
 

THEME ARTICLE: Approximate Computing 

Temporal Approximate 
Function Memoization 

Improving the performance of applications is a core 

target of computer systems research and has led to 

the creation of various techniques. Among them is 

function memoization, an intuitive technique that, 

unfortunately, failed to live up to its promised potential. Traditional function memoization 

falls short mainly because it is input-based, meaning the system needs to pattern-match 

the current invocation’s inputs with previously seen ones to decide which memoized 

output value to return. This is often computationally intensive and only suitable for a 

limited set of functions. However, function calls often exhibit temporal value locality on 

their output. We capitalize on this observation to create the first output-based function 

memoization technique. We demonstrate that compiler-directed output-based 

memoization reduces energy and runtime by 50 to 75 percent (2-4x speedup) at the 

cost of a relatively small degradation of the application’s output quality. 

Modern applications are written in a modular way, such that repeated computations are encapsu-
lated into functions. Often, these functions are invoked with the same arguments and produce the 
same output. This has prompted researchers to consider function memoization,1 the technique of 
keeping a list of input-output pairs from past executions and, instead of repeating a computation, 
examining that list upon a function’s invocation (in other words, if the input has been seen be-
fore, the application will return the previously seen output value instead of executing the func-
tion code). 

Though promising, traditional function memoization suffers from two significant drawbacks. 
First, it requires the output to depend only on the function arguments. Unfortunately, many func-
tions compute their output also using global variables and heap elements that are hard to prove 
remain immutable across calls. Moreover, function memoization requires the pattern-matching 
of inputs, inducing high overhead. 

We observe that consecutive invocations from the same call site tend to produce similar values, 
even if their inputs are different. This can be intuitively explained by looking at the properties of 
physical simulation. In physical modeling, the attributes of a single element (such as a particle) 
typically evolve in time following a smooth progression, which translates to a smooth transition 
in the output values of the functions that compute these attributes. This observation can extend to 
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other domains beyond physical systems. For example, the predicted value of an option or swap-
tion over time produces a relatively smooth line. This is not surprising; the average daily fluctua-
tion of S&P 500 has been 0.8 percent since 1988, and only nine times since 1923 has its daily 
change been more than 10 percent. This temporal output locality can be exploited to avoid re-
peating computations that produce similar, but not necessarily identical, results. 

We propose temporal approximate function memoization (TAF-Memo), a semantically relaxing 
compiler transformation that leverages this observation. TAF-Memo replaces the execution of 
consecutive function invocations by returning the last output actually computed. In essence, 
TAF-Memo converts the (typically) smooth line of consecutive output values into its quantized 
equivalent. Because no pattern-matching of the inputs is required, TAF-Memo avoids the com-
putational overheads of conventional function memoization, making it suitable even for small 
function calls. 

TAF-Memo trades computational accuracy for performance and energy efficiency. The applica-
tion of TAF-Memo on a call site could cause the function’s output to differ from the original 
one, thereby creating distortion to the program’s final output. To reduce the output distortion, 
TAF-Memo is employed only when the relative difference of the output of two consecutively 
executed function calls is within a predefined range. 

Overall, our contributions are: 

• We observe that functions often exhibit strong temporal value locality on their outputs. 
• We propose the first output-based function memoization technique. 
• We demonstrate that compiler-directed output-based memoization can significantly re-

duce runtime and energy consumption at the cost of a small distortion of the applica-
tion’s output. 

FUNCTION MEMOIZATION 
Function memoization cannot be applied to any function. Rather, only functions with certain 
characteristics are amenable to it. 

Pure Functions 
Function memoization is restricted to pure functions. A function is pure if, when given the same 
input arguments, it always produces the same output without any side effects (such as mutation 
of global objects, output to I/O devices, and system calls). 

Functions in procedural languages like C/C++ often compute their output by dereferencing 
pointers to memory or utilizing another global state. These common functions are impure. To 
measure their coverage, we restrict the criteria by which we identify pure functions in C/C++ 
programs to a set that modern compilers can tackle. We identify a pure function by validating the 
following:  

• Its input arguments and return type are scalar,  
• it uses no state other than its input arguments to compute the output, 
• it has no side effects, and 
• all functions invoked from that function also adhere to these constraints. 

Pure functions account for only a limited fraction of the execution time in most of the considered 
applications (see Figure 1).2 We need to relax the strict definition of purity to increase the poten-
tial coverage of memoization techniques. 
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Extended Pure Functions 
Implementing an output-based function memoization, rather than an input-based one, allows us 
to extend the set of functions that it can be applied to beyond the pure ones. Specifically, we can 
relax two of the pure function criteria, leaving only the following ones:  

• The function’s return type is scalar, 
• it has no side effects, and 
• all functions invoked from that function also adhere to these constraints. 

 

Figure 1. Execution time breakdown of all PARSEC 3.0 benchmarks that LLVM could compile. The 
AVG column presents the average breakdown across all benchmarks. The AVG (eval.) column 
presents the average breakdown across the benchmarks we consider in the remainder of this study 
(which exclude bodytrack, freqmine, and canneal, which have almost no pure or extended pure 
functions). Pure functions cover a small fraction of the total execution time, while extended pure 
functions achieve significantly higher coverage. 

The extended definition expands the possible sources of data and only excludes functions with 
side effects or with non-scalar outputs. In particular, unlike pure functions, extended pure func-
tions can have input arguments of any type, and they can use any available state (such as heap 
memory and global variables) to compute their output. Figure 1 shows that the extended pure 
function definition captures a significantly higher fraction of function calls. On some occasions, 
it even leads to 100-percent coverage, while the strict pure function definition has 0 percent (so-
bel). For output-based memoization to become feasible, however, the outputs of consecutive 
function invocations from a call site need to be similar. 

Temporal Output Locality 
We find that a significant portion of extended pure functions exhibit temporal output locality. 
That is, consecutive function calls from the same call site tend to return similar values. Note that 
temporal output locality is not necessarily a consequence of input locality. For example, a func-
tion that calculates the Euclidian distance between two points will always return the same result 
when called consecutively on the end points of a fixed-size line that moves in space (high output 
locality), regardless of its exact location (arbitrary coordinates, no input locality). In our work, 
we even observed cases of identical output with 31x difference in input values. 

To quantify temporal locality, we examine the output of function calls from the same call site 
and calculate their relative standard deviation (RSD) within a sliding window W: 
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.                              (1)  

RSD is a metric of statistical dispersion used extensively in scientific and engineering fields. It is 
dimensionless, location-invariant, and scale-independent, and it readily facilitates comparisons 

62July/August 2018 www.computer.org/micro



  

 IEEE MICRO 

between arbitrary functions; the function with the lowest RSD also has the lowest output varia-
bility. Figure 2 presents the RSD for several call sites across applications. Each box shows the 
inter-quartile range (IQR), and the whiskers below and above the box extend by 1.5x the first 
and third quartiles, respectively. All points that are greater than the whisker values are consid-
ered outliers, and we do not plot them to avoid polluting the figure. The horizontal line on each 
boxplot signifies the median, and the red dot denotes the mean. 

The RSD of output values is small for a significant portion of the investigated functions. This 
suggests that adjacent function calls from the same site might return similar values. This obser-
vation is not surprising, as many applications execute consecutive calls on similar data, which 
return similar output values. For example, an image processing application may perform trans-
formations in small blocks of pixels, and usually adjacent blocks of pixels exhibit high similar-
ity. A fluid-dynamic simulation may calculate the velocity of particles by calling a function for 
each particle. Typically, these calls are performed by sweeping the space in some order (not ran-
domly), and nearby particles will likely have similar velocities. 

 

Figure 2. Relative standard deviation (RSD). Small RSD values suggest the function exhibits 
temporal output locality. 
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TEMPORAL APPROXIMATE FUNCTION 
MEMOIZATION 
TAF-Memo is the first code transformation that memoizes function invocations based on their 
output history. The binary generated by TAF-Memo remembers the last output value of a func-
tion, and immediately returns it (instead of executing the function) upon identifying that the pro-
gram has entered an execution segment with temporal output locality. The goal of TAF-Memo is 
to return a value that is arithmetically close to the one that the actual function execution would 
have computed. 

TAF-Memo identifies temporal locality by checking the relative difference of two consecutive 
return values from the same call site. If the relative difference is below an acceptable threshold 
(memoization threshold), the function is considered to exhibit temporal locality. In that case, 
memoization is triggered for the following w invocations, where w is the memoization window. 

To illustrate how TAF-Memo works, Figure 3 presents a snapshot of the output trace of a func-
tion. The trace shows that consecutive function calls do not produce wildly different outputs, but 
rather outputs that are often temporally clustered around similar values. TAF-Memo recognizes 
this and turns on memoization, which, in effect, quantizes the function output when the function 
exhibits stable-enough behavior. 

 

Figure 3. Timeline snapshot of precise and memoized output for BlkSchlsEqEuroNoDiv 
(blackscholes). TAF-Memo replaces function invocations with memoized values when it detects 
output stability. A tight threshold in this particular configuration prevents TAF-Memo from 
memoizing more frequently. 

We implement TAF-Memo in two steps. First, the compiler automatically identifies the extended 
pure functions and their call sites, so they can be instrumented with pragmas denoting their 
memoization configurations (memoization threshold and window). Then, the compiler wraps the 
instrumented call sites within code that calculates the relative difference of two consecutive out-
puts. If the relative difference is below the memoization threshold, it turns on memoization for 
the next w invocations from that call site. 

After identifying a candidate function, memoization can be applied in different granularities: 
global, per call site, or context-aware (such as by considering the call stack that leads to a call 
site). We choose to apply memoization at the call-site level, as we found that output variability at 
each call site can be significantly different. Context-aware memoization that considers the call 
stack may further improve the observed output value locality. However, tracking the calling con-
text would also impose higher overhead, and thus we do not consider it in our design. 

METHODOLOGY 
We implement TAF-Memo by extending clang v3.8 and the iACT framework.3 We evaluate 
TAF-Memo on an Intel Xeon E5-2695 v3 at 2.3 GHz running Red Hat Enterprise Linux Server 
r7.4 with Linux kernel v3.10.0. 
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Measurements 
We dynamically analyze a workload by executing the binary iteratively in batches of three, until 
the collected execution times (R~) show low relative variability and meet the condition in Equa-
tion 2:  

( ) 5%R

R

RSD R
σ
μ

= ≤





.              (2)  

For this analysis, we use the serial version of each application and profile their regions of interest 
(ROI) as identified in the original code. The ROI for sobel filter is the execution of function so-
bel_filtering, which applies the filter to all blocks.  

We measure energy using a WattsUp Pro energy monitor, which measures the wall-plug power 
consumption of our server system at 1-second intervals from the AC side. We collect energy val-
ues only for the ROI of each application. 

Applications 
We evaluate TAF-Memo on a collection of benchmarks from PARSEC 3.0 and a sobel filter ap-
plication.2 We run all PARSEC applications with both simlarge and native inputs. We run the 
public implementation of sobel from the iACT repository with the baboon and Lena reference 
images as inputs (simlarge and native, respectively).3 We run streamclassifier on the covtype 
data using execution arguments similar to streamcluster’s execution.4 

We evaluate distortion d using application-specific functions. In all cases, negative distortion 
values (the TAF-Memo version is more accurate) are clamped to zero (no distortion). If output 
data are corrupted or floating-point calculations result in nan, we set distortion to +∞.  

Blackscholes is a financial analysis application that uses the Black-Scholes equation to price a 
portfolio of stock options. We evaluate distortion as the average absolute relative difference of 
the baseline and approximate prices, similar to Misailovic et al:5 
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Swaptions is a financial application that uses the Heath-Jarrow-Morton framework to price a 
portfolio of swaptions. We measure distortion using Equation 3, similar to blackscholes. 

Streamcluster is a data-mining application that performs online clustering. We evaluate distor-
tion as the relative difference between the Davies-Bouldin index of the baseline and approximate 
clustering, averaged across iterations: 
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Streamclassifier shares the same code base as streamcluster, but it performs data classification 
rather than clustering, thereby exercising different code paths and accepting different inputs. We 
measure distortion by computing the difference between the b3 metric of the approximate and 
baseline classification, averaged across iterations: 
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Fluidanimate simulates the flow of an incompressible fluid. We evaluate distortion as the Euclid-
ean distance of the final position of a particle between the baseline and approximate executions, 
averaged across all particles, and normalized by the maximum length between two points of the 
baseline output:6 
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Sobel filter identifies regions of an image with high spatial frequency (meaning, an edge). We 
measure distortion by evaluating the structural similarity index metric (SSIM): 

1 ( , )base approxd SSIM I I= − .                             (7) 

The TAF-Memo Design Space 
Each call site of a function memoizable by TAF-Memo is transformed using call-site-specific 
parameters (memoization window size and memoization threshold). TAF-Memo explores this 
design space by considering only call sites with runtime coverage of greater than or equal to 5 
percent and reasonable memoization configurations (memoization threshold of less than or equal 
to 10 percent and window of less than or equal to 15). We additionally explore the impact of al-
ways memoizing within a window (with no threshold checking). 

EVALUATION 

Performance 
The performance gained by TAF-Memo depends on several factors including: 

• the application’s tolerance to distortion, 
• the fraction of execution time that the memoized function covers, and 
• the overhead of TAF-Memo (we measured it at 25 to 30 processor cycles).  

The interdependencies among these factors are complex and non-linear. Hence, we evaluate the 
performance impact of TAF-Memo across a large number of configurations, including a configu-
ration with infinite memoization threshold. A configuration with infinite threshold leads to the 
removal of the threshold checking code. This “no threshold check” design point provides a 
bound on the maximum performance improvement that can be achieved by software output 
memoization, as the entire overhead of the threshold checking code is removed. It also represents 
an extreme point that relies solely on the temporal output locality of a specific call site and its 
tolerance to distortion. In effect, it continuously samples the function and replaces a neighbor-
hood of results with a straight line, fully quantizing the function’s output. We observe that as 
output memoization is applied more freely (meaning the memoization window and memoization 
threshold are increased), the program’s execution time is reduced despite TAF-Memo’s over-
head. 

Performance-Output Distortion Tradeoff 
The blue circles in Figure 4 show the distortion and runtime (relative to the unmodified applica-
tion) of different TAF-Memo configurations (varying memoization window size and threshold) 
on the simlarge input. The solid blue line shows the Pareto frontier on simlarge. Similarly, the 
purple crosses and line correspond to the native input. The dashed black and green lines signify 
the normalized baseline runtime (no memoization) and the performance limit of memoization 
assuming that all extended pure functions are memoized perfectly (using an oracle) with zero 
overhead. 
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Figure 4: TAF-Memo distortion versus relative runtime. TAF-Memo achieves significant speedups 
with small distortion for most applications. 

The Pareto frontier can be a very short line comprised of few points (sometimes just a couple). 
Streamclassifier on the native input has one configuration with very small runtime and distortion 
0, and another with the lowest runtime and distortion ~0.005. These two configurations strictly 
subsume all others (which have higher runtimes and distortions). Thus, streamclassifier’s native 
Pareto frontier is a very short purple line close to distortion 0 (and mostly occluded by the red 
line). Swaptions present a similar case. 

Due to the high RSD of swaptions[CumNormalInv] configurations that attempt to memoize the 
function, speedups are produced only at high values of memoization threshold (and no threshold 
check) and window size. However, due to swaptions’ distortion tolerance when memoizing 
CumNormalInv, output-based memoization is a viable option despite the high RSD. 

All points of fluidanimate’s Pareto frontier for simlarge fall above the black line that represents 
the baseline’s runtime. The Pareto frontier for native inputs contains points with lower runtime, 
but they also exhibit higher distortion. 

Finally, while sobel’s distortion grows from 0 to 0.61, the output images appear almost identical. 
The w = 3 configuration has acceptable output and is 3.45x faster. 

67July/August 2018 www.computer.org/micro



 

 APPROXIMATE COMPUTING 

It is important to note that distortion is an application and use-specific metric. Only domain ex-
perts can pinpoint the appropriate metric and acceptable distortion level. Thus, 10-percent distor-
tion has different meaning for different applications. Our compiler framework furnishes the user 
with Pareto frontiers that provide a range of runtimes and distortions, so users can choose a con-
figuration that best fits their particular use-case (we leave auto-tuning to future work). Overall, 
through careful selection of configurations, TAF-Memo reduces runtime by 50 to 75 percent (2-
4x speedup) with acceptable distortion. 

Robustness on Training Inputs 
To assess the robustness of TAF-Memo, we obtain the configurations that comprise the simlarge 
Pareto frontier and run them on the native input. The red line in Figure 4 plots the results. Most 
times, these configurations rank at, or near, the native Pareto frontier in the distortion-runtime 
design space. Thus, using a smaller (simlarge) input as a guide for selecting configurations for 
larger (unknown) inputs is sufficiently accurate. Streamcluster presents a special case, showing 
that TAF-Memo is an inherently unsafe technique with no guarantees. Out of the three points 
that comprise streamcluster’s simlarge Pareto frontier, only one is a valid configuration when 
running on the native input; the figure shows it as a single red point at (0.75, 0.6).  

Energy Savings 
We measured the energy savings of workloads memoized with TAF-Memo and observed that 
they closely track the runtime savings; a workload’s relative energy consumption is between -3 
percent and +5 percent of its relative runtime (-0.2 percent on average). Thus, Figure 4 could 
also double as a distortion-versus-energy plot, with reasonable accuracy. 

Comparison with Input-Based Memoization 
We compare TAF-Memo with iACT, an input-based approximate function memoization tech-
nique.3 iACT compares each incoming function argument against a list of previously seen values 
to determine whether they are within a predetermined range, and returns the memoized output 
only if all incoming arguments fuzzy-match in the same historical input vector. In contrast, TAF-
Memo compares only the new and old values of the (one) scalar function output. We run iACT 
using Intel’s implementation from GitHub on the same functions that TAF-Memo targets, and 
we vary its table size and fuzzy-matching error bounds. Figure 5 plots the results. 

 

Figure 5. iACT distortion versus relative runtime. iACT achieves limited speedup, mostly due to the 
cost of input matching in software and the limited coverage of pure functions. 

iACT is applicable only to blackscholes and swaptions, as the other applications do not have 
pure functions. To apply iACT elsewhere requires source-code modifications, such us refraining 
from using pointers to read data and global state, and passing all data accessed by a function as 
arguments by value. This, however, constitutes a significant departure from typical coding styles 
in procedural languages such as C/C++. The modified application is essentially a new one, inval-
idating any comparison with TAF-Memo on the original, unmodified workload. Thus, in this ar-
ticle, we evaluate memoization on unmodified applications only, and consider source-code 
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modifications out of scope. For illustration purposes, we modified sobel to implement the filter 
as a pure function. While iACT achieves 92.6-percent runtime (8-percent speedup) on sobel with 
minimal distortion, this result pales in comparison to TAF-Memo’s 4x speedup. Overall, TAF-
Memo’s Pareto frontier (see Figure 4) strictly dominates iACT’s (see Figure 5) across applica-
tions. 

RELATED WORK 
Memoization was proposed to improve performance.7 While initially it was restricted to 1-1 
matching of inputs to outputs, the approximate computing wave relaxed this constraint to in-
crease memoization’s potential benefits. However, memoization techniques maintained their fo-
cus on inputs for identifying memoization opportunities. To the best of our knowledge, TAF-
Memo is the first output-based memoization technique. TAF-Memo exploits the temporal corre-
lation of consecutive function outputs to trade off quality for runtime and energy reduction. 

MCACHE provides hardware support for function memoization in caches.8 Alvarez et al. pro-
pose ISA-level approximate memoization of instruction blocks.9 In contrast, TAF-Memo re-
quires no hardware support.  

ATM performs input-based approximate task/function memoization in the runtime system, with 
pragmas driving task approximations.10 iACT is a compiler framework for input-based approxi-
mate memoization.3 iACT suffers from reduced coverage and high overhead, requiring hardware 
extensions to provide speedup even for functions with few inputs.3 Both works perform input-
based approximate memoization, while TAF-Memo is output-based. 

Acar et al. combine adaptivity and memoization to obtain an incremental computation tech-
nique.11 MemoizeIt is an iterative dynamic analysis that discovers methods amenable to mem-
oization.12 This work is related to ours, as it also expands the definition of memoizable functions. 

CONCLUSION 
Code optimizations need to target a large portion of the runtime to be effective. We show that 
output-based memoization has significantly higher coverage than input-based memoization. We 
show that function outputs often exhibit temporal value locality, and we harness it to design 
TAF-Memo—the first output-based approximate function memoization technique. TAF-Memo 
does not require hardware support and shows significant runtime and energy savings (50- to 75-
percent reduction, 2-4x speedup) at the cost of a small quality loss in the application’s output. 
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