Metronome: Operating System Level
Performance Management via Self—Adaptive Computing

Filippo Sironi*, Davide B. Bartolini!, Simone Campanoni?, Fabio Cancare!
Henry Hoffmann?, Donatella Sciuto!, Marco D. Santambrogio*
!Politecnico di Milano, 2Massachusetts Institute of Technology, *Harvard University

{sironi, bartolini}@elet.polimi.it, xan@eecs.harvard.edu, cancare@elet.polimi.it
hank@csail.mit.edu, {sciuto, santambrogio}@elet.polimi.it

ABSTRACT

In this paper, we present Metronome: a framework to en-
hance commodity operating systems with self-adaptive ca-
pabilities. The Metronome framework features two distinct
components: Heart Rate Monitor (HRM) and Performance—
Aware Fair Scheduler (PAFS). HRM is an active monitor-
ing infrastructure implementing the observe phase of a self-
adaptive computing system Observe-Decide-Act (ODA) con-
trol loop, while PAFS is an adaptation policy implementing
the decide and act phases of the control loop. Metronome
was designed and developed looking towards multi—core pro-
cessors; therefore, its experimental evaluation has been car-
ried on with the PARSEC 2.1 benchmark suite.

Categories and Subject Descriptors

C.4 [Performance of Systems]|: Measurement techniques,
Performance attributes; D.4.1 [Operating Systems]: Pro-

cess Management—Scheduling; D.4.8 [Operating Systems]:

Performance—Measurements, Monitors

General Terms

Design, Management, Measurement, Performance

Keywords

Self-Adaptive Computing, Operating Systems, Performance
Management

1. INTRODUCTION

In the recent years, the demands in terms of computing
performance, functionality, reliability, availability, and ser-
viceability has grown exponentially, raising the overall com-
plexity of the hardware/software execution stack [15]. Hard-
ware developers multiply the amount of resources (i.e., cores
count, memory size, etc.), making them more and more het-
erogeneous and posing an ever—increasing burden on both

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2012, Jun 03-07 2012, San Francisco, CA, USA

Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

856

system and application developers. This is even more ev-
ident in the embedded systems domain, where capabilities
may present huge variations among different system config-
urations. Moreover, embedded systems might be required to
operate continuously for years in possibly uncertain condi-
tions where some of the environmental characteristics might
affect the behavior of the system. As an example, consider a
mobile phone: it must consume the least possible amount of
battery power while operating at different signal strengths
and perhaps with different signal types (i.e., GSM, EDGE,
3G, etc.). The amount of requirements and constraints is
gigantic.

One approach to simplify the duty of application devel-
opers is the adoption of autonomic or self-adaptive com-
puting [20] through self-adaptive hardware [19, 7] and self-
adaptive software [21]. Self-adaptive systems (i.e., systems
employing either self-adaptive hardware or software) rely on
control loops to adjust their behavior to internal and en-
vironmental changes. Such systems are required to observe
themselves and the environment, decide on a sequence of ac-
tions to perform, and apply them in order to optimize their
operations. The process of observing, deciding, and act-
ing is referred to as either Observe-Decide-Act (ODA) or
Monitor—Analyze-Plan—-Execute with Knowledge (MAPE-
K) control loop.

In this paper we make the following contributions:

e We present Metronome, a framework for self-adaptive
computing constituting an implementation of the ODA
control loop to enhance commodity operating systems.
The reference implementation of Metronome is pub-
licly available as free software’.

e We compare our active monitoring infrastructure, i.e.,
Heart Rate Monitor (HRM), with an open source, state
of-the—art solution designed over the same concept,
namely Application Heartbeats [16]. We show a con-
siderable reduction of the worst-case overhead by a
factor greater than 160x, thanks to our efforts in con-
sidering multi—core processors—related issues such as
synchronization and cache sharing.

e We present an adaptation policy, called Performance—
Aware Fair Scheduler (PAFS), to implement the de-
cide and act phases of the ODA control loop. PAFS is
an adaptive scheduling infrastructure relying on HRM
to take informed decisions and actions. We experi-
mentally evaluated PAFS through concurrent runs of
a subset of the PARSEC 2.1 benchmark suite [6].

"http://www.changegrp.org/acos/ .

35.6

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents the pro-
posed solution to implement the ODA control loop to en-
hance a commodity operating system. Section 4 and Sec-
tion 5 describe respectively HRM and PAFS. Finally, Sec-
tion 6 concludes the paper.

2. RELATED WORK

At the beginning of 2000, IBM published the autonomic
computing manifesto, proposing a vision [20] into which
computing systems manage themselves according to user—
defined goals and system—defined constraints; lately, auto-
nomic computing systems have been referred to as adaptive
or self-* computing systems. The big idea is to ease the work
of system and application developers in exploiting the avail-
able amount of resources in accordance with user—defined
goals and system—defined constraints. Software implementa-
tions include a language and compiler for algorithmic choice
with auto—tuning capabilities [4], a framework to statisti-
cally guarantee the Quality of Service (QoS) trading perfor-
mance for energy and vice versa [5], a self-tuning scheduler
to guarantee the QoS for soft real-time applications [12], a
framework for adaptive data structures and algorithms se-
lection [24], and a self-adaptive synchronization library [14].
More recently, a set of more comprehensive solutions like
PowerDial [18] and SEEC [17] were presented.

Examining to a greater extent the self-adaptive comput-
ing literature, the observe phase of the ODA control loop
received a lot of attention and contributions. With the re-
cent advances, processors significantly improved the capa-
bilities of Performance Monitoring Units (PMUs). How-
ever, alongside with capabilities, the complexity of PMUs
rose too, making the tasks of understanding and using them
progressively more difficult [23]. Various approaches using
PMUs [9, 23] are inadequate to capture user—defined goals
and system—defined constraints; in addition, they are also
difficult to port between platforms and operating systems.
Performance and Evaluation Monitoring (PEM) [10] is an
enabling technology for autonomic computing systems and
Continuous Program Optimization trying to abstract and
extend PMUs. On one hand, the proposed infrastructure is
complete (i.e., potentially supporting multiple programming
languages) and has been successfully ported on the K42 re-
search operating system [22]. On the other hand, PEM poses
a notable burden on system and application developers, who
must provide both an XML specification of the events they
want to track and the code to handle the event.

Application Heartbeats [16] is an active monitoring in-
frastructure designed and developed for self-adaptive com-
puting. It provides application developers a way to expose
user—defined performance goals and a method to signal exe-
cution progresses; both the performance goals and measures
are then made available to system developers. Application
Heartbeats has the unquestionable advantage of being ex-
tremely simple with respect to other solutions.

3. METHODOLOGY

Our methodology requires partitioning the components
that make the system self-adaptive in three distinct classes:
applications, monitoring infrastructures, and adaptation poli-
cies. An application is an element capable of making one or
more entities of the system aware of its goals and progresses;

857

Measures

Goals & Constraints

Adaptation

Monitoring

Apps
bps Infras.

Policies

System

Figure 1: System architecture diagram showing
the relations incurring among system, applications,
monitoring infrastructures, and adaptation policies.

we refer to those applications that do not provide such infor-
mation as legacy applications. A monitoring infrastructure
is an entity equipped with sensors able to gather informa-
tion from applications or from the system. Within this con-
text, it is important to notice that goals and constraints
are defined using data measurable by means of a monitoring
infrastructure. An adaptation policy is an element whose
purpose is to observe applications through monitors, decide
on a strategy to change the overall behavior of applications
or the system, and act via a set of predefined actuators, with
the objective of meeting goals and satisfying constraints. A
self-optimizing application is a special kind of application
in which the roles of application and adaptation policy co-
exist. The three distinct classes of components cooperate to
establish the ODA control loops as highlighted in Figure 1.

Two distinct roles take shape: application developers and
system developers. Application developers create applica-
tions and, if required, instrument them to provide user-
defined goals and execution progresses to the self-adaptive
system. System developers design and implement monitor-
ing infrastructures and adaptation policies; monitoring in-
frastructure can be either active (i.e., requiring to manually
instrument the applications) or passive, and allow the self-
adaptive system to collect as much information as possible,
while the adaptation policies provide as many ways as pos-
sible to change the behavior of the self-adaptive system.

We propose Metronome, a framework capable of exploit-
ing the availability of user-defined performance goals and
measures collected through Heart Rate Monitor (HRM) to
enhance the scheduling infrastructure of a commodity oper-
ating system by means of Performance—Aware Fair Sched-
uler (PAFS). PAFS is an adaptation policy demonstrating
the applicability of the methodology over the Completely
Fair Scheduler (CFS), the scheduling infrastructure of the
Linux kernel. Extending a commodity operating system ker-
nel such as Linux comes naturally, since it is widespread and
natively collects most of the information to take informed
decisions and actions.

4. HEART RATE MONITOR

The ideas behind Heart Rate Monitor (HRM) resemble
those of the Application Heartbeats Application Program-
ming Interface (API) and exploit the well-known idea of
heartbeat, already used in the past for measuring perfor-
mance, expressing progresses, and signaling availability [11].
Hoffmann et al. [16] proposed the Application Heartbeats

35.6

API. It is a simple yet effective interface [14, 18, 17] for ap-
plication developers to express both performance goals and
execution progresses and for system developers to retrieve
performance measures.

The Application Heartbeats API intentionally leaves some
behavior undefined so that it can be customized for the
needs of particular implementations. Performance—Aware
Fair Scheduler (PAFS), for example, needs to be able to ac-
cess the heartbeat data from within the kernel at extremely
low latency. To meet this goal, we develop a partitioned im-
plementation of the API, in which the kernel makes shared
pages available for storing heartbeat data. These pages can
be accessed much more quickly from the kernel-space than
the POSIX shared pages used by the reference implemen-
tation of the Application Heartbeats API [1]. Taking ad-
vantage of the opportunity to customize the implementation
allows a much higher performance implementation of PAF'S,
and other potential kernel-space adaptation policies.

HRM is an active monitoring infrastructure integrated
within Linux, which slightly revise the interface of Applica-
tion Heartbeats API. HRM provides and high performance

implementation supporting diverse parallelization models (i.e.,

multiple processes, multiple threads, or any feasible combi-
nation) and avoiding synchronization. The design of HRM
makes its porting to new platforms a negligible task?® with-
out losing in functionality. HRM comes with a slightly mod-
ified API with respect to the Application Heartbeats API.
However, it still allows application developers to easily in-
strument applications and system developers to build both
user and kernel-space adaptation policies. The interaction
model between applications and adaptation policies can be
seen, similarly to PEM [10], as a producer/consumer model
in which applications work as producers and adaptation poli-
cies work as consumers, with the monitoring infrastructure
in the middle.

4.1 Definitions

This section provides a set of definitions to better under-
stand the remainder of this paper.

A running instance of a program, including both its code
and data, is called a process; a unique Process IDentifier
(PID) identifies a process in Linux. A thread is a finer
grained unit of execution and conceptually exists within a
process, sharing both the code and the data with other sib-
ling threads; in Linux, a unique Thread IDentifier (TID)
identifies a thread. A task is any unit of execution, being
either a process or a thread. Given these definitions, an ap-
plication can be defined as a set of tasks pursuing a set of
objectives (e.g., encoding an audio/video stream). Being a
set of tasks, an application can be single—threaded, multi—
threaded, multi—processed, or any combination of them and
a monitoring infrastructure should account for this.

A heartbeat is a signal emitted by any task of an appli-
cation at a certain point in the code indicating execution
progresses. A hot—spot is a performance-relevant portion of
code executed by any task of an application and usually ab-
stracts the most time consuming portion of an application.
It is useful to define the concept of group®; a group is a subset

2The design of HRM makes the porting process from Linux
to other kernels (e.g., BSD kernels) a straightforward task.
3This definition of group does not relate to any other group
currently supported in Linux nor in other UNIX-like oper-
ating systems.

858

of an application’s tasks pursuing a common objective (e.g.,
encoding a video stream in audio/video encoder). Groups
are non-intersecting subsets meaning a task belongs to only
one group at a time. It is important to notice how such a
constraint does not neglect the existence of multi-grouped
applications (e.g., a group encoding the audio stream and
a group encoding the video stream in an audio/video en-
coder), a case Application Heartbeats completely neglects.
The concept of group is key to support diverse paralleliza-
tion models, the only thing needed is to link a task, being
it a process or a thread, to a group. Within HRM, a unique
Group IDentifier (GID) identifies a group. Given the defini-
tions of hot—spot and group, it is possible to define a many—
to—one relations between such entities. Each of the tasks
belonging to a group executes the same hot—spot, which is
characterized by its heartbeats count, performance measures,
and performance goal. The heartbeats count is linked to the
number of times the hot—spot is executed. Performance mea-
sures are expressed in heartbeats per second and capture the
concept of heart rate, which is the frequency at which tasks
emit heartbeats. The performance goal is expressed as a de-
sired heart rate range, delimited by a minimum heart rate
and a maximum heart rate.

4.2 Evaluation

The implementation of HRM is an extension of Linux. In
the remainder of this section, we compare HRM to the refer-
ence implementation of the Application Heartbeats API [1]
looking towards efficiency. Experimental results were col-
lected on a workstation equipped with a single Intel Core
i7-870 quad—core processor running at 2.97 GHz featuring
8 MB of shared LLC (L3), 4 GB of DDR3-1066 non-ECC
RAM, and a 500 GB 7200 RPM SATA2 hard disk. Ad-
vanced features such as Intel Hyper—Threading Technology,
Intel Turbo Boost Technology, and Enhanced Intel Speed-
Step Technology were disabled. The AMD64 version of De-
bian 6.0, alias “squeeze”, was configured to run the Linux
kernel [3] 2.6.35.13 extended with HRM.

We evaluated the overhead of the two monitoring infras-
tructures through a multi-threaded micro-benchmark. The
micro-benchmark allows specifying the level of parallelism
(i.e., the number of threads to spawn) and the amount of
heartbeats to emit. Since the hot—spot of this application
is a tight loop emitting heartbeats, the heart rate (i.e., the
throughput) quantifies the overhead of the employed moni-
toring infrastructure: the higher the throughput, the lower
the overhead.

Figure 2 shows the throughput emitting 1 million heart-
beats varying the amount of parallelism from 1 to 8 threads.
The experimental results yield evidence of how HRM out-
performs the reference implementation of the Application
Heartbeats API. HRM scales almost perfectly with the num-
ber of threads. As expected, the peak performance of HRM
is obtained with 4 threads, which saturate the quad—core
processor of the workstation. According to the experimental
results, HRM poses a worst—case overhead between 1 and 2
orders of magnitude (up to a 160x factor) lower than the ref-
erence implementation of the Application Heartbeats API.
We argue the advantage is due to the multi—core processor
aware design accounting for issues such as synchronization
and cache sharing [25].

The reference implementation of the Application Heart-
beats API employs a protected shared data structure; syn-

35.6

@ Application Heartbeats APl @ Heart Rate Monitor
reference implementation

107

Throughput [heartbeats/s]

Threads

Figure 2: Average micro—benchmark throughput
emitting 1M heartbeats with [1, 8] threads over 1000
executions. Higher is better.

chronization guarantees its consistency. The emission of
heartbeats requires synchronization among threads, impos-
ing their serialization, potentially compromising applications
scalability and it is synchronous with the performance mea-
sures computation. Moreover, time-consuming boundary
crosses between user and kernel-space occur when retriev-
ing the wall-clock time. Conversely, HRM adopts a data
structure distributed among all the threads of a group and
across the user and kernel-space boundary. The emission
of heartbeats reduces to an atomic increment of a cache
line—aligned per—thread counter, while a kernel-space high—
precision timer handler computes the performance measures
asynchronously with a MapReduce-like model [13]. The
asynchronous computation of performance measures avoids
time—consuming boundary crosses.

5. PERFORMANCE-AWARE FAIR SCHED-
ULER

Within an operating system, the scheduling infrastructure
is the component in charge of determining the allotment of
the available computational resources to the running tasks.
The choice of the policy or policies ruling the scheduling in-
frastructure can highly impact the behavior of the system,
favoring either run time (i.e., throughput), latency (i.e., re-
sponse time), or overall fairness (i.e., wait time). This trade—
off can usually be statically tuned in commodity operating
systems. Due to its high impact on the behavior of the
system, the scheduling infrastructure represents a suitable
component in which adaptive capabilities can be embedded,
enabling it to pursue user-defined performance goals.

Performance-Aware Fair Scheduler (PAFS) is an adapta-
tion policy extending the scheduling infrastructure of Linux;
more precisely, it enhances Completely Fair Scheduler (CFS),
which is one of the subclasses of the hierarchical schedul-
ing infrastructure found in Linux. PAFS exploits the infor-
mation provided by HRM (i.e., performance measures and
user-defined performance goals) to introduce performance—
awareness, a new factor that is taken into account when
defining fairness. At first glance, PAFS can be mislead-
ingly considered a sort of (soft) real-time scheduling infras-
tructure [8] with a QoS definition based on the user—defined
performance goals. However, since we extended a best—effort
scheduling infrastructure without altering all of its desirable
properties (e.g., management of both legacy and non—legacy

859

applications, non-starvation, absence of admission control,
etc.), PAFS cannot provide any guarantees on matching
user—defined performance goals.

5.1 Design

The definition of fairness of CFS regards processor time;
the basic idea is simple: being fair in providing processor
time to tasks. When the time for tasks is out of balance
(i.e., one or more tasks are not given a fair amount of time
relative to others), then those out-of-balance tasks should
be given time to execute. CFS maintains the amount of
processor time provided to a given task in what is called the
virtual run—time. The smaller a task’s virtual run—time the
higher its need for the processor?.

All runnable tasks are sorted in a time—line implemented
with a red-black tree® according to the key value reported
in Equation (1), where ¢ represents the i—th task, vruntime;
is the virtual run—time of the i—th task, and vruntimenn is
minimum virtual run—time within the time-line.

vruntime; — vruntimemin (1)
Tasks with the gravest need for processor time (i.e., lowest
virtual run—time) are located toward the left side of the tree
while tasks with the least need for processor time (i.e., high-
est virtual run—times) are located toward the right side of
the tree. The scheduling infrastructure always picks up the
left—most task in the time-line; the task makes use of its
processor time, its virtual run—time is updated, and then it
is put into the time-line again. In this way, tasks on the
left side are given processor time and tend to migrate to the
right side. The virtual run—time is updated as reported in
Equation (2), where i represents the i~th task, Aexectime;
is the execution time spent by the i—th task, w; is the weight
associated with the nice value of the i—th task, and wq is the
weight associated with nice value 0.

Aexectime;

vruntime; = vruntime; + X Wo (2)

w;

PAFS harnesses this infrastructure and, at each update
of the virtual run—time of a non—legacy application task, it
weighs the execution time using a performance—aware indi-
cator, according to Equation (3), g(¢) represents the group
(i.e., the HRM group) containing the i-th task, Iy is the
performance-aware indicator of the g(i) group, heart_ratey(,)
is the current heart rate of the g(i) group, and heart_ratey(;
is computed according to Equation (4) and represents the
user—defined performance goal. In Equation (4) min_heart_-
ratey(;y and max_heart_rategy(;y are the lower bound and the
upper bound of the desired heart rate window.

1 B heart_rateg;) 3)
9@ = heart_rateg;)

min_heart_ratey(;y + max_heart_ratey;
2
(4)

4The definition of fairness of CFS also accounts for sleeping
tasks (e.g., tasks waiting for I/O operations); sleeping tasks
receive a fair amount of processor time when they eventually
need it.

5A red-black tree is a self-balancing binary tree where the
left—most leaf has the smallest key value.

heart_rategy;y =

35.6

The performance—aware indicator is greater than 1 when the
g(i) group’s current heart rate is over the middle of the de-
sired heart rate window), it is bounded between 0 and 1
when the g(¢) group’s current heart rate is below the mid-
dle of the desired heart rate window. When the g(i) group
is either over (i.e., heart_ratey;y > max_heart_ratey(;)) or
under (i.e., heart_ratey;y < min_heart_ratey(;) perform-
ing, the virtual run—time of tasks belonging to non—legacy
applications is updated as reported in Equation (5), while it
is still updated as reported in Equation (2) if the g(¢) group
is performing within the desired heart rate window (i.e.,
man_heart_ratey(;y < heart_ratey;) < max_heart_ratey().

Aezectime; x Il
X

vruntime; = vruntime; + wo (5)

w;

Weighing the execution time spent by tasks belonging to
non-legacy application through the performance-aware in-
dicator either speeds up or slows down the migration of
task from the left side to the right side of the time-line
according to their performance measure and performance
goal. Moreover, the non—starvation property of CFS is pre-
served, since we impose a minimum value grater than 0 for
the performance—aware indicator.

5.2 Evaluation

The implementation of PAFS is an extension of CFS of
Linux. Experimental results were collected using the same
workstation described in Section 4.2; the AMDG64 version
of Debian 6.0, alias “squeeze”, was configured to run Linux
2.6.35.13 extended with both the HRM and PAFS.

We evaluated PAFS with 3 different workloads, each syn-
thesized using two 4-threaded applications from the PAR-
SEC 2.1 benchmark suite. The first workload (i.e., miz 1)
comprised facesim and ferret. Facesim is a virtual real-
ity application simulating the underlying physics of a hu-
man face and generating corresponding frames. Ferret is
a content—based similarity search application. The second
workload (i.e., miz 2) consisted of blackscholes and swap-
tions. Blackscholes is an application to price portfolios of
options using partial differential equations. Swaptions is an
application to price portfolios of options using Monte Carlo
experiments. The third workload (i.e., miz 8) embodied
facesim and fluidanimate, which is a virtual reality applica-
tion simulating incompressible fluids underlying physics.

We ran each workload with CFS (i.e., legacy execution)
and PAFS (i.e., non-legacy execution). Regarding the non—
legacy execution, we defined reachable performance goals,
advantaging either one application or the other. Table 1
reports the execution time for each application and work-
load; PAFS consistently ends the execution of the entire
workload before CFS. Figure 3 highlights how PAFS con-
stantly reduces the normalized mean squared error between
the performance measure (i.e., the current heart rate) and
the performance goal (i.e., desired heart rate window).

Figure 4 provides insights regarding the first workload and
PAFS behavior. The execution time of facesim is higher
than the execution time of ferret; when ferret ends its exe-
cution, the performance measure of facesim grows with both
CFS (see Figure 4a) and PAFS (see Figure 4b). The weigh-
ing of the virtual runtime is not enough to constrain the
performance measure of an application when there is little
to no contention. This behavior explains the high values of
the normalized mean squared error reported in Figure 3 for

860

1.0
—
e
= 0.8
g=]
I
S
2 0.6
S
3 |
=
E 04-
<
=
E 0.2
—_
5
Z.

T @) A P D X D
BN Sy WP Y W g
ST KT @V O 0T @V @ g (oY
PSS S @@ S &‘;\:\,\ PO
< W\

Figure 3: NMSE between the performance mea-
sure and goals of non—legacy executions with PAFS
where 1.0 is the NMSE of the legacy execution with
CFS. Lower is better.

both facesim and, consequently, mix 1.

6. CONCLUSIONS

This paper presented Metronome, a framework to enhance
Linux with self-adaptive computing capabilities. Metro-
nome features a monitoring infrastructure, namely HRM,
and an adaptation policy, namely PAFS. HRM computes
performance measures for non-legacy applications and al-
lows them to expose user—defined performance goals. PAFS
drives non-legacy applications towards meeting user—defined
performance goals, modifying the scheduling infrastructure
of Linux. HRM represents an improvement with respect
to Application Heartbeats, an open source, state—of-the—
art monitoring infrastructure, both in terms of functionality
and performance. In addition, the methodology at the very
base of Metronome decouples non—legacy applications from
adaptation policies, which become completely transparent to
them thanks to the presence of monitoring infrastructures,
leaving a lot of space for further improvements.

7. REFERENCES

[1] Application Heartbeats.
http://code.google.com/p/heartbeats/.

[2] Linux Programmer’s Manual.
http://kernel.org/doc/man-pages/.

[3] The Linux Kernel. http://wuw.kernel.org/.

[4] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. PetaBricks: A Language
and Compiler for Algorithmic Choice. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[5] W. Baek and T. M. Chilimbi. Green: A Framework for
Supporting Energy—Conscious Programming using
Controlled Approximation. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2010.

(6] C. Bienia. Benchmarking Modern Multiprocessors. PhD

thesis, Princeton University, 2011.

R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated

Management of Multiple Interacting Resources in Chip

Multiprocessors: A Machine Learning Approach. In

Proceedings of the 415t Annual IEEE/ACM International

Symposium on Microarchitecture, 2008.

[8] S. A. Brandt, S. A. Banachowski, C. Lin, and T. Bisson.
Dynamic Integrated Scheduling of Hard Real-Time, Soft
Real-Time and Non-Real-Time Processes. In 24" IEEE

[7

35.6

Table 1: Standard mean and standard deviation of the execution time for each application and workload run
with CFS and PAFS over 100 executions

Workload Application

Completely Fair Scheduler

Performance—Aware Fair Scheduler

Std. Mean [s] Std. Deviation [s] Std. Mean [s] Std. Deviation [s]
mix 1 facesim 250.890 0.169 240.310 0.237
ferret 163.337 0.247 131.402 0.126
mix 2 blackscholes 92.819 0.059 108.659 0.037
swaptions 131.931 0.028 103.431 0.017
mix 3 facesim 237.206 0.673 227.559 0.679
fluidanimate 184.537 0.444 212.766 0.405
= — facesim = ==—=- ferret = — facesim @ ===—=- ferret
> 3 o 37
ER e PR /
<] <]
i] A] M_/
IR v e - T Lofese NesoeoreseT
s 1 =]
= 0 100 150 200 250 - 0 50 100 150 200 250
Time [s] Time [s]

(a) Legacy executions with CFS.

(b) Non-legacy executions with PAFS.

Figure 4: Normalized current heart rates for mix 1 where [0.95, 1.05] is the normalized performance goal
(i.e., gray—shaded area). Nearer the gray—shaded area is better.

(9]

[10]

(11]

(12]

(13]

[14]

(15]

(16]

(17]

Real-Time Systems Symposium, 2003.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
Portable Programming Interface for Performance
Evaluation on Modern Processors. International Journal of
High Performance Computing Applications, 14(3), 2000.
C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W.
Wisniewski. Performance and environment monitoring for
continuous program optimization. IBM Journal of Research
and Development, 50(2.3), 2006.

W. Chen, S. Toueg, and M. Aguilera. On the Quality of
Service of Failure Detectors. IEEE Transactions on
Computers, 51(1), 2002.

T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli.
Self-tuning Schedulers for Legacy Real-Time Applications.
In Proceedings of the fifth European Conference on
Computer Systems, 2010.

J. Dean and S. Ghemawa. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6"
USENIX Symposium on Operating Systems Design and
Implementation, 2004.

J. Eastep, D. Wingate, M. D. Santambrogio, and

A. Agarwal. Smartlocks: Lock Acquisition Scheduling for
Self-Aware Synchronization. In Proceedings of the seventh
International Conference on Autonomic Computing, 2010.
S. Fuller and L. Millett. Computing Performance: Game
Over or Next Level? Computer, 44(1), 2011.

H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller,
and A. Agarwal. Application Heartbeats: A Generic
Interface for Specifying Program Performance and Goals in
Autonomous Computing Environments. In Proceedings of
the seventh International Conference on Autonomic
Computing, 2010.

H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva,
and A. Agarwal. SEEC: A Framework for Self-aware
Management of Multicore Resources. Technical Report

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

861

MIT-CSAIL-TR-2011-016, Massachusetts Institute of
Technology, Computer Science and Artificial Intelligence
Laboratory, 2011.

H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,

A. Agarwal, and M. C. Rinard. Dynamic knobs for
responsive power—aware computing. In Proceedings of the
16" International Conference on Architectural Support for
Programming Languages and Operating Systems, 2011.

E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana.
Self-Optimizing Memory Controllers: A Reinforcement
Learning Approach. In Proceedings of the 35" Annual
International Symposium on Computer Architecture, 2008.
J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing. Computer, 36(1), 2003.

M. Salehie and L. Tahvildari. Self-Adaptive Software:
Landscape and Research Challenges. ACM Trans. Auton.
Adapt. Syst., 4(2), 2009.

D. D. Silva, O. Krieger, R. W. Wisniewski, A. Waterland,
D. K. Tam, and A. Baumann. K42: An Infrastructure for
Operating System Research. SIGOPS Oper. Syst. Rev.,
40(2), 2006.

B. Sprunt. Managing The Complexity Of Performance
Monitoring Hardware: The Brink Andabyss Approach.
International Journal of High Performance Computing
Applications, 20(4), 2006.

N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M.
Amato, and L. Rauchwerger. A Framework for Adaptive
Algorithm Selection in STAPL. In Proceedings of the Tenth
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2005.

E. Z. Zhang, Y. Jiang, and X. Shen. Does cache sharing on
modern CMP matter to the performance of contemporary
multithreaded programs? In Proceedings of the 15" ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2010.

35.6

APPENDIX
A. HEART RATE MONITOR

This section explains the design and implementation of
HRM (see Appendix A.1) and shows additional experimen-
tal results gathered during the evaluation of HRM (see Ap-
pendix A.2).

A.1 Design and Implementation

HRM is an active monitoring infrastructure designed to
be simple, effective, and efficient. Simplicity is achieved
through a very compact API; effectiveness comes with the
support of diverse parallelization models through groups and
the support of both user and kernel-space adaptation poli-
cies; finally, efficiency is achieved thanks to the partitioned
design between user and kernel-space accounting for multi—
core related issues such as synchronization and cache shar-
ing.

A.l.l1 User-space

The user—space partition of HRM is implemented through
a library, namely libhrm, exposing the API for both pro-
ducers (i.e., applications) and consumers (i.e., adaptation
policies). The complete API is reported in Table 2.

The API exposes a function to attach the current task to
the group identified by GID as either a producer or a con-
sumer: hrm_attach; this function involves multiple bound-
ary crosses since it switches from user to kernel-space to
setup data structures, memory, and timers. Once the virtual
memory is mapped, the current task can set the user—defined
performance goal making it system—wide available through:
hrm_set_min_heart_rate, hrm_set_max_heart_rate, and
hrm_set_window_size. These three functions respectively
set the lower bound over the performance measure, the up-
per bound over the performance measure, and the amount
of sample to use to compute the window heart rate. As
highlighted in Table 2, the functions to set the user—defined
performance goal are accessible to producers only, while con-
sumers are allowed to call the functions to retrieve the user—
defined performance goal: hrm_get_min_heart_rate, hrm_-
get_max_heart_rate, and hrm_get_window_size. Perfor-
mance measures can be retrieved, like the user—defined per-
formance goal, by either producers or consumers through:
hrm_get_global_heart_rate and hrm_get_window_heart_-
rate. HRM provides both a global performance measure
and a window performance measure because different appli-
cations may be concerned with either long or short-term
trends. The global performance measure is supposed to
catch long—term trends since it averages the whole execu-
tion of an application while the window performance mea-
sure is meant to capture short—term trends being a moving
average. Short—term trends should be intended as variable—
length trends since the length is controlled by the window
size, which is part of the user—defined performance goal, and
the timer period, which is a kernel compile time parameter
controlling the update frequency for the performance mea-
sures.

The most important function exported by libhrm is heart-
beat. Calls to this function are inserted within the hot—spot
of an application to signal progresses in the execution; the
amount of progresses can be specified through the integer
parameters the function accepts.

862

> kthreadz —*

kthread x }—'

Y

—

kthread y

)

measures
goal
page

/

Figure 5: Data structure involving the linked-list
of groups and the linked—list of producers and con-
sumers (per group), set of pages to store per thread
counters, and single page to store both the perfor-
mance measures and the performance goal.

A.1.2 Kernel-space

The kernel-space partition of HRM is implemented as an
extension of the Linux kernel and can be considered the core
of the active monitoring infrastructure.

The basic data structure behind HRM is a linked-list of
groups, shown in Figure 5. The linked—list of groups is pro-
tected by a global spinlock, which is needed to guarantee
consistency when modifying the linked-list (i.e., group ad-
dition or deletion). More common operations involving a
single group are not required to own the global spinlock;
instead, they may be required to own the members read—
write lock (read/write lock). A read/write lock was chosen
instead of a spinlock because of the unbalance between read
and write operations over the linked-lists of producers and
consumers. Each group allocates a set of pages to store per
thread counters (i.e., default 1 page up to 16 pages®) and
a single page to store both the performance measures and
the performance goal as depicted in Figure 5. As Figures 6
and 7 shows, pages are shared across the kernel and the user
address spaces; moreover, since HRM supports diverse par-
allelization models through the concept of group, pages may
be shared across multiple user address spaces since each of
the user thread may belong to a different process.

Figure 6 gives a more accurate view of the layout of the
pages storing the counters; as the least significant portion
of the addresses highlight, each counter is aligned to the
size of the cache line. Cache line alignment results in a
slightly less efficient use of the available memory; however,
we argue the performance improvements due to cache line
alignment on multi and many—core processor and especially
on multi—processor systems, which necessitate off—chip com-
munication to maintain cache coherency, is such that more
memory can be allocated, being an increasingly available
resource in modern computing systems. The content of the

SThe limit of 16 pages to store per thread counters is com-
pletely arbitrary and can be boosted through the Linux ker-
nel configuration utility.

35.6

Table 2: libhrm API'?

Function

Description

hrm_attach(int gid, bool_t consumer)
hrm_detach()

Attach the current task to the group identified by gid as either a producer or consumer
Detach the current task

hrm_set_min_heart_rate(uint32_t min_heart_rate)®
hrm_set_max_heart_rate(uint32_t max_heart_rate)’
hrm_set_window_size(size_t window_size)®

Set the minimum heart rate in the user—defined performance goal
Set the maximum heart rate in the user—defined performance goal
Set the window size in the user—defined performance goal

hrm_get_min_heart_rate(uint32_t *min_heart_rate)
hrm_get_max_heart_rate(uint32_t *max_heart_rate)
hrm_get_window_size(size_t *window_size)

Get the minimum heart rate from the user—defined performance goal
Get the maximum heart rate from the user—defined performance goal
Get the window size from the user—defined performance goal

hrm_get_global_heart_rate(uint32_t *global_heart_rate)
hrm_get_window_heart_rate(uint32_t *window_heart_rate)

Get the global heart rate from the performance measure
Get the window heart rate from the performance measure

int heartbeat (uint64_t n)?

Emit n heartbeats

!Every function receive an additional parameter of type hrm_t * pointing to the underlying data structure
2Every function return a value of type int containing either 0 or an error number

3Every task attached as a consumer is not allowed to call this function

kthread 1 thread 1
0x..0000
kthread 2 0x..0040 thread 2
! |
P , 0x..0FCO P ,
| | | |
0x..1000
l ! | |
oo ‘ 0x..1040 oo ‘
! |
kthread n thread n

Figure 6: Memory layout and access pattern of the
pages storing per thread counters.

pages devoted to store the counters is the most critical to
HRM since it can be concurrently accessed at a high rate by
both the kernel and user threads. Distribution avoid syn-
chronization among user threads, while heavy weight syn-
chronizations between kernel and user—space are avoided
by adopting atomic operations; hence, a function call to
heartbeat reduces to an atomic increment of a per—thread
counter. Due to cache line alignment, the number of coun-
ters is architecture—dependent; the reference implementa-
tion of HRM allocates standard sized pages whose size is 4
kB, while the size of cache lines of x86 and x86—64 processors
is 64 bytes, with such parameters, each page can contain up
to 64 counters.

Figure 7 shows the single page each group allocates to
store both the performance measures and the performance
goal; conversely to what happens with the counters, the per-
formance measures and the performance goals are not dis-
tributed across the group. As reported in Section 4, HRM
provides both a global heart rate (i.e., long—term perfor-
mance measure) and a window heart rate (i.e., short—term
performance measure); they are respectively computed ac-
cording to Equations (6) and (7) in which ¢ indicates the
group, t is the current time stamp, to is the group cre-
ation time stamp, and ¢, is the time stamp at which win-
dow started. The performance measures are asynchronously

863

kthread 1 thread 1
kthread 2 Y ¥ thread 2
0x..0000
SRS) 0x..0040 e)
1 - -~ 1
kthread n J t thread n

Figure 7: Memory layout and access pattern of the
page storing the performance measures and the per-
formance goal.

updated by the kernel in the context of a High—Resolution
(HR) timer after acquiring the members read—write lock in
read mode; the adoption of asynchronous updates for per-
formance measures avoids boundary crosses to retrieve the
current time stamp. The period of the HR timer can be
tuned through a kernel compile time parameter.

>, enti(t)
t—to

> enti(t) — enti(tw)
r— (7)

The asynchronous computation of the performance measures
is fundamental for providing and high performance imple-
mentation of the Application Heartbeats API. To guarantee
high performance, HRM sacrifices a tiny bit of accuracy;
heartbeats may be accounted with a delay which is at most
equal to the period of the HR timer. This behavior fits into
one of the open spot of the Application Heartbeats API. The
performance goal is made up of a lower and an upper bound
defining a heart rate range; moreover, the performance goal
contains also the window size to compute the window heart
rate.

HRM extends the proc(5) process information pseudo—
file system (procfs) [2] to provide all the necessary entry

ghrg(t) = (6)

whrgy(t) =

35.6

@ HRM @ HRM (optimized)

Speedup

4 5
Threads

Figure 8: Speedup on the throughput of the opti-
mized vs. non—optimized implementation of HRM
with 1 to 8 threads over 1000 executions. Peak per-
formance should be reached with 4 threads since the
workstation features a quad—core processor. Higher
is better.

points to attach (detach) threads to (from) a group and
mmap(2) [2] the pages storing per thread counters and both
the performance measures and the performance goal.

A.2 Evaluation

As reported in [25], cache sharing is an important fac-
tor in modern multi—core processors and, we add, in multi—
processor systems. The initial implementation of HRM did
not adopt any smart page layout, allowing more than one
per—thread counter to reside in a single cache line. False
sharing of cache lines resulted in an unexpected contention
over the memory hierarchy and suboptimal performance.
Figure 8 shows the speedup thanks to page layout opti-
mization; experimental results were collected on the same
workstation and with the same procedure described in Sec-
tion 4.2 using the non—optimized and the optimized imple-
mentations of HRM; note how HRM scales almost perfectly
reaching 3.7x speedup with 4 threads.

The same experiment was repeated on a second worksta-
tion equipped with a single Intel Pentium D 820 dual-core
processor running at 2.80 GHz featuring 1 MB of core pri-
vate LLC (L2) per core, 2 GB of DDR2-800 non-ECC RAM,
and a 250 GB 7200 RPM SATA hard disk. Enhanced Intel
SpeedStep Technology was disabled. The AMDG64 version
of Debian 6.0, alias “squeeze”, was configured to run the
Linux kernel 2.6.35.13 extended with HRM. Due to the per—
core private last—level cache, cache coherency necessitate
off—chip communication through the Front-Side Bus (FSB)
and the northbridge; this limitation makes the workstation
more similar to a multi—processor system instead of a multi—
core processor system. Figure 9 shows the speedup due to
the page layout optimization when costly off—chip commu-
nication is employed to maintain cache coherency. When
2 threads are employed, the non—optimized implementation
of HRM incurs in a sensible slowdown while the optimized
implementation of HRM scales almost linearly (i.e., speedup
near 2x) showing the real advantage of the smart page lay-
out.

To further investigate the implications of HRM, experi-
mental results were collected on the same workstation de-
scribed in Section 4.2 using 5 out of 13 applications of the

864

@ HRM @ HRM (optimized)

2.0x

1.5x

1.0x |

Speedup

U.OX{

Ox

4 5
Threads

Figure 9: Speedup on the throughput of the opti-
mized vs. non—optimized implementation of HRM
with 1 to 8 threads over 1000 executions. Peak per-
formance should be reached with 2 threads since the
workstation features a dual-core processor. Higher
is better.

PARSEC 2.1 benchmark suite. For the non—legacy applica-
tions, HRM was setup to provide only the global heart rate
and the heart rate computation period was set to 100 ms.
Table 3 put forth evidence that HRM imposes low monitor-
ing overhead on real applications, with a maximum of 1.26%
for facesim.

B. PERFORMANCE-AWARE FAIR SCHED-
ULER

This section provides insights regarding the second and
the third workloads described in Section 5.2, whose results
were reported in Table 1 and Figure 3 (see Appendix B.1).

B.1 Evaluation

Figure 10 explains the very low normalized mean squared
error reported in Figure 3 for the first workload. Both
blackscholes and swaptions are fairly regular applications;
as Figure 10b shows, their behavior is simple to anticipate
and control and they can be driven towards their perfor-
mance goal.

Figure 11 provides insights regarding the third workload
and PAFS behavior. Facesim is not as regular as either
blackscholes or swaption; in fact, the third workload is more
complicated to control for PAFS, even though the presence
of fluidanimate in place of ferret makes it simpler with re-
spect to the first workload. As Figure 11b shows, the amount
of available resources is greater than the amount required to
satisfy the performance goals of both the application (i.e.,
the performance measure of fluidanimate is constantly past
the upper bound of the performance goal). Although on a
smaller scale, the third workload shows the same behavior
of the first in which one of the application (i.e., fluidani-
mate) ends its execution before the other application (i.e.,
facesim) whose performance measure starts to increase due
to the absence of resource contention.

In conclusion, these experiments show how PAFS is able
to drive applications’ performance towards a user—defined
performance goal in presence of contention over the compu-
tational resources (i.e., in this case, processor time).

35.6

Table 3: Standard mean and standard deviation of the execution time over 100 consecutive runs of the
benchmark suite. The overhead is computed using the ratio between standard mean of the non—instrumented
version execution time and the standard mean of the instrumented version execution time

. Legacy Non-Legacy
Application Std. Mean [s] Std. Dev. [s] Std. Mean [s] Std. Dev. [s] Overhead
blackscholes 69.745 0.178 70.541 0.205 1.14%
facesim 140.645 0.810 142.419 0.716 1.26%
ferret 114.856 0.079 114.903 0.110 0.04%
fluidanimate 103.052 0.061 103.088 0.067 0.03%
swaptions 83.989 0.128 84.220 0.124 0.27%
- blackscholes ====- swaptions - —— blackscholes -===- swaptions
> 37 = 37
=] =]
g 2 SR
ERE N PR
= =
T S S u FRE
Q] e i []
s 1 - 3
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Time [s] Time [s]

(a) Legacy executions with the CFS.

(b) Non-legacy executions with the PAFS.

Figure 10: Normalized current heart rates for mix 2 where [0.95, 1.05] is the normalized performance goal
(i.e., gray—shaded area). Nearer the gray—shaded area is better.

(a) Legacy executions with the CFS.

= — facesim @ -——-- fluidanimate

> 37

g 2

£ | SN SN S R

o a

ERERE e

T 1 JWF

= 0 50 100 150 200 250
Time [s]

iz
= 3
2
<
5]
Q0
+
=
<
s 2
[
£
<
~
5 1
[
s
—
£
=
S 0
Z.

—— facesim

fluidanimate

100

Time [s]

(b) Non-legacy executions with the PAFS.

Figure 11: Normalized current heart rates for mix 3 where [0.95, 1.05] is the normalized performance goal
(i.e., gray—shaded area). Nearer the gray—shaded area is better.

865

35.6

