
Voltage Noise: Why It’s Bad, and What To Do About It
Vijay Janapa Reddi, Meeta S. Gupta, Krishna K. Rangan, Simone Campanoni, Glenn Holloway,

Michael D. Smith, Gu-Yeon Wei, David Brooks
School of Engineering and Applied Sciences, Harvard University

Abstract—Power constrained designs are becoming increasingly
sensitive to supply voltage noise. We propose hardware-software
collaboration to enable aggressive voltage margins: a fail-safe
hardware mechanism tolerates margin violations in order to
train a run-time software layer that reschedules instructions to
avoid recurring violations. Additionally, the software controls an
emergency signature-based predictor that throttles to suppress
emergencies that code rescheduling cannot eliminate.

I. INTRODUCTION

Continuing technology advances amplify the importance of
reliability in modern high-performance processors. Shrinking
feature size and diminishing supply voltage make circuits more
sensitive to transient errors such as soft errors caused by
radiation and to supply noise caused by current fluctuations.
While soft errors caused by alpha particles or energetic

cosmic radiation are still relatively rare, voltage noise occurs
more often because of interactions between the run-time be-
havior of code and characteristics of the underlying power
delivery subsystem and microarchitecture. Parasitic inductance
in the power system causes voltage to fluctuate as current draw
changes with processor activity. A significant dip in supply
voltage slows logic, which can cause timing margin violations.
Significant voltage overshoots can cause long-term degradation
in transistor characteristics. For reliable and correct operation
of the processor, voltage swings that violate noise margins,
which we call voltage emergencies, must be avoided.
The traditional way of dealing with voltage emergencies has

been to over-design the system to accommodate worst-case
voltage swings. A recent paper analyzing supply noise in a
Power6 processor [1] shows the need for operating margins
greater than 20% of the nominal voltage. Conservative pro-
cessor designs with large margins ensure robustness. However,
conservative designs either lower the operating frequency or
sacrifice power efficiency.
Nominal supply voltage is gradually scaling down with

newer technologies, but threshold voltage scaling has all but
stopped. Consequently, circuit delay sensitivity to margins is
increasing with each technology node. Figure 1 plots peak
frequency at different voltage margins across four PTM [2]
technology nodes (45nm, 32nm, 22nm, and 16nm) based on
detailed circuit-level simulations of an 11-stage ring oscillator
consisting of fanout-of-4 inverters. The plot shows that at
today’s 32nm node, a 20% voltage margin translates to a 33%
frequency degradation, and at future technology nodes the situ-
ation gets much worse. Practical limitations on reducing power
delivery impedance combined with large current fluctuations
make margin-based solutions unsustainable.

5040302010040

50

60

70

80

90

100

Margin (%)

Pe
ak

 F
re

qu
en

cy
 (%

)

45nm (Vdd=1.0V)
32nm (Vdd=0.9V)
22nm (Vdd=0.8V)
16nm (Vdd=0.7V)

Fig. 1. Worst-case margins limit
frequency, and the problem gets
worse as technology trends scale.

100

102

104

106

Lo
g

Sc
al

e

Static locations
Dynamic emergencies

CPU2006Java Grande
CPU2000

Fig. 2. Few hundred static pro-
gram locations cause hundreds of
thousands of emergencies.

In recent years, researchers have proposed tightening noise
margins by adding mechanisms to the hardware that guaran-
tee correctness in the presence of voltage emergencies. Such
mechanisms enable more aggressive voltage margins, but at the
expense of some run-time performance penalty. Architecture-
and circuit-level techniques either proactively reduce activity
when an emergency appears imminent [3]–[8], or they re-
actively restore a correct processor state after an emergency
compromises execution correctness [9].
Those prior techniques do not take advantage of the repet-

itive nature of emergencies. Figure 2 shows the number of
distinct instructions responsible for emergencies, and the total
number of emergencies they cause over the lifetime of a
program across three different benchmark suites. In each case,
an average of only a few hundred instructions are responsible
for hundreds of thousands of emergencies. So a few emergency-
prone code regions are responsible for almost the whole emer-
gency problem. Prior techniques must enable their mechanisms
at least once per dynamic emergency. We, in turn, are using
the fact that there are so few emergency-prone locations, and
that emergency-prone behavior is so repetitive. By using the
history of activity that leads to emergencies at these locations,
we can both throttle more intelligently and even reshape code
to eliminate recurring emergencies altogether.
The Alarms project at Harvard is working toward an ar-

chitecture that can tolerate emergencies, and eliminate most
recurring emergencies by exploiting patterns in emergency
behavior of a running code. We envision a system implemented
both in hardware and in software; the software component
is at the level of a platform hypervisor. Figure 3 illustrates
an overview of the system. The system has a Detector (hard-
ware) that triggers a Restarter (hardware) to rollback execution
whenever it detects an emergency. The detector then feeds an
emergency Profiler (software) with a signature that represents
processor activity leading up to that emergency. The profiler
accumulates signatures to guide a code Rescheduler (software)




 

















 

Fig. 3. System overview.

that eliminates recurrences of that emergency via run-time code
transformations. If code reshaping is unsuccessful, the Profiler
arms an emergency Predictor (hardware) with signature patterns
to instead predict and suppress recurrences of the emergency
by throttling processor activity.
We have implemented and tested prototypes of these five

components separately in a simulation framework targeting
tight margins (around 4%), and have reported on their ef-
fectiveness in recent research papers [9]–[13]. In this paper,
we summarize that work and describe one way to build an
emergency management system from those components.
Our premise is that tolerating emergencies is useful both

for tightening margins, and observing the emergency behavior
of running code. Section II describes how the detector and
restarter tolerate emergencies. In order to eliminate emergen-
cies intelligently, we need to understand, at least empirically,
what causes them. Section III describes how to characterize
emergencies in a way that is useful for preventing them. Our
approach to preventing emergencies uses both software and
hardware. Section IV describes how the rescheduler and the
predictor complement one another.

II. TOLERATING EMERGENCIES

Rather than trying to avoid voltage emergencies, we rely
on a hardware mechanism that allows voltage emergencies
to occur, but when they do, the architecture has a built-in
mechanism to recover processor state. The detector senses
supply voltage for margin violations. When the detector detects
a voltage dip below the lower voltage margin, it invokes
the restarter mechanism to resume execution back at some
previously known valid state.
Checkpoint-rollback mechanisms have been proposed for

handling soft errors [14]–[16] that support execution rollback.
But due to the frequent nature of voltage emergencies as
compared to the soft-errors, we discovered that the overhead
of explicitly saving the architectural state of the processor is
so large that they cannot be directly applied to voltage noise.
Combining this fail-safe mechanism with software that elim-
inates recurring emergencies, however, enables us to tolerate
emergencies even at aggressive margins.
Alternatively, we have shown that it is possible to leverage

existing store queue and reorder buffers in modern processors
to delay commit just long enough to verify whether an emer-
gency has occurred. Performing a rollback in the event of an

Fl
us

h
Cu

rre
nt

Vo
lta

ge
L2

 M
iss

Lower Margin

ResonancePipeline stall

1

2

3
5 64

Fig. 4. Snapshot of art from the CPU2000 benchmark suite over 430 cycles.
The snapshot illustrates how microarchitectural event induced pipeline stalling
and resonance activity can lead to emergencies (indicated using arrows).

emergency [9] is akin to flushing the pipeline after a branch
misprediction.

III. CHARACTERIZING EMERGENCIES
To be able to predict emergencies and reshape code to

eliminate them, we need to find leading indicators of dangerous
voltage fluctuations. We considered several microarchitectural
parameters, such as the number of entries in the re-order
buffer, the instruction fetch queue, and the load/store queue,
along with microarchitectural events like cache misses and
pipeline flushes. In this section, we summarize the perturbation
effects of microarchitectural events on processor activity using
real program examples, and show they can lead to voltage
emergencies. We also discuss patterns in activity that allows
us to not only identify emergencies uniquely, but also predict
their recurring occurrences [11]–[13].
Individual microarchitectural events. We first studied the

effect of individual microarchitectural events on current and
voltage. Figure 4 shows a snapshot of pipeline activity for
benchmark art from SPEC CPU2000 over 430 cycles. Mi-
croarchitectural events for the cache and branch predictor
are illustrated along with current and voltage activity of the
processor. In the Pipeline stall part of the figure, we observe an
L2 cache miss (illustrated by a vertical bar in the L2 Miss sub-
graph). During the time it takes to service the L2 miss, pipeline
activity ramps down as seen in the current profile (marker 1).
However, after the L2 miss data is available, functional units
become busy and there is a sudden increase in current activity
(marker 2). This steep increase in current causes the voltage to
temporarily dip below the voltage margin (marker 3) because
of parasitic inductance in the power delivery subsystem.
Additionally, microarchitectural events that cause periodic

high and low current activity can cause a resonance build up of
voltage, if the period coincides with the resonance frequency
of the power delivery subsystem. The Resonance portion of
Figure 4 illustrates multiple pipeline flush events occurring in
close proximity to one another. Pipeline flush events cause a
sudden decrease in activity, and are followed by a rush of
activity as instructions are rapidly issued along the correct
program. The close distribution of these events leads to a
resonating effect that results in rapid fluctuations in current.

24% (L2 Miss)

55% (Pipeline Flush)

4% (TLB Miss)
< 1% (L1 Miss)

3% (Long Lat)

14% (Uncharacterized)

Fig. 5. Distribution of processor events and operations that cause voltage
emergencies in the SPEC CPU2000 benchmark suite.

These successive fluctuations not only cause the voltage to
swing, but also progressively increase in amplitude from one
event to another (markers 4, 5 and 6).
Root-cause identification. Associating a specific microarchi-

tectural event with an emergency requires us to apply our
knowledge of how microarchitectural events affect processor
activity. Identifying the root-cause of an emergency is not as
simple as simply looking at the most recent microarchitectural
event prior to the emergency. Consider the emergency at marker
5, which occurs slightly past an L2 miss event. But unlike
the L2 miss event under Pipeline stall, this L2 miss event is
not responsible for the emergency. L2 miss events take a few
hundred cycles to complete, and instructions pending on that
data are not issued until the event completes. Therefore, the
burst of current activity does not correspond to this pending
L2 event, rather it corresponds to the pipeline flush preceding
the L2 event.
We have devised an algorithm to identify root-causes [11].

The algorithm scans recent processor events in a fixed priority
order looking for event completion times that coincide with the
time of the emergency. It scans down the list of L2 misses, TLB
misses, pipeline flushes, L1 misses and long latency operations
in that order. To show the strength of the relationship between
these processor events/operations and emergencies, Figure 5
shows the percentage of emergencies caused by different root-
causes for the SPEC CPU2000 benchmark suite. A majority
of the emergencies are caused by pipeline flushes and L2
misses. The Uncharacterized 14% are because of emergencies
that cannot be uniquely attributed to a single root-cause, such
as the Resonance case illustrated in Figure 4.
Sensitivity to activity history. Whether or not an event at a

particular location causes an emergency depends on activity
just before and after the event. Even a small loop like that in
Figure 6b, extracted from benchmark gcc of SPEC CPU20006,
can have behavior phases with markedly different activity
patterns. Figure 6a is a snapshot of activity within that loop
over 880 cycles. It shows three repeating phases of the loop.
Phase A uses paths 1 → 4 and 1 → 2 → 4, while phase B
uses only path 1→ 2→ 3→ 4. The issue rate of phase A is
relatively low, while that of phase B is quite high. The flush
events labeled 1 are caused by branch mispredictions at the
end of basic block 1. Those in phase B where the issue rate is
high always cause emergencies, while those in phase A never
do. Therefore, tracking program flow and microarchitectural
events yields a proxy for the activity leading to emergencies.

Cu
rre

nt
Vo

lta
ge

Iss
ue

Flu
sh

Lower Margin

A B C

1 4 411 4 1 4

A B C

(a)

1

2

4

3

(b)

Fig. 6. (a) Voltage emergencies are associated with recurring activity (phases
A, B and C) over 880 cycles. The numbers next to the vertical bars in the Flush
graph correspond to the basic block number in (b) containing the mispredicted
branch. (b) An emergency-prone loop from function init_regs in gcc from
CPU20006 benchmark suite. Its activity snapshot is shown in (a).

The activity leading up to an emergency is termed as an
emergency signature, which comprises of program instructions
and microarchitectural events. The purpose of tracking the
instruction stream is to capture the dynamic path of a program.
Consequently, control flow instructions are ideal candidates for
tracking a program’s dynamic execution path. Capturing the
interleaving of program path with events is important to gen-
erate a representative snapshot of the corresponding dynamic
current and voltage activity resulting from program interactions
with the underlying microarchitecture. Emergency signatures
can predict emergencies with over 90% accuracy [13] even as
far ahead as 16 cycles of an impending emergency.

IV. PREVENTING EMERGENCIES

To prevent emergencies, our scheme uses cooperating hard-
ware and software. In hardware, the detector constantly mon-
itors voltage to detect emergencies, and when one occurs, it
captures a signature. The detector module relies on a shift
register to monitor program and processor activity leading
up to an emergency, and a signature is a snapshot of this
shift register at the time of an emergency. In software, the
profiler receives the signatures and builds a profile that it shares
with the rescheduler. Some signatures are well handled by the
rescheduler. From those that are not, the profiler selects hot
signatures to place in the predictor’s pattern table.
Rescheduler. Our run-time code rescheduler uses the root-

cause identification algorithm discussed in the previous section
to decide the kind of code transformation that is best suited
for eliminating a specific type of emergency (e.g., pipeline
flush, L2 miss). The rescheduler combines this information
with control flow extracted from the signature to apply trans-
formations only along certain program paths (if possible). The
rescheduler then uses code motion techniques to smooth the
original program activity.
For instance, the rescheduler can slow the issue rate follow-

ing the root-cause instruction using code motion to compress
dependent instructions closer together. This reduces the amount
of instruction level parallelism available for the machine to
exploit when activity resumes, which constrains the issue rate.

Lo
ng

la
t

Is
su

e

Cu
rre

nt

Vo
lta

ge

1

2

4

3

Lower Margin

(a) Before code rescheduling.

Lo
ng

la
t

Vo

lta
ge

Cu
rre

nt

Is
su

e 5

6

7Lower Margin

(b) After code rescheduling.

Fig. 7. A 50-cycle execution snapshot of Sieve from the Java Grande
benchmark suite. (a) Shows how a pipeline stall on a long latency operation
triggers an emergency (indicated by an arrow) as the issue rate ramps up
sharply once the operation completes. (b) Code rescheduling slows the issue
rate just enough to prevent the emergency illustrated in (a).

Reducing the issue rate even slightly prevents recurrences of
emergencies. Figure 7 shows how the issue-rate smoothing
technique works. The plot shows a slice of program activity
corresponding to a loop within benchmark Sieve from the Java
Grande suite. Figure 7a shows that data dependence on a long-
latency operation stalls all processor activity, so the Current
profile goes flat (marker 1). When the operation completes, the
issue rate increases rapidly (marker 2) as several dependent
instructions are successively released to functional units. This
activity increases draw (marker 3), and as a result the voltage
dips below the Lower Margin (marker 4).
Figure 7b shows activity after the rescheduler transforms

the code slightly to reduce the issue rate. Since dependent
instructions are packed more tightly, the issue rate in Figure 7b
does not spike as high as in Figure 7a (marker 5). As a result,
the processor now draws current less aggressively (the gradient
at marker 6 is less steep compared to marker 3). Therefore, the
original emergency at marker 4 is now permanently eliminated
(marker 7).
Using this one issue-rate constraining technique, the com-

piler removes over 62% of all emergencies across the Java
Grande suite. On average, only 20% of all root-causes had to
be rescheduled because they contribute to a large percentage
(over 98%) of all emergencies. Our results indicate that issue-
rate smoothing works well for isolated emergencies like the
cases illustrated in Figure 7a and Figure 4. We are also
investigating more aggressive rescheduling techniques like loop
unrolling and pipelining to make activity levels rise and fall
more gradually, so that current and voltage are more stable [11],
[12].
Predictor. In our design, the rescheduler eliminates most

emergencies that have clear root causes, and that recur con-
sistently, leaving only the more difficult cases for the hardware
predictor. The predictor matches the patterns in its table against
current events. On a match, it throttles execution to suppress
the predicted emergency.
In our simulation of the SPEC CPU2006 suite, a predictor

with no resource constraints suppresses 99% of all emergen-

cies. Remaining emergencies are tolerated using a restarter
mechanism (e.g. checkpoint-rollback discussed in Section II).
To show the feasibility of the predictor in hardware, we
simulated an implementation with realistic resource constraints.
With an 8KB pattern table, our predictor suppresses 92% of
all emergencies [13].
Our emergency predictor outperforms previously proposed

architecture-centric techniques [5]–[8] at aggressive mar-
gins [9], [13]. Moreover, these prior mechanisms depend
heavily on assumptions about the underlying power deliv-
ery subsystem, processor architecture, and sensor behavior.
These assumptions complicate retargetability. In contrast, the
emergency predictor operates independently of sensor delays,
package characteristics, and details of the microarchitecture.

V. CONCLUSION
Enabling aggressive operating margins is critical as voltage

noise increasingly limits performance-per-watt in microproces-
sor designs. In this paper, we summarize our contributions to-
ward a hardware-software combination that enables aggressive
margins: we allow voltage emergencies to occur at the expense
of rolling back execution while relying on a feedback-driven
software layer to permanently eliminate recurring emergencies.
We base this design on characterizing emergencies in terms of
code behavior, which enables us to predict them intelligently,
or even eliminate them completely.

REFERENCES
[1] N. James et al., “Comparison of split-versus connected-core supplies in

the POWER6 microprocessor,” in ISSCC, 2007.
[2] W. Zhao and Y. Cao, “Predictive technology model for sub-45nm early

design exploration,” ACM JETC.
[3] T. M. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microar-

chitecture Design,” in MICRO-32, 1999.
[4] D. Ernst et al., “Razor: A Low-Power Pipeline Based on Circuit-Level

Timing Speculation,” in MICRO-36, 2003.
[5] E. Grochowski, D. Ayers, and V. Tiwari, “Microarchitectural simulation

and control of di/dt-induced power supply voltage variation,” in HPCA-8,
2002.

[6] R. Joseph, D. Brooks, and M. Martonosi, “Control techniques to eliminate
voltage emergencies in high performance processors,” in HPCA-9, 2003.

[7] M. D. Powell and T. N. Vijaykumar, “Pipeline muffling and a priori cur-
rent ramping: architectural techniques to reduce high-frequency inductive
noise,” in ISLPED, 2003.

[8] ——, “Exploiting resonant behavior to reduce inductive noise,” in ISCA,
2004.

[9] M. S. Gupta, K. K. Rangan, M. D. Smith, G. yeon Wei, and D. Brooks,
“DeCoR: A delayed commit and rollback mechanism for handling
inductive noise in processors,” in HPCA-14, 2008.

[10] M. S. Gupta, V. J. Reddi, M. D. Smith, G.-Y. Wei, and D. M. Brooks,
“An event-guided approach to handling inductive noise in processors.” in
DATE, 2009.

[11] M. S. Gupta, K. K. Rangan, M. D. Smith, G. yeon Wei, and D. Brooks,
“Towards a software approach to mitigate voltage emergencies,” in
ISLPED, 2007.

[12] K. Hazelwood and D. Brooks, “Eliminating voltage emergencies via
microarchitectural voltage control feedback and dynamic optimization,”
in ISPLED, 2004.

[13] V. J. Reddi, M. S. Gupta, G. Holloway, G.-Y. Wei, M. D. Smith, and
D. Brooks, “Voltage emergency prediction: Using signatures to reduce
operating margins,” in HPCA-15, 2009.

[14] H. Ando et al., “A 1.3 GHz fifth generation SPARC64 microprocessor,”
IEEE JSSC, vol. 38, 2003.

[15] N. J. Wang and S. J. Patel, “ReStore: Symptom-based soft error detection
in microprocessors,” TDSC., 2006.

[16] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
incremental checkpointing for massively parallel systems,” in ICS, 2004.

