
Compiler-guided instruction-level clock scheduling
for timing speculative processors

Yuanbo Fan, Tianyu Jia, Jie Gu, Simone Campanoni, Russ Joseph

Department of Electrical Engineering and Computer Science

Northwestern University, Evanston, IL

{yuanbo,tianyujia2015}@u.northwestern.edu,jgu@northwestern.edu,{simonec,rjoseph}@eecs.northwestern.edu

ABSTRACT
Despite the significant promise that circuit-level timing speculation

has for enabling operation in marginal conditions, overheads as-

sociated with recovery prove to be a serious drawback. We show

that fine-grained clock adjustment guided by the compiler can be

used to stretch and shrink the clock to maximize benefits of timing

speculation and reduce the overheads associated with recovery. We

present a formulation for compiler-driven clock scheduling and ex-

plore the benefits in several scenarios. Our results show that there

are significant opportunities to exploit timing slack when there

are appropriate channels for the compiler to select clock period at

cycle-level.

1 INTRODUCTION
An explosion of ultra low-power applications raise the profile of

aggressive system-wide optimizations including techniques which

exploit dynamic timing slack [2, 3, 11, 12]. Dynamic timing slack

(DTS) refers to the unused portion of the clock period in which all

signals in the design have already propagated through logic paths

and wait until the clock edge. At any given cycle DTS will appear if

critical paths are not currently exercised. If there are enough contin-

uous cycles with non-zero DTS, there is an opportunity to lower the

supply voltage to decrease the system-wide energy without com-

promising performance. Given the emergence of applications with

extremely power constrained profiles in the wearable computing,

IoT, and implantable device spaces, there has been significant inter-

est in aggressive schemes like those which exploit DTS. There are a

variety of possible solutions to take advantage of DTS. Among these

solutions, circuit-level timing speculation proved to be promising.

Circuit-level Timing Speculation (TS) allows a system to simul-

taneously exploit DTS and eliminate process, voltage, and temper-

ature (PVT) margins, but may impose significant recovery costs.

Under timing speculation, the supply voltage can be lowered with-

out changing the clock frequency to improve the energy profile.

Because the system is operating outside of conventional design

margins, occasionally, signals arrive after the clock edge and the

incorrect values are latched, producing timing errors. Timing spec-

ulative systems must therefore include mechanisms to detect these

errors before they can be committed to visible state and recover so

that architecturally correct execution can resume. The area, energy,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00

https://doi.org/10.1145/3195970.3196013

and performance overheads associated with recovery are the biggest

factors that have limited widespread adoption of timing speculation.

In this work, we describe a general framework for compiler guid-

ance of a fast digital phase-locked loop (PLL) for intelligent clock

generation which can be adjusted to reduce the total recovery cost

of low-power timing speculative pipelines. Our approach relies on

a programmable clock generator which can stretch and shrink the

clock period at a cycle-to-cycle granularity. Our compiler inserts

clock scaling instructions directly into the instruction stream to

match the activity in the pipeline. The scaling instructions can ei-

ther shrink the clock to convert extra timing slack into performance

improvements or stretch the clock to avoid timing errors and their

associated recovery costs. The compiler is guided by a mathematical

framework which considers the cost of inserting clock control into

the program and an algorithm which balances the benefits of clock

adjustment with undesirable impact of code growth. This approach

can be effective in statically scheduled pipelines commonly used in

low-power embedded systems.Wemake the following contributions:

(1) We introduce a novel scheme for compiler driven clock-control

which drastically lowers the effective error rate and improves the

efficiency of statically scheduled timing speculative pipelines; (2)

We propose a mathematical framework for clock scheduling which

casts the decisions as an optimization problem and considers the

costs and benefits of inserting instructions into program; (3) We

apply supervised learning to evaluate the error rates within the

compiler. We believe this is the first compiler based approach to use

machine learning to model properties of timing speculation.

2 BACKGROUND AND RELATEDWORK
2.1 Timing Speculation
Timing speculative architectures have been proposed to reduce

many of the design margins that appear in conventional systems.

The significant impact that process, voltage, and temperature vari-

ations (PVT) have on logic delay demands that these margins be

quite wide. Consequently, these safeguards which guarantee reliable

operation in the worst case impose a severe tax on the efficiency

of the entire system and are unnecessary in the common case. The

Razor project [4, 5] is an influential example of a timing specu-

lative design. It introduced an in situ error detection mechanism

built around a special Razor Flip-flop. The original proposal was

applied to a low-power pipeline [5]. Subsequent work examined

ways to extend support aggressive superscalar pipelines [4]. These

designs explored a wide variety of ways to detect and recover from

errors. Given the significant cost for error recovery there have been

many proposals for either reducing the effective error rate through

both static and dynamic approaches [19]. Compiler support for tim-

ing speculative architectures has focused on ways to reduce error

rates [16].

https://doi.org/10.1145/3195970.3196013

Figure 1: Measured clock waveform with fine-grained clock
adjustment on the test chip.

2.2 Compiler Driven Clock Management
While most systems that apply Dynamic Voltage Scaling (DVFS)

do so under guidance of the operating system, there are strong

arguments for having the compiler drive the voltage/frequency se-

lection. Different voltage and frequency operating points can be

appropriately matched to suit characteristics of long loops or pro-

gram phases resulting in good power/performance tradeoffs. Xie et

al examined the benefits and limitations of compile time DVFS [18].

Wu et al introduce a framework for run-time DVFS in dynamic

compilation system [17]. Dynamic compilation can be fine-grained

and responsive to changes in the run-time environment yielding

significant benefits not otherwise possible. These approaches are

all limited by inherent switching latencies associated with voltage

regulators and conventional PLLs which require thousands of clock

cycles to switch between voltage/frequency operating points [14].

In this work, we exploit phase selection with an ultra fast PLL (ap-

proximately sub-cycle response time), allowing us to stretch/shrink

the clock period at a cycle-to-cycle granularity as shown in Figure 1.

By adjusting the clock at orders of magnitude faster than DVFS, we

can exploit instruction-level timing characteristics.

3 OVERVIEW AND MOTIVATION
Existing timing speculation systems typically rely on extra hard-

ware to detect errors. These systems recover from an error detected

by flushing the pipeline and replaying the related instructions in

a slow and safe recovery mode [4]. The large overhead associated

with recovery prevents the system from operating under more ag-

gressive voltage and/or clock frequency. Figure 2a shows the flow

of instructions in a simple timing speculative pipeline. The cmp in-
struction encounters a timing error during its execution. The error

is detected and the system recovers by replay. To ensure correct

operation and avoid any additional timing errors during replay, the

pipeline operates at half the clock frequency. This guarantees for-

ward progress and correct execution but makes recovery expensive.

However, if the supply voltage decreases beyond some point the

error rates increase sharply and the system spends too much time

in recovery. At this point the energy costs associated with recovery

dominate and negate the energy savings of operating at a lower

voltage.

Prior work has shown that dynamic timing slack and circuit-level

errors are correlated with specific instruction sequences and data

usage patterns [6, 10]. Therefore, instruction-level error models can

be built and used to estimate the likelihood of an error. A compiler

can then rely on such a model to analyze compiled code to identify

which instructions are most prone to errors. Moreover, models can

be parameterized to predict error rates under different operating

conditions.

(a) Error detection and recovery in RazorII pipeline.

(b) Error prediction and compiler-guided clock stretch

Figure 2: Compiler-guided clock scaling for predicted error.

A static compiler can influence the clock period by inserting

directions for the programmable PLL into the instruction stream.

At run-time, the hardware decodes the clock adjustment directives

and configures the PLL. The way that clock control directives are

encoded in the instruction stream will influence when and where it

is advantageous to scale the clock period. Extra instructions produce

memory traffic, consume cache capacity, and expend valuable fetch

and execute bandwidth. Consequently, the benefit of scaling the

clock at any given point in the program have to be weighed against

the cost. For example, architectures with sparse instruction encod-

ings represent the extreme case where controls can be embedded

at every instruction. By entirely embedding control information

within existing instructions there would be no overhead and the

benefits of clock adjustment would be maximized. On the other

hand, if the architecture encoding was denser, it would be necessary

to insert special clock adjustment operations into the instruction set.

At each point in the program where the compiler wanted to adjust

the clock, it would need to insert this special instruction. This would

consequently limit the compiler to adjust the clock only when it

provides large benefits.

Figure 2b shows what the same cmp instruction embedded with

a stretch clock attribute. In this instance, the compiler was able to

determine that this static instruction was likely to generate timing

error, and it uses fine-grained clock adjustment to avoid the error and

subsequent recovery operation. This directly improves execution

time and energy.

Overall, these capabilities increase the reach of timing speculation

and can foster significant energy reduction. With lower average

recovery cost per error, the system may operate at more aggressive

clock frequency or voltage, as shown in Figure 3.

Figure 3: Lowered voltage due to reduced recovery cost
per error for gcc. The recovery overhead per error in TS
pipeline [4] is between PipelineDepth and PipelineDepth × 2.

4 PROPOSED SCHEME
4.1 Problem Formulation

4.1.1 Problem: Previous work has shown that in many proces-

sor pipelines timing critical paths are not triggered on every clock

cycle [2, 3, 12]. Furthermore instructions within a pipeline have

different circuit-level timing requirements. This is a consequence of

varying degrees to which instructions stress critical paths in the de-

sign. In conventional designs, the clock frequency remains constant

over thousands or millions of cycles due to the slow response rate of

DVFS. This results in dynamic timing slack from cycle to cycle. For

non-speculative systems, the fixed clock period is determined under

the worst-case circuit-timing analysis, which guarantees the correct

operation but wastes power and hurts performance. By contrast,

timing speculative systems can operate at a more aggressive voltage

level or clock frequency that is optimized for common cases. In prac-

tice, the steep error rate curves mean that designs can over-scale to

a very limited degree and often operate very close to the point of

fist failure (PoFF) [4, 5].

We assume a timing speculative in-order processor in which

the clock period can be scaled at a very fine granularity (cycle-

by-cycle). We then assume that the compiler can select the clock

period on a cycle-by-cycle basis by appropriately inserting control

information at some fixed cost per stretch/shrink of the clock. Then

the execution time of an input trace is function of its CPI, the base

clock period, the error rates of instructions in the program, clock

control embedded by the compiler, and the recovery cost per error.

This allows us to formulate an optimization problem for minimizing

the total execution time for given program at specified voltage level

in the presence of timing errors.

4.1.2 Formulation: Given an instruction stream, clock assign-

ment for each static instruction can be found to minimize the total

execution time. Gi is the overhead when switching from one clock

period to another. This is determined by the way the system im-

plements instruction-level clock scaling, including both the cost

associated with embedding control information into program and

the hardware overhead. For example, in an ideal case, if the control

information for clock scaling is embedded inside the instruction

without any extra cost, and the overhead of changing from one clock

period to another is negligible,G is 0. Ri is defined as the overhead

(in cycles) associated with error recovery for an instruction. For

Razor-like TS processors, R ∝ Pipeline Depth and it may also be

related to the CPI. We define Erri as the error rate of instruction i

during program execution. Any error introduced by this instruction

in any stage is treated as an error produced by this instruction. For

a static program, dynamic execution sequence is mostly fixed due

to the fact that instructions are statically scheduled in in-order pro-

cessors. If the instruction has different preceding instructions due

to control flow convergence, we apply a conservative analysis. The

maximum error rate among all possible control flows within two

conditional branches is applied. Finally,wk is a fraction which repre-

sents the frequency that instruction k is executed at runtime. To sum

up, the total execution of an instruction trace can be represented as

1.

T = min

p⊂P
{
N∑
i=0

(CPIi × pi +Gi (pi−1,pi) + Ri × Erri (pi)) ×wi } (1)

For a given static instruction trace, values of Pi which minimize

this equation provide the optimal execution time and implicitly

trade-off clock shrinking and stretching with the overhead of insert-

ing clock management instructions. Also, since this mechanism is

flexible about the length of trace, the clock management can be done

for a small piece of instruction sequence or large static program

depending on the overall benefit. Therefore, it works for complex

structures, such as nested loops or recursive functions.

4.2 Clock Scheduling Algorithm
Our Clock Scheduling Algorithm is used by the compiler to choose

optimal clock scheduling for the static instruction trace. Based on

the equation described before, the clock period selected for each

instruction affects both the transition cost from previous to current

clock (Gi) and the error rate of the current instruction.

Algorithm 1 applies dynamic programming to solve this problem.

Assume that the program length is N (instructions) and the number

of available clock periods provided by the multi-phase ADPLL is M.

memo[k,p] represents the minimum execution time of instruction

sequence [k:N] while the previous clock period selected is p. The

complexity of this algorithm isO(NM2). Since M is usually small in

most of systems, the complexity can be practically treated as O(N).

Algorithm 1 Instrution-level Clock Scheduling Algorithm

1: procedure instr_exec_time(k, Pk−1, Pk)
2: return CPIk × Pk +Gk (Pk−1, Pk) + Rk × Errk (Pk)
3: end procedure
4: proceduremin_total_exec_time
5: I: instruction sequence [1:N]
6: P: set of clock phases {P1, P2, ...PM }
7: C: default clock period
8: Initialize table memo[1...N, 1...M]
9: ∀p ∈ P ,memo[N + 1,p] = 0

10: for i = N to 1: do // from the last instr. to the first

11: for s = P1 to PM do // all possible clock set before i

12: memo[i, s] = minj ∈P (instr_exec_time(i, s, j)

13: + memo[i+1, j])

14: end for
15: end for
16: return memo[1, C] // min. exec. time for the trace

17: end procedure

4.3 Instruction-level Delay Model
The connection between certain high-level instruction patterns and

low-level circuit timing characteristics provides an opportunity to

effectively model errors in the design. In in-order processors, this

correlation is even stronger due to the fact that instruction sequence

directly determines the execution order in the pipelines. By taking

advantage of this property, supervised learning may be used to

extract important "features" from labeled data and build adaptive

error models automatically.

We specifically select features: (1) that are available at compile

time and (2) that may trigger errors in the circuit. One of our goals is

to be able to identify instruction-level program characteristics that

can be easily tracked by the compiler and yet correlate well to errors

which are rooted in circuit-level structure. One reasonable way to

do this is to use a recent segment from the instruction stream which

represents instructions that are currently present in the pipeline.

During the dynamic execution of an instruction stream, the se-

quence can be labeled as either "Error" (1) or "No Error" (0). As the

design is over-clocked step by step, different sequences are labeled in

each step. Based on this information, the delay range of instruction

sequences can be derived. Then, these labeled instruction sequences

are used as training dataset to build single/separate models with

supervised learning algorithm. This instruction timing data reflects

circuit-level timing characteristics of both hardware design and

real environment such as Process, Temperature and Voltage (PVT)

variations, thereby models that are trained by this data do not only

make predictions for delay introduced by program, but also dynamic

conditions that the program is currently running under. In our ex-

periments, we applied various algorithms (including Decision Tree,

Multi-Layer Perceptron and Support Vector Machine) for training

models. Among these, Decision Tree shows good accuracy with

relatively low training/testing cost, therefore, we decided to use

Decision Tree for the evaluations in Section 6.

With the guidance of the models, the compiler is able to iden-

tify both critical and non-critical instructions and schedule the

clock at cycle-level accordingly based on the micro-architectural

implementation of instructions. For cases that some instructions are

overlapping in the same cycle, the compiler selects the conservative

clock to avoid errors.

4.4 Code Portability under PVT variations
In this approach, a static compiler intervention is proposed to inte-

grate clock scheduling with the program stream for minimizing the

total execution time. Success depends on the quality of the model.

The optimized code should improve the system operation as long as

the model is a close match to the conditions observed at run-time.

As in the original Razor designs ([5] [4]), we assume that the

processor includes a simple hardware control loop which monitors

error rate and applies dynamic voltage scaling (DVS) to maintain a

low error rate (e.g. around 1%). In cases when the environmental

conditions do not match the target model (e.g. ambient temperature

rises or the process variation profile does not match the training

data), we would expect that the error rate would briefly spike. The

control logic would adjust the voltage to correct from the error and

the system would resume operation at a stable voltage and low error

rate. As we shown in Section 6.1, our models are fairly robust under

small to moderate variations. The feedback controller can help in

cases when the changes are more pronounced.

4.5 Optimization with 3-phase Clock
Scheduling

To illustrate the proposed approach, we optimize the program with

3-phase clock selection on a TS processor. There are three clock

periods that are available for the compiler to schedule, and they are

50%, 85% and 100% of the nominal clock period. Figure 4 shows the

Figure 4: 3-phase clock selection for basicmath.

Figure 5: Overview of the proposed scheme.

distribution of dynamic instruction delays for basicmath. As we can

see, the majority of dynamic instructions have circuit-level delay

less than 85% of the nominal, which is used as the default clock

period for the program execution. The mechanism that is used to

embed clock selection information into program is to insert a clock

selection instruction. In our evaluation, we assume that clock control

instructions consume fetch bandwidth and hence increase the run-

time of the program. However, if the clock selection information can

be directly embedded into the instruction or there is excess fetch

bandwidth, this overhead can be avoided.

We use supervised learning to build adaptive error models that

predict suitability of instructions to be clocked at 50%, 85%, and 100%

of the clock period. Based on these model, the compiler inserts clock

selection instructions to stretch or shrink the clock. For incorrectly

predicted errors, the overhead of the False Position (FP) prediction

will be wasted timing slack. For False Negatives (FN) (errors that

are not predicted), the full recovery (i.e. pipeline flush and replay)

is required to guarantee the correct execution.

5 METHODOLOGY
5.1 Processor and Workload
We evaluate our approach by modeling a six-stage single issue

ARMv7 pipeline supporting timing speculation. This design is suit-

able for battery-power or energy-scavenging systems. The pipeline

closely models a 55nm test chip that that we fabricated to study the

potential for dynamic clock adjustment as proposed in this paper.

We build a gate-level model of the processor pipeline and capture

the gate-level simulation to study dynamic timing slack and timing

errors. We further validated our simulated model with the test-chip

to understand model fidelity.

We extend the LLVM-ARM backend [13] so that the compiler

is able to predict errors for instructions based on static sequences

and insert clock scaling instructions accordingly. The multi-phase

ADPLL is able to scale clock at cycle level, and the compiler selects

the conservative clock period for consecutive instructions. We cross-

compile and run several benchmarks from the MiBench [8] and the

SPEC benchmark suite [9] using LLVM with highest optimization

level. All phases in benchmarks are sampled by SimpPoint [15] with

interval size of 100M instructions. The overall benefit is weighted

by all phases.

5.2 Clocking Assumptions
We designed and evaluated a multi-phase All-Digital Phase-Locked

Loop (ADPLL) associated with the pipeline, as described in Figure 5.

The entire design is fabricated on a 55nm CMOS silicon chip. The

ADPLL provides fine-grained clock adjustment via phase selection,

as shown in Figure 1. Similar implementations of dynamic clock

phase selection were proposed in [1, 12]. We assume that clock

scaling directives come directly from instruction fetch and can be

evaluated directly by the ADPLL. We assume that the fetch band-

width remains the same as the baseline design and therefore the

overhead of each clock scaling instruction is one extra fetch cycle.

Our test chip includes the ADPLL, and we use validation of the

test chip to show the practicality of fine grained clock adjustment.

The entire ADPLL occupies only 2.48% of the total chip area, and is

able to provide the range from 60% to 150% of the reference clock

rate, and consumes less than 5% of the total power consumption in

the test chip.

6 EVALUATION
6.1 Model Accuracy
The error model plays an very important role in this scheme by

determining which instructions produce errors at compile time. The

prediction results include four categories: True Positive (TP), False

Positive (FP), True Negative (TN), and False Negative (FN). To be

more specific, the TP represents the correctly predicted "Error",

while the TN is the correctly predicted "No Error". The accuracy of

model is defined as "correctly classified rate" (
T P+T N

T P+F P+T N+FN). For

FN, the full recovery may be required in hardware and the overhead

is proportional to the depth of pipeline, while the overhead of FP

is only the stretched portion of clock period which is normally

around 20%. Therefore, the model is biased based on the overhead

of misclassification for FP and FN.

Figure 6 shows the classification breakdown of the model built

and tested under lowered voltage, and we can see that more than

95% of the instructions are correctly predicted by the model. Also,

compared to a "naive" model that always predicts "no error", the

model provides very low rates for high-overhead FN cases (« 1%),

which significantly lower the recovery cost associated with errors

through the clock stretching at runtime. To validate the model under

various scenarios, Figure 7 compares the accuracy among different

PVTs and features. "Diff-PVT" represents the case when the opti-

mization is targeted at PVT0 (nominal): {Process: Typical, Voltage:

1.2V, Temperature: 25C}, but the scheme is applied under PVT1:

{Process: Slow, Voltage: 1.08V, Temperature: 125C}. We observed

that, the model accuracy depends heavily on the representativity

of training dataset. Fortunately, profiling with training inputs pro-

vides good datasets to build high-accuracy error models. Also, as

long as the instruction pattern has same label across different PVT

Figure 6: Breakdown of classification results under PVT0.

Figure 7: Comparison with various conditions and features.

conditions, the model is able to make the correct prediction. We also

tested the model by using both separate dataset and 10-fold cross

validation. The results show that, the model can achieve better than

93% accuracy across all conditions. Since circuit-level timing also

has a strong correlation with the data usage, when operand values

are added as extra features to train/test the model, the accuracy can

be as high as 99.7%. This suggests that further improvements could

be made if the compiler had good knowledge about operand values

(e.g. through value profiling).

6.2 Optimization for Minimum Energy with
3-phase Clock Scheduling

We evaluated the energy savings with simple three-phase clock

scheduling. With the proposed error prediction at compile time

and clock stretch at runtime, the runtime error rates and recovery

overhead are dramatically reduced. This maximizes the overall ben-

efits of the TS pipeline and push it to operate at a more aggressive

voltage. As Table 1 shows, voltage level is further reduced by 12%

compared to 5% reduction of the point where the TS system has the

minimum energy consumption, with only averagely 0.2% runtime

error rate.

Clock stretching can effectively lower runtime error rates thereby

leading to the operation under a more aggressive voltage level. More-

over, clock shrinking improves performance by reducing unneces-

sary cycle time. As Figure 8 shows, the total energy saving is as

high as 36%, as normalized to the baseline design which assumes

a TS processor operates at nominal conditions (voltage and clock

frequency). Results for TS at the minimum energy point only shows

less than 12% on average due to the high recovery cost thereby

more conservative voltage. For some low recovery overhead TS

systems proposed recently ([7, 19]), it is possible to further push

the operating voltage. However, it normally comes with extra com-

plexity in the design (i.e. clock tree) as well as area and power cost.

Since the overhead associated with clock stretching is much lower

Table 1: Comparison of error rates under aggressive supply
voltage for minimum total energy consumption

Benchmark Vol. w/ TS Vol. w/ clk Err. w/o clk Err. w/ clk

(V) sched. (V) sched. (%) sched. (%)

basicmath 1.12 1.08 3.13 0.62

CRC32 1.12 1.09 5.41 0.04

dijkstra 1.12 1.08 3.94 0.14

FFT 1.13 1.08 2.86 0.02

patricia 1.13 1.08 4.24 0.70

qsort 1.12 1.08 2.97 0.40

susan 1.12 1.08 2.32 0.05

400.perlbench 1.12 1.08 3.48 0.03

401.bzip2 1.13 1.08 9.27 <0.01

403.gcc 1.11 1.05 5.32 0.08

429.mcf 1.12 1.07 9.03 0.07

458.sjeng 1.13 1.08 4.03 0.57

464.h264ref 1.11 1.06 3.63 0.09

473.astar 1.11 1.06 8.83 0.19

Figure 8: Our Energy savings compared to the PoFF.

(< 0.5 cycle), with the guidance of the error model and clock sched-

uling at compilation time, the average recovery cost is even lower

than the proposed low cost recovery. In this work, the hardware

model and baseline are designed based on conventional Razor style

systems ([4]). The proposed approach is independent of the error

detection and correction mechanisms. Moreover, different from pre-

vious works on TS which detects and recover errors on static paths,

this technique schedules clock with the consideration of program

dependent timing error and provides performance improvement by

reducing program introduced timing slack.

7 CONCLUSION
This work introduces a compiler guided scheme for fine-grained

clock period management of timing speculative processors. This

approach leverages a compiler with knowledge of instruction-level

dynamic timing slack with a fast, programmable PLL to enhance

the benefits of timing speculation. We introduce a mathematical

frameworks and algorithm that help the compiler decide when

and where to insert clock control information into the instruction

stream. With a simple three-phase clock scheduling approach our

technique achieves on average 27.3% energy savings over a range

of benchmarks.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under

grants CCF-1116610 and CCF-1618065.

REFERENCES
[1] K. A. Bowman, S. Raina, J. T. Bridges, D. J. Yingling, H. H. Nguyen, B. R. Appel,

Y. N. Kolla, J. Jeong, F. I. Atallah, and D. W. Hansquine. 2016. A 16 nm All-Digital

Auto-Calibrating Adaptive Clock Distribution for Supply Voltage Droop Tolerance

Across a Wide Operating Range. IEEE Journal of Solid-State Circuits 51, 1 (Jan
2016), 8–17. https://doi.org/10.1109/JSSC.2015.2473655

[2] H. Cherupalli, R. Kumar, and J. Sartori. 2016. Exploiting Dynamic Timing Slack

for Energy Efficiency in Ultra-Low-Power Embedded Systems. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA). 671–681.
https://doi.org/10.1109/ISCA.2016.64

[3] Jeremy Constantin, Lai Wang, Georgios Karakonstantis, Anupam Chattopadhyay,

and Andreas Burg. 2015. Exploiting Dynamic Timing Margins in Microprocessors

for Frequency-Over-Scaling with Instruction-Based Clock Adjustment. Proceed-
ings of the 2015 Design, Automation & Test in Europe (2015), 381–386.

[4] S. Das, C. Tokunaga, S. Pant, W. H. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, and

D. T. Blaauw. 2009. RazorII: In Situ Error Detection and Correction for PVT

and SER Tolerance. IEEE Journal of Solid-State Circuits 44, 1 (Jan 2009), 32–48.

https://doi.org/10.1109/JSSC.2008.2007145

[5] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham,

Conrad Ziesler, David Blaauw, ToddAustin, Krisztian Flautner, TrevorMudge, Beal

Ave, and Ann Arbor. 2003. Razor : A Low-Power Pipeline Based on Circuit-Level

Timing Speculation. December (2003).

[6] Yuanbo Fan and Russ Joseph. 2017. D2M: Data-driven Model for Fast and Accurate

Timing Error Simulation in Statically ScheduledMicroprocessors. In Proceedings of
the Summer Simulation Multi-Conference (SummerSim ’17). Society for Computer

Simulation International, San Diego, CA, USA, Article 4, 13 pages. http://dl.acm.

org/citation.cfm?id=3140065.3140069

[7] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, and D. Sylvester. 2012.

Bubble Razor: An architecture-independent approach to timing-error detection

and correction. In 2012 IEEE International Solid-State Circuits Conference. 488–490.
https://doi.org/10.1109/ISSCC.2012.6177103

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.

2001. MiBench: A Free, Commercially Representative Embedded Benchmark

Suite. In Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop (WWC ’01). IEEE Computer Society, Washington, DC,

USA, 3–14. https://doi.org/10.1109/WWC.2001.15

[9] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (Sept. 2006), 1–17. https://doi.org/10.1145/1186736.

1186737

[10] Giang Hoang, Robby Bruce Findler, and Russ Joseph. 2011. Exploring Cir-

cuit Timing-aware Language and Compilation. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA, 345–356.

https://doi.org/10.1145/1950365.1950405

[11] T. Jia, Y. Fan, R. Joseph, and J. Gu. 2016. Exploration of associative power man-

agement with instruction governed operation for ultra-low power design. In

2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https:

//doi.org/10.1145/2897937.2898021

[12] T. Jia, R. Joseph, and Jie Gu. 2017. Greybox design methodology: A program

driven hardware co-optimization with ultra-dynamic clock management. In 2017
54th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/
10.1145/3061639.3062255

[13] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Life-

long Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04). Palo Alto, California.

[14] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang. 2013. Accurate

Modeling of the Delay and Energy Overhead of Dynamic Voltage and Frequency

Scaling in Modern Microprocessors. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 32, 5 (May 2013), 695–708. https://doi.org/10.

1109/TCAD.2012.2235126

[15] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,

and Brad Calder. 2003. Using SimPoint for Accurate and Efficient Simulation.

SIGMETRICS Perform. Eval. Rev. 31, 1 (June 2003), 318–319. https://doi.org/10.

1145/885651.781076

[16] John Sartori and Rakesh Kumar. 2012. Compiling for Energy Efficiency on Timing

Speculative Processors. In Proceedings of the 49th Annual Design Automation
Conference (DAC ’12). ACM, New York, NY, USA, 1301–1308. https://doi.org/10.

1145/2228360.2228602

[17] Qiang Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Youfeng Wu, Jin

Lee, and D. Brooks. 2006. Dynamic-Compiler-Driven Control for Microprocessor

Energy and Performance. IEEE Micro 26, 1 (Jan 2006), 119–129. https://doi.org/10.

1109/MM.2006.9

[18] Fen Xie, Margaret Martonosi, and Sharad Malik. 2003. Compile-time Dynamic

Voltage Scaling Settings: Opportunities and Limits. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation
(PLDI ’03). ACM, New York, NY, USA, 49–62. https://doi.org/10.1145/781131.

781138

[19] J. Xin and R. Joseph. 2011. Identifying and predicting timing-critical instructions to

boost timing speculation. In 2011 44th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 128–139.

https://doi.org/10.1109/JSSC.2015.2473655
https://doi.org/10.1109/ISCA.2016.64
https://doi.org/10.1109/JSSC.2008.2007145
http://dl.acm.org/citation.cfm?id=3140065.3140069
http://dl.acm.org/citation.cfm?id=3140065.3140069
https://doi.org/10.1109/ISSCC.2012.6177103
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1950365.1950405
https://doi.org/10.1145/2897937.2898021
https://doi.org/10.1145/2897937.2898021
https://doi.org/10.1145/3061639.3062255
https://doi.org/10.1145/3061639.3062255
https://doi.org/10.1109/TCAD.2012.2235126
https://doi.org/10.1109/TCAD.2012.2235126
https://doi.org/10.1145/885651.781076
https://doi.org/10.1145/885651.781076
https://doi.org/10.1145/2228360.2228602
https://doi.org/10.1145/2228360.2228602
https://doi.org/10.1109/MM.2006.9
https://doi.org/10.1109/MM.2006.9
https://doi.org/10.1145/781131.781138
https://doi.org/10.1145/781131.781138

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Timing Speculation
	2.2 Compiler Driven Clock Management

	3 Overview and Motivation
	4 Proposed Scheme
	4.1 Problem Formulation
	4.2 Clock Scheduling Algorithm
	4.3 Instruction-level Delay Model
	4.4 Code Portability under PVT variations
	4.5 Optimization with 3-phase Clock Scheduling

	5 Methodology
	5.1 Processor and Workload
	5.2 Clocking Assumptions

	6 Evaluation
	6.1 Model Accuracy
	6.2 Optimization for Minimum Energy with 3-phase Clock Scheduling

	7 Conclusion
	References

