuable cache resources. Thus, to filter out single-use
but high-priority cache lines from being selected for bimodal treat-
ment, the Persistent: Starvation (Decode + IQ Empty) Random
EMISSARY policy only marks misses with starvation conditions as
high-priority with random probability 1/32. This highly selective
EMISSARY policy further improves performance, as evidenced by
line c. Interestingly, with this policy, the instruction decode rate is
less than Persistent:Starvation (Decode + IQ Empty) since not
all high-priority instruction lines are selected for bimodal treatment.
However, higher performance and an increased issue rate result

from reduced data cache misses from the better allocation of L2
resources between instructions and data.

3 DECODE STARVATION BEHAVIOR
Instruction fetch is responsible for keeping the decode stage fed.
If the processor could perfectly predict the target of every control-
flow instruction, instruction fetch could issue all of its memory
requests early enough to tolerate the latency to main memory with-
out starving decode. Unfortunately, even the best branch predictors
are not perfect. They are, however, quite good. Modern processor
front-ends incorporate decoupled, aggressive fetch engines guided
by excellent branch predictors, large BTBs, and pre-decoders [25].
Such front-ends accurately fetch several tens or even hundreds of
instructions early. Instruction decode queues filled this way can
often tolerate L1I misses before emptying and leading to decode
starvation; this is especially true when an L1I miss leads to an L2
hit. From the perspective of cost-aware cache replacement policies,
keeping lines with tolerated L1I misses in the cache has less utility
than keeping lines whose misses cause decode starvation. The key
to making this work involves differentiating tolerated L1I misses
from those that cause starvation.

Branch mispredictions invalidate early fetch work, requiring a
flush of the processor pipeline. Re-steering the front-end takes time,
and more time is necessary for fetch to run far enough ahead of
decode to fill the instruction decode queue enough to tolerate L1I
misses. This concept suggests a cache replacement policy based on
proximity to poorly predicted branch targets. The authors’ early
explorations in this direction considered cache replacement policies
that were either too complex, ineffective, or both. Partially, this was
because not all branch mispredictions lead to decode starvation.
Often the lines necessary after re-steer are in L1I despite the branch
mispredict. For example, this is the case for near-target branches
in which the mispredicted path and the committed path share the
same L1I cache lines. The mispredicted path fetch (or prefetch) acts
as a prefetch in such a scenario.
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Figure 2: First bar: distribution of Short, Mid, and Long Reuse access lines. Second Bar: fraction of L2 Instruction Misses by
Long Reuse lines. Third Bar: distribution of starvation cycles caused by Short, Mid, and Long Reuse lines.

Beyond branch prediction, many factors interact to determine
whether or not an L1I miss will cause decode starvation. For ex-
ample, a stalled decode cannot starve. Decode stalls occur when
the processor back-end cannot accept more instructions. When
decode stalls, it does not attempt to pull from the instruction queue,
a necessary condition for starvation.

While predicting starvation by its component factors is hard,
observing starvation during execution is easy. Existing signals as-
sert when starvation occurs (likewise for when the issue queue is
empty). Furthermore, when decode starvation occurs, the address
for which the decode is waiting is also known. All of this informa-
tion is known many cycles before the line that missed under these
circumstances is inserted into the cache. Knowing this informa-
tion in advance does not mean that it is necessarily of value to a
cost-aware cache replacement policy.

An instruction fetch that causes starvation must be a miss in L1I
cache. These L1I misses could be served either from L2 cache, L3
cache, or main memory. Lines served from the L2 cache introduce
fewer starvation cycles than the ones served from more remote
levels. The first bar in Figure 2 depicts the distribution of reuse dis-
tance based on observed cache line accesses in the committed path
across the datacenter workloads used in this study. Reuse distance
is measured as the number of unique lines accessed between two
access to the same line. The same line accessed consecutively is not
counted. Reuse distances are categorized into three buckets - Short
[0-100), Mid [100-5000), and Long [>5000) Reuse. Short Reuse lines
are likely to hit in L1I, Mid Reuse lines are likely to miss in L1I
and hit in L2, and Long Reuse lines are likely to miss in L2. This
predicted behavior is confirmed in the second bar showing the %
of Long Reuse accesses that miss in L2. Overall, more than 90% of
L2 misses are from Long Reuse lines.

The third bar in Figure 2 shows the interplay between these
different categories of reuse lines and decode starvation. Interest-
ingly, more than 90% of the starvation cycles are caused by Long

Reuse lines, which account for less than 20% of all accesses. Thus,
a small number of accesses contribute to the majority of starvation
cycles – a property that can be utilized by a replacement policy.
Consequently, EMISSARY at the L1I cache may have little value as
the lines that cause the majority of starvations are Long Reuse lines,
lines which the L1I cannot realistically preserve. Since the majority
of starvations are caused by L2 miss lines, in this work, EMISSARY
policies are applied only to instructions cached in L2 cache. The
L1I does play a role in that only L1I misses causing starvation are
treated as high-priority. A line’s priority is only communicated
to L2 cache once it is evicted from the L1I cache. Instruction
lines cached in L2 are then guided by the EMISSARY replacement
policy. In this way, Long Reuse lines that have caused starvations
are now cached in L2 cache for longer. EMISSARY uses 2 bits per
line to record priority and for TPLRU access in the L1I and L2 caches.
It is 1024 bits in L1I (32kB cache with 64B line size) and 32,768 bits
in L2 (1MB cache with 64B line size), a little over 4kB total.

4 THE EMISSARY POLICIES
EMISSARY instruction cache replacement policies build on the
lessons of §3, namely that only lines that caused starvations will
likely cause further more starvations in the future. An EMISSARY
cache leverages this by holding on to starvation-causing lines for
longer, even if they have been less recently accessed than other
starvation-free lines. Thus, EMISSARY cache replacement policies
are bimodal. Bimodal techniques have two orthogonal aspects:mode
selection and mode treatment. These aspects are discussed in this
section.

4.1 Mode Selection
The two modes of a bimodal cache replacement policy are referred
to as high and low priority, respectively. Table 1 shows the mode
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Notation Description
1 Always High-Priority
0 Never High-Priority

R(𝑟 ) High-Priority with random probability 𝑟
S High-Priority, line miss causes decode starvation
E High-Priority, line miss occurs with an empty issue

queue
Table 1: Mode Selection Options

Notation Description
M Insert High-Priority lines in MRU position, other-

wise LRU
P(𝑁 ) Protect up to 𝑁 MRU High-Priority lines/set from

eviction
Table 2: Mode Treatment Options

selection options for the space of realizable cache replacement algo-
rithms referenced in this paper. These mode selection options are
combined in Boolean equations. For example, S&R(1/32) requires a
missed line to have caused starvation (S) during the miss AND to
have been the lucky one of 32 chosen by pseudo-random selection
(R(1/32)). EMISSARY policies all contain S in their mode selection
equations. For all policies in this paper, the mode selection is de-
termined once during cache line insertion. LRU can be thought
of as a bimodal predictor degenerated to treat all inserted lines as
high-priority by MRU position placement.

4.2 Mode Treatment
A meaningful bimodal cache replacement policy must treat lines
differently based on the selected mode. Thus, the next aspect de-
termines how high-priority lines are treated differently from low-
priority lines. All realizable cache replacement policies discussed
here use one of the two bimodal behaviors shown in Table 2.

In the first, M, bimodality comes from inserting high-priority
lines into the cache’s MRU position while placing low-priority
lines into the cache’s LRU position [49]. In the second, P(𝑁 ), is the
EMISSARY behavior. It is described byAlgorithm 1. P(𝑁 ) techniques
do not act on priority at insertion. Instead, the priority is recorded
as a priority bit (𝑃 ) associated with each line that impacts eviction.
High-priority lines have 𝑃 = 1, while low-priority lines have 𝑃 = 0.
When inserting a line L into a P(𝑁 ) cache, if the number of high-
priority lines in the set is less than or equal to the maximum 𝑁 ; if it
is then, the line L to be inserted (regardless of priority) replaces the
LRU of the low-priority lines. Thus, the step in line 2 may increase
the number of high-priority lines in the cache but cannot reduce it.
For insertions where the number of high-priority lines in the set
is greater than the maximum 𝑁 , the cache evicts the LRU among
the high-priority lines. Note that the number of high-priority lines
is not reduced less than 𝑁 at any point without a separate reset
mechanism.

The EMISSARY treatment option is orthogonal to the specific
LRU algorithm used. For lines 2 and 4 of Algorithm 1, finding

Algorithm 1 The EMISSARY Eviction Policy

1: if number of high-priority (𝑃 = 1) lines <= 𝑁 then
2: Evict the LRU among the low-priority (𝑃 = 0) lines
3: else
4: Evict the LRU among high-priority lines
5: end if

Notation Description
M:1 Always insert as MRU; Classic LRU; Baseline
M:0 Never insert as MRU (only as LRU); LRU In-

sertion Policy (LIP) [49]
M:R(𝑟 ) MRU insert with probability 𝑟 ; Bimodal Inser-

tion Policy (BIP) [49]
M:S&E MRU insert when starvation occurs and issue

queue is empty
M:S&E&R(𝑟 ) MRU insert when starvation occurs, issue

queue is empty and with probability 𝑟
P(𝑁 ):R(𝑟 ) EMISSARY bimodal behavior only; high-

priority lines selected with probability 𝑟
P(𝑁 ):S EMISSARY: high-priority on starvation

P(𝑁 ):S&E EMISSARY: high-priority on starvation and
empty issue queue

P(𝑁 ):S&E&R(𝑟 ) EMISSARY: high-priority on starvation,
empty issue queue, and with probability 𝑟

SRRIP Static re-referrence interval prediction [29]
BRRIP Bimodal re-referrence interval prediction

with probability (1/32)[29]
DRRIP Dynamic re-referrence interval predic-

tion [29]
PDP Static protective distance policy [20]
DCLIP Dynamic Code Line Preservation [28]
Table 3: Cache replacement policies explored

the LRU among the low-priority or the high-priority lines can be
calculated precisely from a true LRU algorithm. With a pseudo-
LRU (PLRU) algorithm, however, keeping separate PLRU’s for low-
and high-priority lines limits the imprecision. The PLRU-based
EMISSARY uses the Tree Pseudo-LRU (TPLRU) algorithms with
separate trees for low- and high-priority lines. When a high-priority
line is accessed, only the high-priority tree is updated. Likewise,
for a low-priority line and tree. For eviction, the appropriate tree
is used to find the line to replace, skipping any lines that do not
match the priority criteria. TPLRU requires𝑤𝑎𝑦𝑠 − 1 bits per tree.
Section 2 explored EMISSARY with true LRU. The evaluations use
the TPLRU implementation.

4.3 Cache Replacement Policies
The top of Table 3 shows the prior work and proposed bimodal
cache replacement policies used in this work. Each policy is a com-
bination of a mode selection option (individually or by combination
with a Boolean expression) and a mode treatment option described
earlier. The rest of Table 3 lists other advanced policies used in the
experimental comparison.
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5 EXPERIMENTAL EXPLORATION
This section describes the simulation infrastructure, machine model,
and benchmarks used to evaluate EMISSARY in various ways.

5.1 Simulation Infrastructure and Machine
Model

This study uses gem5, a popular cycle-accurate simulator [17], run-
ning a detailed CPU model in FS (Full System) mode, with a full
Operating System (OS). Gem5 supports a checkpointing mechanism
that creates reusable snapshots for later restarts. For datacenter
workloads, collecting gem5 checkpoints itself can be a significant
bottleneck in evaluating microarchitectural changes. To reduce this,
we used the QEMU [16] emulator and built a tool, FS_Lapidary, to
create gem5-compatible snapshots. Snapshots consist of a dump of
the physical memory, disk image, device state, CPU architectural
state, and a checkpoint file compatible with gem5. Typically, check-
point files can be only ported to another environment with the
same system board configuration. We extended gem5 to support a
hardware board configuration called virt_machine for snapshots
created with QEMU. This enables the use of QEMU fast emulation
features, like hardware acceleration with KVM [23]. We used an
ARM64 system running Ubuntu 18.04 with Linux kernel 4.15, and
an Apple M1 Mac mini to accelerate QEMU emulation.

As shown in Table 4, we used an Intel’s Alderlake-like model for
all experiments with the TPLRU config. The next line prefetcher
(NLP) is enabled in the Adlerlake-like model for the L1D, L2, and L3
caches. The baseline for all experiments has FDIP enabled. L3 is an
exclusive cache with DRRIP. L2 uses an SFL (Served From Last-level)
bit to track each line’s origin (i.e., L3 or memory). When a line with
its SFL bit set is evicted from L2, it is placed at the MRU position
in the L3. Each simulation includes a warm-up period of 5 million
instructions from the resumed state followed by a measurement
period of 100 million instructions in the detailed simulation model.

5.2 Decoupled Fetch Engine
We extended the fetch engine of the gem5 simulator to model the
aggressive front-end found in modern processors with state-of-
the-art FDIP prefetchers [52]. FDIP includes a Fetch Target Queue
(FTQ) to decouple the fetch pipeline from the rest of the processor,
enabling the fetch pipeline to run ahead of the rest of the processor
pipeline [25, 52, 53]. The fetch pipeline, including the BTB and FTQ,
has been modified to operate at the dynamic basic block granularity.

We modified the BTB such that each entry corresponds to a basic
block. In addition to the target, entries contain details pertaining to
the basic block - starting address, size, and the type of control-flow
instruction that ends the basic block. This enabled the BTB to be
indexed based on the branch target or the basic block’s starting
address instead of the branch PC. We used ARM binaries in this
work. ARM’s fixed-length encodingmade it easier to model the BTB.
Specifically, given the starting address and size of the basic block in
terms of the number of instructions, it is straightforward to find the
address of the control-transfer instruction that ends the respective
block. This flexibility helped in reducing the otherwise necessary
changes to the branch predictor. Variable-width instructions can
be supported with additional hardware.

Field \Model Alderlake-like
ISA Aarch64 (64-bit ARM)

Private L1I, L2D 32kB (I), 64kB (D) NLP, 8-way
Caches 64B line size, 2 cycle hit TPLRU

Unified L2 Cache 1MB, 16-way, 64B line size
12 cycle hit, Inclusive NLP

Shared L3 Cache 2MB, 16-way, 64B line size 32 cycle
hit latency Exclusive Victim Cache
NLP DRRIP + SFL

Branch Predictor TAGE, ITTAGE
BTB size 16K entries

Fetch Target Queue 24 entry 192-instruction
Fetch/Decode/ 8 wide
Issue/Commit
ROB Entries 512

Issue/Load/Store Queue 240 / 128/ 72
Int/FP Registers 280 / 224

Table 4: Processor configurations

The branch predictor and BTB enqueue up to one basic block
prediction per cycle to the FTQ. As in the BTB, each entry in the
FTQ contains the starting address and size of the dynamic basic
block. Naturally, enqueuing stalls on BTB misses. The next two
fall-through lines are prefetched in the event of a BTB miss. As an
enhancement, the modeled front-end also includes a pre-decoder
to update the BTB and minimize such enqueue stalls proactively.
Branch re-steers flush the FTQ before resuming predictions on the
corrected path. The FTQ along with basic-block level fetch enabled
the front-end to run-ahead from the processor pipeline soon after
every flush operation.

The FTQ enhancements allowed for the memory requests to be
issued early. This work includes an FTQ size of 24 entries with
a 192-instruction buffer. This offered the right balance by having
sufficient starvation tolerance for hiding many L1I misses (see §3)
while keeping the front-end from becoming overly aggressive in the
presence of branch mispredictions. The extended run-ahead front-
end requires the instruction buffer to be able to receive memory
responses out-of-order. Overall, our optimized FDIP provides a ge-
omean speedup of 33.1% over a no FDIP model for the 13 datacenter
benchmarks as described in Section 5.3.

5.3 Benchmarks
To evaluate EMISSARY, we used 13 popular server applications
with large code footprints from various benchmark suites: tomcat
(Apache’s implementation of Jakarta Servlet, Jakarta Expression
Language, and WebSocket [8], from Dacapo benchmark suite
[18]); kafka (Apache’s distributed event streaming application
used by companies like LinkedIn [6], from Dacapo benchmark
suite); tpcc (On-Line Transaction Processing workload [9], from
OLTP-Bench suite [19]); wikipedia (MediaWiki application on
Wikipedia dataset [3], from OLTP-Bench suite); data-serving
(Cassandra NoSQL database application [5], from Cloudsuite
V4 [21]); media-streaming (Simulates video traffic, from Cloud-
suite V4); web-search (Apache Solr search engine application [7],
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Figure 4: Instruction footprint of all benchmarks

from Cloudsuite V4); xapian (a web-search application, Tailbench
suite [32]); specjbb (A SPEC benchmark to test Java applica-
tion features [1], from Tailbench); finagle-http (Twitter’s HTTP
server [4], from Renaissance [47]); finagle-chirper (A microblog-
ging service by Twitter, from Renaissance); verilator [10] (sim-
ulates the RTL design of Rocket Chip [13] simulating quick sort
code); and speedometer2.0 (a Java Script benchmark runs on a
web browser benchmark which tests for the number of threads
spawned in a minute [2]).

Benchmarks from the Tailbench suite are compiled using the
default flags provided by the suite. verilator benchmark was
built from the code provided and also optimized further using
Facebook’s BOLT [46] binary optimization tool. All benchmarks
were built on the emulated environment described in Section 5.1.
speedometer2.0 benchmark is simulated on a Chromium web
browser.

Since all benchmarks except verilator are multithreaded, we
scaled them to a single core (𝑁 = 1) for the evaluation on the simu-
lator. To ensure that this simulation of a multithreaded workload is
meaningful, we looked for performance trend differences between
single core (𝑁 = 1) and multicore (𝑁 > 1) thread scalings on a
real x86 Linux host machine using hardware performance mon-
itoring counters. We examined the data at the feature level (e.g.,
branch misprediction rate), at the overall performance level, and
according to the methodology outlined in [57]. We determined with
confidence that the single-core scaling of these applications had
the same workload characteristics as the 𝑁 = 4 and 𝑁 = 8 scalings.

Software thread scheduling during simulation is handled by the
Linux thread scheduler in Full System mode.

The benchmarks used exhibit various characteristics, as shown
in Figure 3. specjbb, kafka, and media-stream have very high
L1D MPKI when compared to L1I MPKI. The average L1D MPKI
is higher than the average L1I MPKI. media-stream and kafka
benchmarks additionally have a higher L2 Data MPKI than L2
Instruction MPKI. However, the average L2 Instruction MPKI (9.63)
is much larger than the Data counterpart (2.69). Figure 4 shows the
instruction footprints of all benchmarks. Instruction footprints are
measured based on the total number of unique cache lines accessed
by the application during the simulation times the cache line size.
tomcat has the highest footprint of 2.57 MB and xapian has the
lowest footprint of 0.29 MB. The average footprint of the selected
workloads is 1.05 MB. The chosen workloads were selected over the
more traditional SPEC CPU workloads because they have larger
code footprints and do not easily fit into the larger L2 caches of
modern processors. Also, these benchmarks have been used in the
most related works as well [33, 34].

5.4 Policy Selection and Parameterization
Section 4 outlines a large space of possible cache replacement poli-
cies. To narrow the design space to a small and meaningful set of
policies, using an initial exploration, we first select a small set of
desirable policy types and then find a reasonable set of configura-
tion parameters for these policy types. The useful representative
policy types chosen are the ones listed in Table 3. Ideally, we would
like to find a single value of 𝑟 and 𝑁 that works well across all
policies. Based on prior work, we expect the best 𝑟 to be from 1/2 to
1/64 [49]. For a 16-way cache, useful values of 𝑁 are from 2 to 14.

Table 5 shows the geometric mean speedup across all programs
for a ranch of 𝑟 and 𝑁 values. The “#Best” row (or column) indicates
the number of best configurations found in each column (or row).
An 𝑟 value of 1/32 consistently gives the best results in many cases.
Prior work (M:R(𝑟 ), BIP [49]) also suggests 1/32 or 1/64 as the value
for 𝑟 . Generally, benchmarks reach peak performance when 𝑁 is
8, except verilator which continues to improve as 𝑁 goes to 14.
Hence, we set 𝑁 = 8 and 𝑟 =1/32 for the evaluation.
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P(𝑁 ) S&E R(1/2) R(1/8) R(1/16) R(1/32) R(1/64) S&E&R(1/2) S&E&R(1/8) S&E&R(1/16) S&E&R(1/32) S&E&R(1/64) # Best
2 -0.350 -1.511 -0.460 0.216 0.053 0.166 0.116 0.947 0.969 1.245 1.548 0
4 1.946 -0.433 0.736 1.337 1.171 0.897 1.621 1.767 2.025 2.379 1.634 0
6 1.995 0.7 1.406 1.571 2.023 1.813 1.656 2.261 2.486 2.546 1.906 5
8 1.294 0.579 0.906 1.112 1.354 1.193 2.576 2.301 2.419 2.490 2.005 2
10 -0.020 -0.995 -0.247 -0.287 -0.173 -0.066 0.125 1.47 2.507 3.15 2.018 1
12 -3.275 -4.926 -4.072 -3.751 -2.927 -1.834 -2.378 2.07 2.153 3.063 2.235 0
14 -7.698 -10.941 -8.710 -7.269 -5.472 -3.628 -5.039 -0.087 1.878 3.241 2.385 2

# Best - 0 0 2 2 3 1 0 1 4 1 -
Table 5: Geomean speedup with respect to a LRU + FDIP baseline (Alderlake model) across all configurations for various values
of 𝑟 and 𝑁 when run on a system with EMISSARY Policy at L2 Cache

5.5 Performance
Figure 5 shows the speedup versus MPKI (odd rows) and speedup
versus change in starvation cycles (Decode + IQ Empty) for com-
mitted instructions (even rows). For space reasons, tpcc is omitted
as its L2 instruction MPKI is quite low. Values of 𝑁 shown range
from 0 to 14 by 2. An 𝑁 of 0 is equivalent to the baseline. Lines
connect P(𝑁 ) to P(𝑁 + 2) for each 𝑁 from 0 to 12.

Generally, when MPKI is greater than 1.0, performance increases
and starvations reduce as 𝑁 increases to 8 (i.e., half of the 16-
way cache is preserved for high-priority instruction lines). As 𝑁
increases further, the performance gains decrease despite the con-
sistent starvation reduction. This is because the L2 cache is shared
by instructions and data. As more ways get used by high-priority
instruction lines, resources are constrained to data lines, leading to
more back-end stalls. See §5.8.

The results show that higher performance can come without
much change in MPKI. This is the central observation of all cost-
aware cache replacement policy proposals and this observation is
confirmed for the EMISSARY techniques. Not all cache misses in
modern out-of-order processors have the same cost. A significant
portion of the misses can be tolerated without degrading processor
performance. Similarly, a significant portion of the addresses that
are latency-sensitive and cause decode starvations do so every time
they are accessed. EMISSARY handles both of these categories very
efficiently. It assigns higher priority to starvation-prone addresses,
keeping them in the cache longer even if they are not accessed
frequently. EMISSARY gives lower priority to latency-tolerant ad-
dresses, but it does cache them long enough to capture as much of
their (belated) temporal locality.

The speedup and energy reduction of EMISSARY compared to
other techniques over the TPLRU baseline is shown in Figure 7.
Overall, P(8):S&E&R(1/32), the preferred EMISSARY configuration,
yields a geomean speedup of 2.49% on all benchmarks, with gains as
high as 11.7% (verilator) and as low as -1% (finagle-chirper).
Unlike others, EMISSARY does not show any significant slowdowns.

Figure 7 also shows that EMISSARY policies outperform all of
the others in terms of speedup and energy savings. The preferred
configuration, P(8):S&E&R(1/32), performs consistently better than
P(8):S&E. This is because the random filter tends to require lines to
prove themselves with multiple starvations before being marked
high-priority. This filters single reference lines very effectively, but
it also filters single decode starvation lines just as well. This is
important because high-priority reservations should be allocated

to lines that starve with high probability and frequency, especially
since an early single starvation is possible due to branch mispredic-
tions and warm-up as new regions of code are executed.

Replacement policies such as SRRIP [29], BRRIP [29], and DR-
RIP [29] are designed to keep reused lines longer in the cache than
the ones that are either used less frequently or have no reuse. Fig-
ure 3 shows that the hit rate at L2 is very high compared to the
miss rate. In such a scenario, reused lines reach the highest pri-
ority state very quickly, and very often, this is the case at L2 in
the datacenter workloads studied. When all ways in a cache set
reach a high priority state, then the state of all lines is reset to a low
priority state. In SRRIP policy, a newly inserted line would stay in
the cache longer than in BRRIP policy, where only 3% of lines stay
longer. BRRIP policy is detrimental when the newly inserted are
evicted before they can be promoted to a higher priority state. A
dynamic policy DRRIP is designed to reduce the negative effects of
BRRIP and SRRIP. A dynamic policy dedicates a small sample (32
sets) to each policy and decides the winning policy based on the
policy that contributes to fewer misses. Since the hit rate is much
higher than the miss rate at L2, deciding the winner based on the
miss rate is detrimental in the datacenter workloads studied. In a
scenario where L2 capacity is limited EMISSARY identifies a small
fraction of long reuse instruction lines that caused starvations in
the processor pipeline and preserves them in the L2 cache longer.

5.6 Contextualizing EMISSARY’s Benefits
EMISSARY’s impact is significant given how often the modeled
architectures tolerate L1I misses [25]. Prior work suggests that
increasing the front-end performance of a modern processor with a
properly tuned FDIP front-end is extremely difficult [25, 26]. These
works show that FDIP alone outperforms the latest stand-alone
prefetching policies such as EIP (one of the top prefetchers in IPC-
1) by 2.2% [26]. The authors further claim that a non-realizable
Perfect prefetcher provides just 5.4% of the performance gains [25,
26, 54]. The EIP-128KB prefetcher improves FDIP performance by
4.3% [25, 26, 54]. It does this with a significant hardware storage
cost of 128KB. In contrast, EMISSARY provides up to 3.24% with
only 4KB of additional storage.

To further contextualize EMISSARY’s performance, we compare
EMISSARY to a perfect and unattainable model with zero cycle
miss latency for all capacity and conflict instruction cache misses in
the L2. The aforementioned zero cycle miss latency model achieves
a geomean speedup of 15% over the FDIP baseline. EMISSARY
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M:1 (LRU) M:R(1/32) (BIP)

Prior Techniques EMISSARYPartial EMISSARY
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Figure 5: Speedup vs. L2 Instruction MPKI and Speedup vs. Change in Decode Starvation cycles when issue queue is empty for
instructions on the committed path. P(𝑁 ) techniques are shown as line segments with points corresponding to values of 𝑁
from 0 to 14 in increments of 2. Lines connect P(𝑁 ) to P(𝑁 + 2). TPLRU (𝑁 = 0) serves as the baseline.

achieves 21.6% of this unrealizable gain with only 4KB of additional
state.

Finally, we also compare EMISSARY to DCLIP, DRRIP, and PDP.
These techniques achieve geomean speedups of −2.48%, −2.9%, and
−3.36%, respectively, when implemented on top of the FDIP baseline
for the workloads studied in this work.

5.7 Persistence, By Itself, Improves Hit Rate
Figure 5 shows that, in a majority of the programs, to a point,
as 𝑁 increases, L2 Instruction MPKI proportionately reduces. In

other words, EMISSARY techniques not only reduce starvation but
MPKI as well. Even as the number of ways available to a significant
fraction of low-priority addresses is reduced, misses decline as well.
This was observed previously with the BIP technique [49] as well.
With the prevalence of single reference (or extremely long time
between reference) addresses, dedicating fewer cache resources
to such lines makes way for lines that would otherwise miss. In
this aspect, starvation acts as a filter, increasing the probability of
isolating such lines by assigning them low-priority. Put another way,
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Figure 6: Reduction in various stall types of P(8):S&E&R(1/32) with respect to the TPLRU + FDIP baseline policy

it helps reduce the extent to which these types of single reference
lines can pollute the cache.

5.8 Impact on Back-end Stalls
EMISSARY’s impact on commit path front-end and back-end stall
cycles is shown in Figure 6. Specifically, it depicts the reduction
in stall cycles of the preferred P(8):S&E&R(1/32) policy when com-
pared to the TPLRU baseline. Across benchmarks, EMISSARY’s
impact on front-end stalls is more evident than its impact on back-
end stalls. This is expected as EMISSARY is applied specifically to
instruction lines. Interestingly, many benchmarks show an increase
in back-end stalls but there is still an overall reduction in total stalls.

5.9 Energy Savings
We used McPAT [40] to model the energy consumption of different
cache replacement policies explored. Fig. 7 shows energy savings
for each benchmark and configuration. The energy savings are
strongly correlated with the speedups achieved because of the
relatively small amount of hardware added. In EMISSARY, there
are only two bits added per cache line, one to mark the priority set
once on insert and an additional one for TPLRU set on access. The
EMISSARY P(8):S&E&R(1/32) configuration achieves a geomean
reduction in the overall energy of 2.12% (up to 17.67%).

6 BALANCING DATA LINES
The EMISSARY policy advocated for in this work has 𝑁 = 8 maxi-
mum ways reserved for high-priority instruction lines. In a 16-way
L2 cache, this policy reserves up to half of the ways for instructions.
As mentioned in §4, once a cache with an EMISSARY policy reaches
𝑁 high-priority lines in a set, the number of high-priority lines can
never be reduced. In this section, we study the number of sets in the
L2 cache that get saturated by high-priority instruction lines (i.e., 8
lines in a set are dedicated to instructions) and propose methods to
minimize their impact on caching data lines.

Figure 8 shows the distribution of the number of cache lines occu-
pied by high-priority lines when using the P(8):S&E and P(8):S&E&R
(1/32) policies among all sets in the L2 cache at the end of the simula-
tion averaged over all programs. With P(8):S&E, finagle-chirper,
tomcat, tpcc, and verilator saturate (reaches 𝑁 ) for all sets. Less
than 25% of all sets observe saturation with the highly selective

(and more desirable) P(8):S&E&R(1/32) policy. In simulations of 1B
instructions, resetting all 𝑃 = 1 bits every 128M instructions has a
negligible impact on performance.

7 RELATEDWORK
Cache replacement algorithms have been of interest to academia
and industry for decades. This section describes several cache re-
placement policies related to EMISSARY.

7.1 Cost-Aware Cache Replacement Policies
Architects have long recognized that not all cache misses have the
same performance cost. In light of this observation, several prior
works have proposed cost-aware cache replacement policies that
give deference to lines with higher miss costs while selecting a line
to evict [35, 44, 50, 55]. All of these techniques target either data
or shared caches. We are not aware of any proposed cost-aware
replacement algorithms designed specifically for instruction caches.

CSOPT [31] is the ideal cost-aware cache replacement algorithm.
It is essentially Bélády’s OPT augmented with cost awareness. Like
OPT, CSOPT is also unrealizable.

Among the realizable cost-aware policies, MLP-aware replace-
ment policies [50] identify costly misses by observingmemory-level
parallelism. These techniques reduce the overall miss cost by at-
tempting to reduce the number of isolated misses (i.e., misses that
do not have MLP). The MLP LIN policy utilizes the miss status
handling register (MSHR) as input to cost calculation hardware
that uses fixed-point calculations. In contrast, there is no cost cal-
culation in EMISSARY other than obtaining the already-existing
starvation signal, which contributes to its energy efficiency. MLP
LIN does not always outperform its baseline, LRU.

LACS [35] is a cost-aware cache replacement policy for last-level
caches. It calculates the cost by counting the number of instructions
that the processor can executewhile themiss is being serviced. After
insertion, LACS uses reference information to adjust the priority.
Like EMISSARY, LACS requires two bits per line. However, LACS
requires a history table, counters, and enhancements to the MSHRs.
Such additional design complexity is not required in EMISSARY .

Critical Cache [55] proposes the use of a victim cache to give
performance-critical loads a second chance. Critical loads are de-
fined with heuristics related to the types of instructions executing
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Figure 7: Speedup and Energy Reduction of a range of techniques relative to TPLRU + FDIP baseline policy
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Figure 8: Distribution of high-priority lines across all sets
when guided by P(8):S&E and P(8):S&E&R(1/32) policies, av-
eraged across all benchmarks at the end of simulation.

near the load. Despite the additional hardware, a Critical Cache
does not report performance gains over LRU.

7.2 Policies Challenging LRU
Ignoring cost awareness, many techniques have been designed to
keep important lines in the cache, such as the Least Frequently Used
(LFU) replacement policy, various cache bypassing techniques [36,
42], and others. In prior work, lines not meeting a threshold may
still be inserted but in a way that has them closer to eviction [49].
These techniques proposed inserting the most recently used lines
into the LRU position to improve performance even when working
sets are thrashed. The policy was further improved by a schema
that only inserted new lines into the MRU slot with a low, random
probability. The final modification was a dynamic method, which

chose between traditional LRU and the aforementioned random
insertion policy, depending on which resulted in fewer misses for a
given workload. The parallel between this cache replacement policy
and EMISSARY is that both decide to prefer some lines over others in
cache replacement based on a factor other than recency. Of course,
EMISSARY prefers lines that are cost-effective to prefer in addition
to randomness. The key difference, though, is that EMISSARY sets
the preference with a relevant cost signal in addition to randomness.
Thus, it not only benefits from requiring lines to prove themselves
as commonly used before being deemed important to keep in the
cache but also from making this determination based on a specific
cost factor, consistently effective for many workloads.

GHRP [11] is an instruction cache replacement policy focused
on minimizing the number of misses by identifying dead blocks,
which is orthogonal to ours. It uses the access history to identify
if a block needs to be bypassed upon insertion. Else, a dead-block
predictor is used to select the candidate for eviction. GHRP’s dead-
block prediction mechanism could be combined with EMISSARY to
identify the low-priority dead blocks for eviction. Doing so might
further improve the performance of EMISSARY .

Ripple [34] is a software-only profile-guided technique to im-
prove the performance of instruction cache. A cache line that is no
longer required is identified in the offline analysis, and a cache line
eviction instruction is inserted in the binary after the last access
along all execution paths. Unlike EMISSARY, Ripple identifies lines
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that are no longer required and ensures they do not waste cache
space. Ripple is complementary to EMISSARY and could be used
alongside EMISSARY to get the best of both techniques.

In [28], the authors propose CLIP, a cache replacement policy
for instruction lines. By modifying the re-reference predictions of
instruction and data lines separately, they dynamically prioritize
instructions in a cache when the instructions cause L2 cache con-
tention. Unlike EMISSARY, CLIP prioritizes all instruction lines
blindly, without confirming that a future miss would cause front-
end stalls. Furthermore, by restricting the number of ways used for
instruction lines, EMISSARY prevents contention between data and
instruction in the L2.

7.3 Special Caching Solutions
The high-priority lines identified by EMISSARY could be due to
branches with a high misprediction rate. A special cache has been
proposed (MRC [43]) to mitigate this cost. It has also been adapted
in commercial processors as a Misprediction Recovery Buffer (MRB)
[22]. These solutions were specifically designed to mitigate branch
recovery cost on misprediction. These structures need to be small
to keep up with the timing constraints as they sit on a critical path.
These solutions are applicable when the reuse distance is short but
in large code footprints reuse distance is long which cannot be fit
into small structures. An MRC/MRB and EMISSARY can likely be
used together with success as they address orthogonal problems
(short vs. long reuse intervals).

8 CONCLUSION
This paper presents EMISSARY, a new family of cost-aware cache-
replacement policies for instructions that are well-suited for the
L2 cache. Observing that modern architectures completely toler-
ate many instruction cache misses, EMISSARY prioritizes, with
persistence, inserted lines whose misses cause decode starvation
over those whose misses did not. Without the need to track history,
coordinate with prefetchers, make predictions, or perform complex
calculations, EMISSARY consistently improves performance and
saves energy while remaining simple to implement. This allows
EMISSARY to achieve a geomean performance gain of 3.24% (up to
23.7%), and a geomean energy savings of 2.12% (up to 17.7%) over
TPLRU on top of a state-of-the-art FDIP prefetcher to model the
aggressive front-ends found in modern processors. This speedup is
21.6% of the total speedup obtained by an unrealizable model with
an ideal L2 instruction cache, with a mere 4KB hardware budget.
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