Voltage Smoothing: Characterizing and Mitigating Voltage Noise in
Production Processors via Software-Guided Thread Scheduling

Vijay Janapa Reddi'#, Svilen Kanev, Wonyoung Kim, Simone Campanoni, Michael D. Smith, Gu-Yeon Wei, David Brooks
Advanced Micro Devices (AMD) Research Labs', Harvard University
vijay.reddi@amd.com, {skanev, wonyoung, xan, smith, guyeon, dbrooks}@eecs.harvard.edu

Abstract—Parameter variations have become a dominant chal-
lenge in microprocessor design. Voltage variation is especially
daunting because it happens so rapidly. We measure and char-
acterize voltage variation in a running Intel® Core™2 Duo
processor. By sensing on-die voltage as the processor runs single-
threaded, multi-threaded, and multi-program workloads, we
determine the average supply voltage swing of the processor to
be only 4%, far from the processor’s 14% worst-case operating
voltage margin. While such large margins guarantee correctness,
they penalize performance and power efficiency. We investigate
and quantify the benefits of designing a processor for typical-case
(rather than worst-case) voltage swings, assuming that a fail-safe
mechanism protects it from infrequently occurring large voltage
fluctuations. With today’s processors, such resilient designs could
yield 15% to 20% performance improvements. But we also show
that in future systems, these gains could be lost as increasing
voltage swings intensify the frequency of fail-safe recoveries.
After characterizing microarchitectural activity that leads to
voltage swings within multi-core systems, we show that a voltage-
noise-aware thread scheduler in software can co-schedule phases
of different programs to mitigate error recovery overheads in
future resilient processor designs.

Keywords-dI /dt, inductive noise, error resiliency, voltage
droop, hw/sw co-design, thread scheduling, hardware reliability

I. INTRODUCTION

As device feature sizes scale, microprocessor operation
under strict power and performance constraints is becoming
challenging in the presence of parameter variations. Process,
thermal, and voltage variations require the processor to operate
with large operating margins (or guardbands) to guarantee
correctness under corner-case conditions that rarely occur. This
level of robustness comes at the cost of lower processor perfor-
mance and power efficiency. In the era of power-constrained
processor design, supply voltage variation is emerging as
a dominant problem as designers aggressively use clock
gating techniques to reduce energy consumption. Non-zero
impedance in the power delivery network combined with
sudden current fluctuations due to clock gating, along with
workload activity changes, lead to large and hard-to-predict
changes in supply voltage at run time. Voltage fluctuations
beyond the operating margin can lead to timing violations. If
the processor must always avoid such voltage emergencies, its
operating margin must be large enough to tolerate the absolute
worst-case voltage swing.

Today’s production processors use operating voltage mar-
gins that are nearly 20% of nominal supply voltage [1], but

¥ This work was done while V. J. Reddi was a student at Harvard.

3.0 100

o/
Ny

—45nm (Vdd=1.0V)
——32nm (Vdd=0.9V)
22nm (Vdd=0.8V)
16nm (Vdd=0.7V)

90

80

70

60

Projected Voltage Swings
Relative to 1V Supply Voltage
Peak Frequency (%)

/'/ 50
1.0
45nm 32nm 22nm 16nm 11nm 400 10 20 30 70 50
Process Technology Nodes Margin (%)
Fig. 1: Voltage noise is increasing Fig. 2: Worst-case margins

in future generations. needed for noise are inefficient.

trends indicate that margins will need to grow in order to
accommodate worsening peak-to-peak voltage swings. Both
processor performance and power efficiency will suffer to an
even greater extent than in today’s systems. Fig. 1 shows the
worst-case peak-to-peak swing in future generations relative to
today’s 45nm process technology.! Voltage swing doubles by
the 16nm technology node. Fig. 2 summarizes the performance
degradation associated with margins, showing that a 20% volt-
age margin in today’s 45nm node translates to ~25% loss in
peak clock frequency.” A doubling in voltage swing by 16nm
implies more than 50% loss in peak clock frequency, owing
to increasing circuit sensitivity at lower voltages. Therefore,
worst-case operating voltage margins are not sustainable in the
long run.

Industry recognizes these trends and is moving towards
resilient processor designs. Rather than setting the operating
voltage margin according to the extreme activity of a power
virus, designers relax the operating voltage margin to a more
typical level of voltage swing. emergency, error-detection and
error-recovery circuits dynamically detect and correct timing
violations. In this way, designers use aggressive margins
to maximize processor performance and power efficiency.
Bowman et al. show that removing a 10% operating voltage
margin leads to a 15% improvement in clock frequency [5].
Abundant recent work in architecture [6]-[10] and more recent
circuit prototyping efforts [5], [11], [12] reflect this impending
paradigm shift in architecture design.

As resilient processor architecture designs are still in their
infancy, this paper focuses on understanding the benefits

'Based on simulations of a Pentium 4 power delivery package [2], assuming
Vdd gradually scales according to ITRS projections from 1V in 45nm to
0.6V in 11nm [3]. To study package response, current stimulus goes from
50A-100A in 45nm. Subsequent stimuli in newer generations is inversely
proportional to Vdd for the same power budget.

2Based on detailed circuit-level simulations of an 11-stage ring oscillator that
consists of fanout-of-4 inverters from PTM [4] technology nodes.

and caveats of typical-case design. Using only off-the-shelf
components to sense on-die silicon voltage fluctuations of an
Core™2 Duo processor, we perform full-length program
analysis, characterizing voltage noise in this production pro-
cessor. Our findings indicate that aggressive margins could
enable performance gains from 15% up to 20%. However,
these gains are sensitive to three critical factors: the cost
of error-recovery, aggressive margin settings, and program
workload characteristics. Improperly setting the first two ma-
chine parameters leads to degraded workload performance,
sometimes even beyond the baseline conservative worst-case
design. We characterize the design space to illuminate the
tradeoffs.

Future resilient processor microarchitectures will need very
fine-grained error-recovery logic to maintain the benefits of
resiliency. Building such recovery schemes will require intru-
sive changes to traditional architectural structures that add on-
chip die area and cost overheads, in addition to complicating
design, testing or validation. In order to alleviate this com-
plexity, we propose voltage-noise-aware thread scheduling at
the software layer, which allows designers to leverage more
coarse-grained, cost-effective recovery schemes. The software
enables this by reducing error-recovery rates, while assuming
the hardware provides a fail-stop. To study the efficacy of
thread scheduling in the anticipation of large voltage swings,
we project future voltage noise trends by reducing decoupling
capacitance of an existing processor.

Developing a software solution for mitigating voltage noise
begins with understanding activity within the processor that
leads to voltage swings. Studying voltage noise in a real
processor enables some observations not revealed by published
simulation efforts. Using microbenchmarks that stimulate the
processor with highly specific events such as TLB misses and
branch mispredictions, we examine and quantify the effect of
various stall events on voltage noise. For instance, the pipeline
flush caused by a single branch misprediction causes a voltage
swing 1.7 times larger than that of an idling machine.

Multi-core execution leads to voltage noise interference.
The same processor experiences a 42% increase in peak-to-
peak swings when both of its cores are active and running
the same microbenchmark. Therefore, either margins will need
to be greater in multi-core systems when multiple cores are
active simultaneously, or the system will need to tolerate more
frequent error recoveries. However, effectively co-scheduling
noise compatible events (or threads) together across cores can
dampen peak-to-peak swings. Based on our understanding
of the relationship between stall events and voltage swings,
we construct a metric called stall ratio that enables the
software layer to infer noise activity using existing hardware
performance counters. It also explains the existence of voltage
noise phases that are like program execution phases. They are
recurring patterns of voltage droop and overshoot activity in
response to changing microarchitectural behavior.

In summary, this paper (1) characterizes single-core and
multi-core noise activity on a real chip, (2) presents a rigorous
study that identifies the benefits of a resilient microarchitecture

design for voltage noise, and (3) provides a mechanism by
which to dampen voltage noise in future processor generations.
The underlying mechanisms that enable these contributions are
the following:

o Measurement and Extrapolation. By tapping into two
unused package pins that sense on-die silicon voltage,
we demonstrate and validate the ability to study processor
voltage noise activity under real execution scenarios unin-
trusively. Moreover, by breaking off package capacitors,
we amplify the magnitude of voltage swings in the
production processor to extrapolate and study voltage
noise in future systems.

o Characterization of Voltage Noise. Combining the noise
measurement setup with hand-crafted microbenchmarks
and hardware performance counters, we study microar-
chitectural activity within the processor that leads to large
voltage swings.

o Mitigating Voltage Noise via Software-Guided Thread
Scheduling. Taking advantage of voltage noise phases,
we propose, investigate, and demonstrate the benefits of
a noise-aware thread scheduler for smoothing out voltage
noise in multi-core chips. Oracle-based simulation results
of thread scheduling reveal that software alleviates error
recovery penalties in future resilient architecture designs.

Sec. II explains how we sense on-die voltage in a production
processor in as it is operating in a regular environment. We
use this setup to study resilient architecture design under
typical-case conditions in Sec. III. The challenges we identify
lead us towards an understanding of how activity within
the microprocessor causes voltage to fluctuate. That in turn
motivates us to evaluate thread scheduling in Sec. IV as a
means of dampening voltage noise in multi-core systems.
Finally, we conclude the paper with our remarks in Sec. V.

II. MEASUREMENT AND EXTRAPOLATION

We introduce a new methodology to measure voltage fluc-
tuations in a production processor unintrusively. We explain
how we sense the voltage using only off-the-shelf components,
rather than relying on specialized equipment. We validate our
experimental setup by re-constructing the impedance profile of
the system and comparing it with data from Intel [13], [14],
as well as past literature. Using the same setup, we describe
a new means of extrapolating voltage noise in future systems
by removing package capacitors from a working chip. Finally,
we show how to determine the worst-case operating margin
by undervolting the processor.

A. Using Off-the-Shelf Components

Previous descriptions of voltage swings have been done
primarily by using either custom voltage transient test (VIT)
tool kits [13], [15] or simulation [2], [8], [16]-[18]. These
approaches have severe limitations that prevent us from ob-
serving the voltage noise characteristics of a real processor
as it is running full programs and operating under production
settings. VTT tools replace both the processor and its encom-
passing package for platform validation purposes. Such test

3

(b) Sensing voltage using an Infini-
iMax 1.5GHz 1130A differential
probe that has ultra low loading.

(a) Connecting to on-die voltage
pins via a low impedance path us-
ing VCCsense and V.SSsense-

(d) Gathering oscilloscope data
using an external system that
connects over the network.

(c) Measuring sensed voltage
using an Agilent DSA91304A
Infiniium oscilloscope.

Fig. 3: Measurement setup to sense and measure voltage fluctuations within the processor at execution time.

harnesses enable only limited characterization of voltage noise
phenomena, like resonance, under manual external current
stimuli. They require custom hardware that is not publicly
available. Since the tools replace the processor, it is impossible
to correlate program execution activity to voltage noise on
the system. Simulation efforts overcome this limitation by
integrating processor package models [19]-[21] with microar-
chitecture and power consumption models. Simulation has
been the primary vehicle for voltage noise research over the
past several years. However, analysis via simulation suffers
from constraints like the length of program execution one can
study, or the extent to which the models are representative of
real processors. Moreover, integrated simulation efforts have
only focused on single core execution models. In today’s
multi-core era, it is important to characterize the effect of
interactions across cores that lead to voltage noise.

The benefits of the setup we describe here are that it
allows us to measure voltage fluctuations within the processor
without a special experimental toolkit. Even more importantly,
this setup allows us to run through entire suites of real
programs to completion, rather than relying on simulation
to observe activity over just a few millions of instructions.
To the best of our knowledge, nothing is publicly known
about the noise characteristics of real benchmarks running on
actual production processors, especially in multi-core systems.
The processor we study is an Intel® Core™?2 Duo Desktop
Processor (E6300) on a Gigabyte GA-945GM-S2 chipset
platform. The methodology and framework we describe here
serve as a basis for all evaluation throughout the rest of the
paper. While we constrain our analysis to this processor and
motherboard setup, the general methodology is extensible to
other system platforms as well.

Methodology. We unintrusively sense voltage near the
silicon through isolated low impedance processor pin connec-
tions. The processor package exposes two pins for processor
power and ground, as VCClyepse and V.S Sgense, respectively.
These pins typically exist for validation reasons, allowing
designers to sense and test on-die voltage during controlled
voltage transitions, such as dynamic voltage and frequency
scaling for thermal and power management [22].

Fig. 3 illustrates how we connect, sense, measure and gather
data from these pins, going from (a) through (d) in that order.
To ensure minimal or no measurement error and to maintain
high signal fidelity, we use a InfiniiMax 1.5GHz 1130A

¥ 50

- M d It:
z ° > Scaled to compare with 9 casurecresdts
g 40— 54/ Core2Duo impedance data é? duced # of
4 Reduced # o

» S
-é 3040 : E6 capacitors (caps)
© 85
€ 20 é— Sa Default # of
- L 3 efault # of caps
T o > \ is
° ¢ £
g 0 —) 1
g i /
= 2 46 2 4
1 10 100 0.01 01 110

Frequency (MHz)
(b) Intel impedance data [14].

Frequency (MHz)
(a) Measured impedance.

Fig. 4: Measurement validation, comparing impedance derived on our
machine versus well established data from Intel.

differential probe to sense voltage. A DSA91304A Infiniium
oscilloscope measures probe data at a high frequency matching
the probe functionalities. The scope stores these measured
readings in memory using a highly compressed histogram
format that it internally supports. Therefore, it allows us to
gather data over several minutes, which corresponds to activ-
ity over several hundreds of billions of committed program
instructions, well beyond simulation reach. Every 60-second
interval, a remote data collection system then transparently
gathers all scope data over the network.

Validation. In order to validate our experimental methodol-
ogy, we construct the impedance profile of our Core™?2 Duo
system and compare it with Intel data. An impedance plot
shows the relationship between current fluctuations and volt-
age noise (see Fig. 4). It is used to study the noise charac-
teristics of a processor. Typically, voltage regulator module
designers and package designers rely on such information to
build robust power supplies that can match the needs of a
processor.

We follow the methodology that Intel designers prescribe to
construct the impedance profile of a chip [14]. However, we
replace their step-current generation technique with a current-
consuming software loop that runs on the processor. The loop
consists of separate high-current draw and low-current draw
instruction sequences. Tiwari et al. explain how to determine
the amount of current individual instructions draw [23]. We
leverage this technique to determine the set of instructions
to use within the loop body across each of the paths. By
modulating execution activity through these paths, the loop
can control the current draw frequency.

Fig. 4a is the impedance profile constructed using this
approach on our system. There are two important validation

Y
oJHINRRREARNRE

(b) Procrs (c) Procso

22uF
(L])] RN HRREXAK
"'5-}----]]
N HORNEEN EERNEN INERNN
N IEEEEN EREEEN EREEEN
miIli&—c 1 | s)M
pEEEEEEE" EEEXXKNN MMM M
(g) Procioo (h) Procrs (i) Procsg

(e) Procs

(d) Procas
HEXNK AN AN
- =] ===
AN RN M
NN EEE MM M XXX MM M XXX
s WX MM s WX MM s WX MM
DD XD XD DD XD XD DD XD XD
(j) Procas (k) Procs (1) Proco

(m) Procioo (n) Procrs (0) Procsg

(p) Procas (qQ) Procs (r) Proco

Fig. 5: (a)-(f) Land side of a Core2Duo™ processor, showing its package capacitors as we incrementally remove them to extrapolate voltage
noise. (g)-(1) Capacitor values and the manner in which each chip is altered; white boxes with a cross correspond to removed capacitors.

(m)-(r) Voltage droop response to the reset signal.

points to observe. First, impedance peaks at around the res-
onance frequency of 100MHz to 200MHz, which matches a
large body of prior work describing typical power delivery net-
work characteristics [1], [2], [8], [24], [25]. Second, the small
graph embedded within Fig. 4a corresponds appropriately to
previously published Intel data [13], [14]. Between 1MHz
and 10MHz, Measured results for the Default # of caps in Fig. 4b
closely correspond to our results within the scaled graph. With
this we conclude the validation of our experimental setup and
utilize it for all other measurements.

B. Studying Future Systems

Voltage swings are growing in future processor generations.
To extrapolate and study this effect on resilient architecture
designs, we amplify voltage noise in the production processor
by reducing package capacitance. As a cautionary note to the
reader, the manner in which we remove package capacitance
does not translate to an absolute representation of what voltage
noise will look like in future nodes. It is a gross estimate.
There may be non-linear effects to consider. Nevertheless, this
technique suffices as a heuristic that resembles the simulation-
based trend line in Fig. 1. This method suffices to approx-
imately study the effects of voltage noise in future systems
across a diverse range of workloads and observe full program
characteristics using a real processor.

Basis. Designers ship processors with on-chip and off-
chip decoupling capacitance to dampen peak-to-peak voltage
swings by reducing impedance of the power delivery network.
Off-chip decoupling capacitors are externally visible on the

land side of a packaged processor (see Fig. 5a). Since voltage
is the product of current and impedance, for a given current
stimulus at a particular frequency, the magnitude of voltage
swings will be smaller with smaller overall impedance. As
package capacitance decreases, impedance increases, causing
much larger peak-to-peak voltage swings within the processor
for the same magnitude of activity fluctuations.

Fig. 4b quantifies this relationship between package capac-
itance and impedance. The system experiences much larger
impedance across the frequency range with fewer capacitors.
See the lines corresponding to Reduced # of capacitors (caps) in
the figure. The same system has much smaller impedance
with more capacitors (see Default # of caps). At 1MHz, the
peak impedance is only 0.5mOhms in a system that
is well damped, whereas it is 5 times as much under
Reduced # of capacitors (caps).

Decap Removal. By removing decoupling capacitors (or
“decaps”), we create a range of five new processors (shown in
Figs. 5b-5f) with decreasing package capacitance. We identify
the successive processors using a subscript following the word
“Proc” that describes the amount of package capacitance left
behind after decap removal. For instance, Procjgg retains
all its original capacitors, while Procs retains only 3% of
its original package capacitance. After decap removal, we
verify the operational stability of the processors by subjecting
each one to an aggressive run-time test using CPUBurn [26].
This program stresses the processor’s execution units while
continuously monitoring execution for errors.

The processor package contains different capacitive ele-

ments. After decap removal, we determined their individual
values, which are shown in Fig. 5g. Identical values share a
color. White boxes in Figs. Sh-51 illustrate the manner in which
we altered the processor to lower capacitance. For instance, to
eliminate 50% of all capacitors, we remove half of each kind
of capacitor.

Effect. To determine the impact of decap removal on
voltage swings, we stimulate the processor with a reset signal.
Resetting, or turning off and on, the processor, causes a very
sharp, large and sudden change in current activity. We reset
the processor as it is idling, or running the idle loop of the
operating system. Since impedance across Procigy through
Procy varies because of their differing levels of package
capacitance, their magnitude of voltage swings also varies in
response to this stimulus.

Oscilloscope screen shots in Figs. 5m-5r correspond to
the different processors’ core supply voltages at the moment
of the reset signal, measured using our experimental setup
from the previous section. Procigg in Fig. Sm experiences
a sharp 150mV voltage droop for a very brief amount of
time, but voltage quickly recovers. As package capacitance
progressively decreases going from Procigp to no package
capacitance altogether in Procg, voltage swings not only get
incrementally larger, but also extend over a longer amount of
time. Procy experiences a 350mV drop over several cycles
in Fig. 5r. This leads to timing violations that prevent the
processor from even booting up. However, it is the only
processor that fails stability testing.

Fig. 6 summarizes the peak-to-peak voltage swings across
all processors relative to Prociggp. We can safely normalize
this data because differences in the peak-to-peak swing of an
idling machine across the processors is negligible. However,
their noise characteristics diverge when activity occurs. Fig. 6
shows one instance of such divergence, in response to resetting
the processors. The trend in this figure is roughly the same as
in Fig. 1. The knee of the curve is around Procss and Procs,
so from here on we rely on them as our future nodes, while
Procygo is representative of today’s systems.

C. Worst-Case Margin

The worst-case margin is the voltage guardband that toler-
ates transient voltage swings. It iS (V,ominal-Vmin)/Vanominals
where V,,;,, is the minimum voltage before an execution error
can occur. This work discusses performance improvements
as a result of utilizing aggressive voltage margins, rather
than utilizing worst-case margins. Therefore, we needed to
determine the worst-case lower margin.

In the Core™2 Duo processor, the worst-case margin is
approximately 14% below the nominal supply voltage. In
order to determine this value, we progressively undervolt
the processor while maintaining its clock frequency. This
ultimately forces the processor into a functional error, which
we detect when the processor fails stress-testing under multiple
copies of the power virus.

Core2D It in: -14%

2 ~ 40 g 16 ore2Duo voltage margin o
39 g 08! y
22 39 s ¥ Max. overshoot
g5 7 L 06
E ®]l R

2.0 8 : !)
<8 5 | Min. drogp! YPical-case
7= T T T T 11 a o
s 100755025 3 0 40 0 10
& Proc % of Voltage Swing
Fig. 6: Voltage swings in Fig. 7: Cumulative distribution of

Figs. 5m-5r across processors
shown in Figs. 5a-5f.

voltage samples across 881 pro-
gram executions.

IITI. NOISE IN PRODUCTION PROCESSORS

In this section, we discuss the voltage noise characteris-
tics of real-world programs as they are run to completion,
using our experimental measurement setup from Section II.
We summarize the noise profiles of single-threaded, multi-
threaded and multi-program executions prior to providing
more in-depth analysis in later sections. This section covers
the extent to which worst-case operating voltage margins are
absolutely necessary, followed by motivating and evaluating
aggressive voltage margins for typical-case design. Our anal-
ysis includes Procigg, Procas and Procs. Therefore, we
characterize typical-case design not only in the context of
today’s systems, but we also project into the future.

A. Typical-Case Operation

The worst-case operating voltage margin is overly conser-
vative. We determine this from 881 benchmarking runs. The
experiments include a spectrum of workload characteristics:
29 single-threaded SPEC CPU2006 workloads, 11 Parsec [27]
programs and 29x29 multi-program workload combinations
from CPU2006. Consequently, we believe that the conclusions
drawn from this comprehensive investigation are representative
of production systems and not biased towards a favorable
outcome.

Fig. 7 shows a cumulative histogram distribution of voltage
samples for Procigg. We plot the deviation of each sample
relative to the nominal supply voltage. Each line within the
graph corresponds to a run. Run-time voltage droops are as
large as 9.6% (see Min.droop marker). Therefore, the 14%
worst-case margin is necessary. However, they occur very
infrequently. Most of the voltage samples are within 4% of
the nominal voltage. The Typical-case marker in Fig. 7 identifies
this range. Only a small fraction of samples (0.06%) lie beyond
this typical-case region. Although the magnitude of overshoots
can also be large (see Max. overshoot), they are significantly
less frequent, especially in future nodes. Therefore, we will
primarily focus on droops.

B. Designing for Typical-Case Operation

When a microarchitecture is optimized for typical-case con-
ditions and relies on an error-recovery mechanism to handle
emergencies, three critical factors determine its performance:
(1) workload characteristics, (2) the operating voltage margin
setting, and (3) the cost of rolling back execution. In this

Q) 02

S \“\ag\f\ ‘

g 20 o1 ¥

g N Recovery Costs
g 15 N N —1

o Y

g 10 U TR 10

£ B S [100
8 5 [—--- 1000
g P — - 10000
£ 0 | i — - 100000
2 <+—— Dead zone !

g 5

-14 12 10 -8 -6 -4 -2
Voltage Margin (%)

Fig. 8: Typical case improvement across a range of recovery costs
on Procioo, showing substantial room for tighter voltage margins.

section, we evaluate how these factors influence peak perfor-
mance.

Performance Model. In order to study the relationship
between these critical parameters, we inspect performance
gains from allowing voltage emergencies at runtime. Since
our analysis is based off of a current generation processor
that does not support aggressive margins, we have to model
the performance under a resilient system. For a given voltage
margin, every emergency triggers a recovery, which has some
penalty in processor clock cycles. During execution, we record
the number of emergencies, which we determine from gathered
scope histogram data. After execution, we compute the total
number of cycles spent in recovery mode. These cycles are
then added to the actual number of program runtime cycles.
We gather runtime cycle counts with the aid of hardware per-
formance counters using VTune [28]. The combined number
is the performance lost due to emergencies.

While allowing emergencies penalizes performance to some
extent, utilizing an aggressive voltage margin boosts processor
clock frequency. Therefore, there can be a net gain. Bowman et
al. show that an improvement in operating voltage margin by
10% of the nominal voltage translates to a 15% improvement
in clock frequency [5]. We assume this 1.5x scaling factor
for the performance model as we tighten the voltage margin
from 14%. Alternatively, margins could be used to improve
(or lower) dynamic power consumption.

Recovery Costs. Fig. 8 shows performance improvement
over a range of voltage margins, assuming specific recovery
costs. These recovery costs reflect prior work: Razor [7],
a very fine-grained pipeline stage-level error detection and
recovery mechanism, has a recovery penalty of only a few
clock cycles. DeCoR [8] leverages existing load-store queues
and reorder buffers in modern out-of-order processors to delay
instruction commit just long enough to verify whether an emer-
gency has occurred. Typical delay is around tens of cycles.
Reddi et al. [29] propose a scheme that predicts emergen-
cies using program and microarchitectural activity, relying on
an optimistic 100-cycle hardware-based checkpoint-recovery
mechanism that guarantees correctness. Current production
systems typically take thousands of clock cycles to complete
recovery [30]. Alternatively, recovery cost-free computing is
also emerging where it is possible to exploit the inherently
statistical and error-resilient nature of workloads to tolerate

3 10 8 10 :
Q Q
E 08 E 08 % c
on o0
s 0.6 5 0.6 4
S 04 S 04
E 5
2 02 2 02 Larger spread
Z 00 - L 0t=
a o U9
4 2 0 2 4 4 2 0 2 4

% of Voltage Swing % of Voltage Swing

(a) Procas (b) Procs

Fig. 9: Typical-case swings in future processors are increasingly more
slanted compared to Procioo (see Fig. 7) as voltage noise grow.

errors without a hardware fail-safe [31]. Our workloads do
not fall into this criteria, therefore we target the more general
case where hardware robustness is a must.

Optimal Margins. In order for a resilient architecture design
to operate successfully under any aggressive margin, an opti-
mal margin must exist. Such a margin is necessary to design
the processor towards a specific design point in the presence of
workload diversity. Fig. 8 data is an average of all 881 program
runs. These include single-threaded, multi-threaded workloads,
and an exhaustive multi-program combination sweep that pairs
every CPU2006 benchmark with every other benchmark in
the suite. Despite this heterogeneous set of execution profiles,
we find that it is possible to pick a single static optimal
margin. There is only one performance peak per recovery cost.
Otherwise, we would see multiple maxima or some other more
complicated trend.

Note that each benchmark can have a unique optimal voltage
margin. However, we found that the range of optimal margins
is small across all executions. So although it is possible
to achieve even better results on a per benchmark basis,
improvements over our one-design-fits-all methodology are
likely to be negligible, at least relative to our gains.

In Fig. 8, every recovery mechanism has its own optimal
margin. Depending on the cost of the recovery mechanism,
gains vary between 13% and ~21%. Coarser-grained recovery
mechanisms have more relaxed optimal margins while finer-
grained schemes have more aggressive margins and as a
consequence are able to experience better performance im-
provements. However, being overly aggressive and setting the
operating voltage margin beyond the optimal causes rapid
performance degradation. At such settings, recoveries occur
too frequently and penalize performance, thus the benefits
begin to diminish. Recovery penalties can be so high that they
can even push losses beyond the original conservative design
(i.e., 14% margin on Core™2 Duo). This corresponds to
below 0% improvement, which we refer to as the Dead zone.

Diminishing Gains. As we extrapolate the benefits of
resilient microarchitecture designs into future nodes using
Procos and Procs, we can anticipate an alarming decrease
in the corresponding performance gains. These diminishing
gains are due to worsening voltage swings. Processors in the
future will experience many more emergencies compared to
Procygp at identical margins. Fig. 9 shows the distribution of

———

20 15 10 5 0
Performance Improvement (%)

——

<-5 20 15 10
Performance Improvement (%)

———

<-5 20 15 10 5 0 <-5
Performance Improvement (%)

5 0

100000 100000 100000

0 0 0

< 10000 < 10000 < 10000

)))

% 1000 % 1000 % 1000

[o] o Q

(8] (8] [&]

> 100 > 100 > 100

[[[

3 3 3

2 10 2 10 2 10

['4 ['4 ['4
1 T T 1 T T 1 T T
4 12 10 -8 6 4 2 4 12 10 -8 B 4 2 A4 12 10 -8 B 4 2

Voltage Margin (%)
(a) Procioo

Voltage Margin (%)
(b) Procas

Voltage Margin (%)
(c) Procs

Fig. 10: Performance improvement under typical-case design using various recovery costs and voltage margin settings.

voltage samples around the typical case margin on Procss
and Procs. Notice how samples for Procys are packed more
tightly around the nominal than for Procs. Also, the lines are
more tightly bound together. In today’s Procigg system, only
0.06% of all voltage samples fall below the typical-case -4%.
By comparison, over 0.2% and 2.2% of all samples violate the
-4% margin in Procys and Procs, respectively.

To quantify the impact and to illustrate diminishing gains in
performance better, we rely on the heatmaps in Fig. 10. These
heatmaps include additional and more comprehensive sweeps
of error recovery costs versus operating voltage margins.
The intensity of the heatmaps corresponds to the amount of
performance improvement. We see that the large pocket of
performance improvement in Procjgg between -6% and -2%
voltage margin quickly diminishes as we go to Procss and
Procs. Compare the blue region in Fig. 10a with that in
Fig. 10b and Fig. 10c, respectively.

Long-term Implications. Retaining the same level of per-
formance improvement as in today’s Procigg will require
future processors to make use of more fine-grained recovery
mechanisms. For instance, in Fig. 10, designers could use a
1000-cycle recovery mechanism in Procigg to reap a 15% im-
provement in performance. But in Procsys, they would have to
achieve a ten-fold reduction in recovery cost implementation,
to just 100-cycles. Procs requires even further reductions to
~10 cycles per recovery to maintain the 15% improvement.

The problem with implementing fine-grained recovery is
that they are severely intrusive. Razor- and DeCoR-like
schemes require invasive changes to traditional microarchitec-
tural structures. Moreover, they add area and cost overheads,
making design and validation even more complicated than they
already are in today’s systems.

Therefore, we advocate mitigating error-recovery costs
of coarser-grained mechanisms, by investigating software-
assistance to hardware guarantees. A major benefit of coarser
recovery mechanisms is that some form of checkpoint-
recovery is already shipping in today’s systems [30], [32] for
soft-error tolerance. Moreover, newer applications are emerg-
ing that leverage and re-use this general-purpose hardware for
tasks such as debugging, testing, etc. [33], [34]. In this way,
software aids efficient and cost-effective typical case design.

C. Understanding Droops and Overshoots

The first step towards mitigating error recovery overheads
via software is to understand microarchitectural-level activity
that leads to voltage noise. By stimulating just one core within
the Procioo Core™2 Duo processor in highly specific ways
using microbenchmarks, we quantify the perturbation effects
of independent and individual microarchitectural events on the
processor’s nominal supply voltage. Subsequently, we extend
our analysis to multi-core. These microarchitectural events,
even when acting in isolation within cores, interfere across
cores, leading to much larger chip-wide voltage swings.

Single Core. Microarchitectural events that cause stalls lead
to voltage swings. To quantify this effect, we hand-crafted the
following microbenchmarks that cause the processor to stall:
L1 (only) and L2 cache misses, translation lookaside buffer
(TLB) misses, branch mispredictions (BR) and exceptions
(EXCP). Each microbenchmark is run in a loop, so that activity
recurs long enough to measure its effect on core voltage.

To demonstrate that the microbenchmarks exhibit steady and
repeatable behavior for measurements, Fig. 11 is a snapshot
of core voltage as the processor is experiencing TLB misses.
The sawtooth-like waveform is the switching frequency of the
voltage regulator module (VRM). This is background activity.
Embedded within that waveform are recurring voltage spikes.
These correspond to the TLB microbenchmark. A TLB miss
causes voltage within the processor to swing because it stalls
execution momentarily, causing a large drop in current draw.
As a result of finite impedance in the power supply network,
voltage shoots above the nominal value.

The processor may also experience a correspondingly strong
voltage droop following an initial overshoot. Consider an
L1 cache miss event. During the time it takes to service
the miss, pipeline activity ramps down. Current drops and
voltage overshoots. But after the miss data becomes available,
functional units become busy and there is a surge in current
activity. This steep increase in current causes voltage to droop.

The magnitude of the voltage swing varies depending on
the type of event. We summarize this across all events relative
to an idling system in Fig. 12. On an idling system, we
observe only the VRM ripple. Therefore, voltage overshoots
and droops are distinctly noticeable and measurable in mi-
crobenchmark cases. Fig. 12 shows that branch mispredictions

1.8

1.6

EXCP 24

1.4

2.04 2.17 2.25
1.92 2.07 2.07 2.20 2.2

BR

1.2 H

ink

1.0

TLB 2.0
L2

L1

MO 2RIEYONIE9202107 2.25

Core O

1.8

IR 2.17
1.9211.92 12805

1.6

T T T
L1 L2 TLB

Peak-to-peak Voltage Swings
(Relative to an Idling OS)

Fig. 11: TLB misses causing
overshoots.

events on supply voltage.

cause the largest amount of voltage swing compared to other
events. The maximum peak-to-peak voltage swing is over 1.7
times that of our baseline.

Multi-Core. Microarchitectural activity across cores causes
interference that leads to chip-wide transient voltage swings
that are much larger than their single-core counterparts. Using
the same set of microbenchmarks as above, we characterize
the effect of simultaneously running multiple events on the
processor. Each core runs just one specific microbenchmark.
We then capture the magnitude of the peak-to-peak swing
across the entire chip. Both cores share the same power supply
source. The heatmap in Fig. 13 is the effect of interference
across the two cores. Once again we normalize the magnitude
of the swings relative to an idling machine. The y-axis
corresponds to Core 0 and the x-axis to Core 1.

When both cores are active, the peak-to-peak voltage swing
worsens. The maximum peak-to-peak swing in Fig. 13 is
2.42x, whereas in the single-core test it is only 1.7x, a
42% increase. In the context of conservative worst-case de-
sign, where designers allocate sufficiently large margins to
tolerate the absolute worst-case swing, this increase implies
proportionally larger margins are necessary to compensate for
amplified voltage swings when multiple cores are active. As
the number of cores per processor increases, this problem
can worsen. Within the context of resilient microarchitecture
designs, error-recovery rates will go up.

However, the maximum voltage swing varies significantly
depending on the coupling of events across the cores. Depend-
ing on this pair, the chip may experience either constructive
interference or destructive interference. In the context of this
paper, constructive interference is the amplification of voltage
noise and destructive interference is the dampening of voltage
noise relative to noise when only one core is active. The
worst-case peak-to-peak swing discussed above is an example
of constructive interference. It occurs when both cores are
running EXCP. But pairing this event with any other event than
itself always leads to a smaller peak-to-peak swing. Sec. [V-A
shows an example of destructive interference, where the swing
when two cores are simultaneously active is smaller than
during single core execution.

Constructive interference is a problem in multi-core sys-
tems, since individual cores within the processor typically

Core 0 (active). Core 1 (idling).

Fig. 12: Effect of microarchitectural

T T
BR EXCP

L1 L2 TLB BREXCP
Core 1

Peak-to-peak Voltage Swings
(Relative to an Idling OS)

Fig. 13: Impact of microarchitectural event
interference across cores.

share a single power supply source.’ Therefore, a transient
voltage droop anywhere on the shared power grid could
inadvertently affect all cores. If the droop is sufficient to cause
an emergency, the processor must initiate a global recovery
across all cores. Such recovery comes at the hefty price of
system-wide performance degradation. Therefore, mitigating
voltage noise in multi-core systems is especially important.

IV. MITIGATING VOLTAGE NOISE

In order to smooth voltage noise in multi-core processors
and mitigate error recovery overheads, this section investi-
gates the potential for a voltage noise-aware thread scheduler.
Our technique is hardware-guaranteed and software-assisted.
Hardware provides a fail-safe guarantee to recover from
errors, while software reduces the frequency of this fail-
safe invocation, thereby improving performance by reducing
rollback and recovery penalties. In this way, thread scheduling
is a complementary solution, not a replacement/alternative
for hardware. Due to the lack of existing checkpoint recov-
ery/rollback hardware, we analytically model and investigate
this software solution.

The scheduling policy we motivate is called Droop. It fo-
cuses on co-scheduling threads across cores to minimize chip-
wide droops. This technique exploits voltage noise phases,
which we introduce and discuss first. We then demonstrate
that thread scheduling for voltage noise is different than
scheduling threads for performance. Finally, we demonstrate
that a noise-aware thread scheduler enables designers to rely
on coarse-grained recovery schemes to provide error tolerance,
rather than investing in complex fine-grained schemes that
are typically suitable for high-end systems, versus commodity
processors. As everything in this section builds towards the
ultimate goal of improving the efficiency of resiliency-based
architectures in the future, we use the Procs processor.

A. Voltage Noise Phases

Similar to program execution phases, we find that the
processor experiences varying levels of voltage swing activity
during execution. Assuming a 2.3% voltage margin, purely

3In this study, we only focus on off-chip VRMs, as they are more widespread.
Future processors may have on-chip per-core VRMs, but Kim et al. show
that such designs can in fact worsen voltage noise [35]. Similarly, designers
of the IBM POWERG6 processor tested split- versus connected-core power
supplies and found that voltage swings are much larger when the cores
operate independently [1].

3 120 3 120 3 120
> - S > WAL b
© v (&) "—1 "—1 [€) = H L
¥ 80 ¥ 80 ¥ 80 fi
- - A = u wJ bl
: g < T R S U
f‘) 40 o 40 % 40
Q Qe Q
°© e o
o J< o
= 0 a 0 = 0

0 400 800 1200 1600 0 250 500 0 400 800 1200 1600 2000

Time (s) Time (s) Time (s)

(a) 482.sphinx

(b) 416.gamess

(c) 465.tonto

Fig. 14: Single-core droop activity until complete execution. Some programs show no phases (e.g., 482.sphinx). Others, like 416.gamess and
465.tonto, experience simple, as well as more complex phases, respectively.

8 120 1.0
5 —os¢
3 .
= s 0 A ﬁ f‘i iR L 06
x \ A x WVIINA f\} [Nos o
- 7 J int N &
8 40_J g \Z v yf\g g 0-4;0
o
= 0 - 0.0
a TT I Tl
SONEXSNOTXNE S ETEHOTQC >OX X0kt
Go038CopEESESREEESEC6aEE 288
m;_QwE—UE @ O0EOE HC c@lawoal X3
3 26 § £EOLQc ofF gETo 27 3
© o o T S N

Fig. 15: Single-core droop activity, showing a heterogeneous mix of
noise levels along with correlation to stalls.

for characterization purposes, Fig. 14 shows droops per 1000
cycles across three different benchmarks, plotting averages for
each 60-second interval. We use this margin since all activity
that corresponds to an idling machine falls within this region.
Thus, it allows us to cleanly eliminate background operating
system activity and effectively focus only on the voltage noise
characteristics of the program under test.

The amount of phase change varies from program to pro-
gram. Benchmark 482.sphinx experiences no phase effects.
Its noise profile is stable around 100 droops per 1000 clock
cycles. In contrast, benchmark 416.gamess goes through four
phase changes where voltage droop activity varies between 60
and 100 per 1000 clock cycles. Lastly, benchmark 465.tonto
goes through more complicated phase changes in Fig. 14c,
oscillating strongly and more frequently between 60 and 100
droops per 1000 cycles every several tens of seconds.

Voltage noise phases result from changing microarchitec-
tural stall activity during program execution. To quantify why
voltage noise varies over time, we use a metric called stall
ratio to help us understand the relationship between processor
resource utilization and voltage noise. Stall ratio is computed
from counters that measure the numbers of cycles the pipeline
is waiting (or stalled), such as when the reorder buffer or
reservation station usage drops due to long latency operations,
L2 cache misses, or even branch misprediction events. VTune
provides an elegant stall ratio event for tracking such activity.

Fig. 15 shows the relationship between voltage droops and
microarchitectural stalls for a 60-second execution window
across each CPU2006 benchmark. The window starts from the
beginning of program execution. Droop counts vary noticeably
across programs, indicating a heterogeneous mix of voltage
noise characteristics in CPU2006. But even more interestingly,

droops are strongly correlated to stall ratio. We visually
observe a relationship between voltage droop activity and stalls
when we overlay stall ratio over each benchmark’s droops per
1000 cycles. Quantitatively, the linear correlation coefficient
between droops and stall ratio is 0.97.

Such a high correlation between coarse-grained perfor-
mance counter data (on the order of billions of instructions)
and very fine-grained voltage noise measurements implies that
high-latency software solutions are applicable to voltage noise.

B. Co-Scheduling of Noise Phases

A software-level thread scheduler mitigates voltage noise
by combining different noise phases together. The scheduler’s
goal is to generate destructive interference. However, it must
do this carefully, since co-scheduling could also create con-
structive interference. To demonstrate this effect, we setup the
sliding window experiment depicted in Fig. 16a. It resembles
a convolution of two execution windows. One program, called
Prog. X, is tied to Core 0. It runs uninterrupted until program
completion. During its execution, we spawn a second program
called Prog.Y onto Core 1. However, this program is not al-
lowed to run to completion. Instead, we prematurely terminate
its execution after 60 seconds. We immediately re-launch a
new instance. This corresponds to Runi, Run2, ..., RunN
in Fig. 16a. We repeat this process until Prog. X completes
execution. In this way, we capture the interaction between
the first 60 seconds of program Prog. Y and all voltage noise
phases within Prog. X. To periodically analyze effects, we take
measurements after each Prog. Y instantiation completes. As
our system only has two cores, Prog. X and Prog.Y together
maximize the running thread count, keeping all cores busy.

We evaluate the above setup using benchmark 473.astar.
Fig. 16b shows that when the benchmark runs by itself (i.e.,
the second core is idling), it has a relatively flat noise profile.
However, constructive interference occurs when we slide one
instance of 473.astar over another instance of 473.astar (see
Constructive interference in Fig. 16c). During this time frame,
droop count nearly doubles from around 80 to 160 per 1000
cycles. But there is destructive interference as well. Between
the start of execution and 250 seconds into execution, the
number of droops is the same as in the single-core version,
even though both cores are now actively running.

We expanded this co-scheduling analysis to the entire SPEC
CPU2006 benchmark suite, finding that the same destruc-
tive and constructive interference behavior exists over other

Time (s)

S 160 » 160
S < Di ive L
(->)\ 1 20 g 1 20 UE%[IUFLIV
v (mE O interference Canstructive
;“""":g(;;; """"""""""" Ly 80 - - < 80] interference
1 Run1 | b 9]
i Loog 40 S 40 (good) (bad)
51] o
g e - s o
1
U&': Run N i 0 100 200 300 400 500 e 0O 100 200 300 400 500
1 1

(a) Setup for co-scheduling experiment.

Time (s)
(b) 473.astar single-core noise profile.

Scheduling Time Offset (s)
(c) 473.astar co-scheduled noise profile.

Fig. 16: (a) Setup for studying co-scheduling of voltage noise phases. (b) Voltage noise profile of 473.astar as it running by itself on a single
core while the other core is idling. (c) Noise profile of co-scheduled instances of 473.astar as per the setup in (a).

2 200 A SPECrate O Single-core
3\150 ‘ | ‘\ |..] | irh |
N

<06 @ 1 ﬁﬁh ol Eﬂg I @ Al ﬁﬁ

2 dgPeegtle sLICR L

5B ey Rt TR el Ta

8 T T T QW °© T ¥ 9%]

o

e 0

a rTrrrr 71711171 11T T T T T T TTTTTTTTTTT
LwNEéEmUwa“—LE‘GE"—g‘GD._C>\m><><o‘tcc:.
R I T]

2928 5 £5s5dF B3 £ 9 R
8 S g °a

Fig. 17: Droop variance across single core and dual cores.

Recovery Optimal Expected # of Schedules
Cost (cycles) || Margin (%) Improvement (%) That Pass
1 5.3 15.7 28
10 5.6 15.1 28
100 6.4 13.7 15
1000 7.4 12.2 12
10000 8.2 10.8 9
100000 8.6 9.7 9

Tab. I: SPECrate typical-case design analysis at optimal margins.

schedules as well. Fig. 17 is a boxplot that illustrates the
range of droops as each program is co-scheduled with every
other program. The circular markers represent voltage droops
per 1000 cycles when only one instance of the benchmark
is running (i.e., single-core noise activity). The triangular
markers correspond to droop counts when two instances of
the same benchmark are running together simultaneously, or
more commonly known as SPECrate.

Destructive interference is present, with some boxplot data
even falling below single-core noise activity. With the excep-
tion of benchmark libguantum, both destructive and construc-
tive interference can be observed across the entire suite. If
we relax the definition of destructive interference from single-
core to multi-core, then room for co-scheduling improvement
expands. SPECrate triangles become the baseline for com-
parison. In over half the co-schedules there is opportunity to
perform better than the baseline.

Destructive interference in Fig. 17 confirms that there is
room to dampen peak-to-peak swings, sometimes even enough
to surpass single-core noise activity. From a processor opera-
tional viewpoint, this means that designers can run the proces-
sor utilizing aggressive margins even in multi-core systems. In
contrast, if nothing were done to mitigate voltage swings in
multi-core systems, microbenchmarking analysis in Sec. III-C
indicates that margins will need to grow.

C. Scheduling for Noise versus Performance

Co-scheduling is an active area of research and development
in multi-core systems to manage shared resources like the
processor cache. Most of the prior work in this area focuses
on optimizing resource access to the shared L2 or L3 cache
structure [36]-[42], since it is performance-critical.

Similarly, processor supply voltage is a shared resource. In
a multi-core system where multiple cores share a common
power supply source, a voltage emergency due to any one
core’s activity penalizes performance across all cores. A global
rollback/recovery is necessary. Therefore, the power supply is
on the critical-path for performance improvement as well.

The intuition behind thread scheduling for voltage noise is
that when activity on one core stalls, voltage swings because
of a sharp and large drop in current draw. By maintaining
continuous current-drawing activity on an adjacent core also
connected to the same power supply, thread scheduling damp-
ens the magnitude of that current swing. In this way, co-
scheduling prevents an emergency when either core stalls.

Scheduling for voltage noise is different than scheduling for
performance. Scheduling for performance typically involves
improving miss rates or reducing cache stalls. Since stalls
and voltage noise are correlated, one might expect cache-
aware performance scheduling to mitigate voltage noise as
well. Inter-thread interference data in Fig. 13 points out that
the interactions between un-core (L2 only) and in-die events
(all others) lead to varying magnitudes of voltage swings.
Additional interactions must be taken into account.

Therefore, we propose a new scheduling policy called
Droop. It focuses on mitigating voltage noise explicitly by re-
ducing the number of times the hardware recovery mechanism
triggers. By doing that it decreases the number of emergencies,
and thus reduces the associated performance penalties.

Due to the lack of resilient hardware, we perform a limit
study on the scheduling approaches, assuming oracle infor-
mation about droop counts and simulating all recoveries. We
compare a Droop-based scheduling policy with instructions
per cycle (IPC) based scheduling. We use SPECrate as our
baseline. It is a sensible baseline to use with IPC scheduling,
since SPECrate is a measure of system throughput and IPC
maximizes throughput. Moreover, SPECrate in Fig. 17 shows
no apparent preferential bias towards either minimizing or
maximizing droops. Droop activity is spread uniformly over

2.0 +

%]
Q.
[«]
e
Q3 e Q2 ~/ Random
// /
X Perf. X IPC)
[o] O IPC/Droop
0.0 20 1 Do
Q4 Q1
0.0 -

Fig. 18: Policy impact of droop vs. performance relative to SPECrate.

the entire workload suite, further making it a suitable baseline
for comparison. We normalize and analyze results relative to
SPECrate for both droop counts and IPC, since this removes
any inherent IPC differences between benchmarks and focuses
only on the benefits of co-scheduling.

To evaluate the different policies, we setup a batch schedul-
ing experiment where the job pool consists of pairs of
CPU2006 programs, enough to saturate our dual core system.
From this pool, during each scheduling interval, the scheduler
chooses a combination of programs to run together, based
on the active policy. In order to avoid preferential behavior,
we constrain the number of times a program is repeatedly
chosen. 50 such combinations constitute one batch schedule.
In addition to deterministic Droop- and IPC-based scheduling
policies, we also evaluate 100 random schedules.

The scheduling experiment is oracle-based, requiring knowl-
edge of all runs a priori. During a pre-run phase we gather all
the data necessary across 29x29 CPU2006 program combi-
nations. For Droop, we continue using the hypothetical 2.3%
voltage margin, tracking the number of emergency recoveries
that occur during execution. For IPC, we use VTune’s ratio
feature to gather data for each program combination.

Fig. 18 shows the results of our test. Each marker corre-
sponds to one batch schedule. The four quadrants in Fig. 18
are helpful for drawing conclusions. Ideally, we want results in
Q1, since that implies fewer droops and better performance. Q2
is good for performance only. Q3 is bad for both performance
and droops. Q4 is good for droops and bad for performance.

Random scheduling unsurprisingly does worst. Random
runs cluster close to the center of the graph. Effectively, it
is mimicking SPECrate, which is also uniformly distributed
with respect to noise. Compared to the baseline SPECrate,
IPC scheduling gives better performance. However, since it
is completely unaware of droop activity, the IPC marker
is at approximately the same average droop value as most
random schedules. The Droop policy is aware of voltage noise,
therefore it is able to minimize droops. In this case, we also
see a slight improvement in performance.

D. Reducing Recovery Overheads

As voltage noise grows more severe, it will become harder
for resilient systems to meet their typical-case design targets.
Tab. I illustrates this point for the Procs processor. For
each recovery cost, the table contains an optimal margin and
an associated performance improvement at this aggressive

%‘; 100 =@ IPC @ Droop

S i

w80 —]

o

? 60 S

g

o 40

2 20

[

[}

3] 0 ey e D_ D_ |
£ I I I I I I
e 1 10 100 1000 10000 100000

Recovery Cost (cycles)

Fig. 19: Increase over the number of schedules in Tab. I that pass.

margin. This is the margin at which the system experiences
maximum performance improvement over worst-case design
(i.e., 14% on the Core™?2 Duo processor). This margin is
determined from analyzing the performance improvements
across all 881 workloads in our test setup. But not all work-
loads can meet this target because when voltage swings get
larger, the frequency of emergencies increases, leading to more
error recoveries, which in turn penalizes performance. When
we constrain our analysis to the multi-core (or multi-program)
workload subset, this trend becomes apparent. We examine our
SPECrate baseline across the different recovery costs. At 1-
cycle recovery cost, 28 out of all 29 SPECrate schedules meet
the expected performance criteria. In other words, they pass
the expectations. But as recovery goes up beyond 10 cycles,
the number of schedules that pass quickly diminishes.

In a multi-core system, a thread scheduler can improve
the number of schedules that pass. To demonstrate this,
we run oracle-based Droop and IPC scheduling through the
performance model (see Sec. III-B). We then determine the
number of schedules that pass across the benchmark suite.
Fig. 19 summarizes these results. At 10-cycle recovery cost,
both Droop and IPC scheduling perform well by increasing
the number of passing schedules by 60% with respect to
SPECrate. IPC scheduling leads to some improvement since
reducing the number of cache stalls mitigates some emer-
gency penalties. However, targeting cache events alone is
insufficient to eliminate or significantly reduce interference
across cores. Therefore, with more coarse-grained schemes,
IPC improvements diminish and we see a decreasing trend
line. By comparison, Droop scheduling consistently outper-
forms IPC. At 1000 cycles and beyond, we see an emerging
trend line that emphasizes Droop scheduling performs better
at larger-recovery costs. This indicates that more intelligent
voltage noise-aware thread scheduling is necessary to mitigate
recovery overheads, especially at coarser-recovery schemes.

However, it may be beneficial for the noise-aware scheduler
to incorporate IPC awareness as well, since co-scheduling for
performance has its benefits. Therefore, we propose IPC/Droop™
to balance performance- and noise-awareness. This metric is
sensitive to recovery costs. The value of n is small for fine-
grained schemes, since recovery penalty will be a relatively
small fraction of other co-scheduling performance bottlenecks.
In such cases, weighing IPC more heavily is likely to lead
to better performance. In contrast, n should be bigger to
compensate for larger recovery penalties under more coarse-

grained schemes. In this way, the scheduler can attempt to
maximize performance even in the presence of emergencies.
The pareto frontier in the lower quadrant of Q1 in Fig. 18
illustrates this range of improvement. A case where this metric
is useful is when designers implement different grades of
recovery schemes based on the class of a processor. Server-
class or high-performance systems will typically use finer-
grained recovery schemes despite implementation overheads.
Therefore, they will have smaller recovery penalty. Cheaper,
more cost-effective commodity systems, like workstations and
desktop processors, are likely to rely on more coarse-grained
solutions. The metric allows the scheduler to dynamically
adapt itself to platform-specific recovery costs.

V. CONCLUSION

Measurements on a Core™?2 Duo processor show that
voltage noise will be a dominant issue in the future because de-
signing processors for worst-case conditions will increasingly
compromise performance and/or power efficiency. Resilient
microarchitecture designs, optimized for typical-case, rather
than worst-case, operation, and backed by error-recovery hard-
ware, will become essential. But while these emerging designs
hold great promise in the short term, their long-term outlook
is doubtful. Because growing voltage swings lead to frequent
voltage emergencies in such architectures, their error-recovery
overhead will become a major performance bottleneck. And
we show that increasing the number of cores per processor
can make voltage noise worse. But not all noise interference
among cores is constructive, and voltage noise is not altogether
irregular. Destructive interference can smooth supply voltage,
and recurring microarchitectural stall behavior can produce
periodic voltage noise phases. Based on these observations,
we demonstrate via simulation a software thread scheduler for
multi-core processors that mitigates error-recovery overheads
by co-scheduling threads known to interfere destructively.

ACKNOWLEDGMENTS

We thank our colleagues in industry and academia, specif-
ically Glenn Holloway, for the many discussions that have
contributed to this work. We are grateful to the anonymous
reviewers for their suggestions. This work is funded by gifts
from Intel and National Science Foundation grants CCF-
0429782 and CSR-0720566. Opinions, findings, conclusions,
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] N. James et al., “Comparison of split-versus connected-core supplies in
the POWERG6 microprocessor,” in ISSCC, February 2007.

[2] M. S. Gupta et al., “Understanding voltage variations in chip multipro-
cessors using a distributed power-delivery network,” in DATE, 2007.

[3] International Technology Roadmap for Semiconductors, “Process inte-
gration, devices and structures,” 2007.

[4] W. Zhao et al., “Predictive technology model for sub-45nm early design
exploration,” ACM JETC, 2006.

[5] K. A. Bowman et al., “Energy-efficient and metastability-immune
timing-error detection and instruction replay-based recovery circuits for
dynamic variation tolerance,” in ISSCC, 2008.

[6]
[7]
[8]
[9]
[10]

(1]

[12]
[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]
(21]
[22]
[23]

[24]

[25]

[26]
[27]

(28]
[29]

(30]

[31]
[32]

(33]
[34]
[35]
(36]
[37]
[38]
[39]
[40]
[41]

[42]

M. de Kruijf et al., “Relax: An architectural framework for software
recovery of hardware faults,” in ISCA, 2010.

D. Emnst et al., “Razor: A low-power pipeline based on circuit-level
timing speculation,” in MICRO, 2003.

M. S. Gupta et al., “DeCoR: A Delayed Commit and Rollback Mecha-
nism for Handling Inductive Noise in Processors,” in HPCA, 2008.

B. Greskamp et al., “Blueshift: Designing processors for timing specu-
lation from the ground up.” in HPCA, 2009.

M. D. Powell et al., “Architectural core salvaging in a multi-core
processor for hard-error tolerance,” in ISCA, 2009.

D. Bull et al., “A power-efficient 32b ARM ISA processor using
timing-error detection and correction for transient- error tolerance and
adaptation to PVT variation,” in ISSCC, 2009.

J. Tschanz et al., “A 45nm resilient and adaptive microprocessor core
for dynamic variation tolerance,” in ISSCC, 2009.

“Voltage Regulator-Down (VRD) 11.0,” Processor Power Delivery De-
sign Guidelines For Desktop LGA775 Socket, 2006.

S. Chickamenahalli et al., “Microprocessor platform impedance charac-
terization using VTT tools,” in APEC, 2005.
“http://www.cascadesystems.net/lga775.htm.”

M. S. Gupta et al., “An event-guided approach to handling inductive
noise in processors.” in DATE, 2009.

M. Powell et al, “Pipeline muffling and a priori current ramp-
ing:architectural techniques to reduce high-frequency inductive noise,”
in ISLPED, 2003.

——, “Exploiting resonant behavior to reduce inductive noise,” in ISCA,
2004.

T. Rahal-Arabi et al., “Design and validation of the Pentium 3 and
Pentium 4 processors power delivery,” in VLSI Circuits Digest of
Technical Papers, 2002. Symposium on, 2002.

K. Aygun et al., “Power delivery for high-performance microprocessors,”
Intel Technology Journal, 2005.

R. Joseph et al., “Control techniques to eliminate voltage emergencies
in high performance processors,” in HPCA, 2003.

“Intel Core Extreme Processor X6800 and Intel Core2 Duo Desktop
Processor E6000 and E4000 Series,” Datasheet, 2008.

V. Tiwari et al., “Instruction level power analysis and optimization of
software,” VLSI Signal Processing, 1996.

K. Aygun et al., “Measurement-to-modeling correlation of the power
delivery network impedance of a microprocessor system,” in EPEPS,
2004.

A. Waizman, “CPU power supply impedance profile measurement using
fft and clock gating,” in EPEPS, 2003.

M. Mienik, “http://users.bigpond.net.au/cpuburn.”

C. Bienia et al., “The PARSEC benchmark suite: Characterization and
architectural implications,” in PACT, 2008.
“http://software.intel.com/en-us/intel-vtune/.”

V. J. Reddi et al., “Voltage emergency prediction: A signature-based
approach to reducing voltage emergencies,” in HPCA, 2009.

Slegel et al., “IBM’s S/390 G5 microprocessor design,” Micro, IEEE,
1999.

N. R. Shanbhag et al., “Stochastic computation,” in DAC, 2010.

H. Ando et al., “A 1.3 GHz fifth-generation SPARC64 microprocessor,”
in DAC, 2003.

N. J. Wang et al., “ReStore: Symptom-Based Soft Error Detection in
Microprocessors,” IEEE Trans. Dependable Secur. Comput., 2006.

S. Narayanasamy et al., “BugNet: Continuously Recording Program
Execution for Deterministic Replay Debugging,” in ISCA, 2005.

W. Kim et al., “System level analysis of fast, per-core DVFS using
on-chip switching regulators,” in HPCA, 2007.

A. Snavely et al., “Symbiotic job scheduling for a simultaneous mut-
lithreading processor,” SIGPLAN Not., 2000.

A. Fedorova, “Operating system scheduling for chip multithreaded
processors,” Ph.D. dissertation, 2006, adviser-Seltzer, Margo 1.

J. Mars et al., “Contention aware execution: Online contention detection
and response,” in CGO, 2010.

R. Knauerhase et al., “Using OS observations to improve performance
in multicore systems,” IEEE Micro, 2008.

S. Zhuravlev et al., “Addressing shared resource contention in multicore
processors via scheduling,” in ASPLOS, 2010.

D. Chandra et al., “Predicting inter-thread cache contention on a chip
multi-processor architecture,” in HPCA, 2005.

F. J. Cazorla et al, “Predictable performance in SMT processors:
Synergy between the OS and SMTs,” IEEE Trans. Comput., 2006.

