
12

Eliminating Voltage Emergencies via
Software-Guided Code Transformations

VIJAY JANAPA REDDI, SIMONE CAMPANONI, MEETA S. GUPTA,
MICHAEL D. SMITH, GU-YEON WEI, and DAVID BROOKS
Harvard University
and
KIM HAZELWOOD
University of Virginia

In recent years, circuit reliability in modern high-performance processors has become increasingly
important. Shrinking feature sizes and diminishing supply voltages have made circuits more sen-
sitive to microprocessor supply voltage fluctuations. These fluctuations result from the natural
variation of processor activity as workloads execute, but when left unattended, these voltage fluc-
tuations can lead to timing violations or even transistor lifetime issues. In this article, we present a
hardware–software collaborative approach to mitigate voltage fluctuations. A checkpoint-recovery
mechanism rectifies errors when voltage violates maximum tolerance settings, while a runtime
software layer reschedules the program’s instruction stream to prevent recurring violations at
the same program location. The runtime layer, combined with the proposed code-rescheduling al-
gorithm, removes 60% of all violations with minimal overhead, thereby significantly improving
overall performance. Our solution is a radical departure from the ongoing industry-standard ap-
proach to circumvent the issue altogether by optimizing for the worst-case voltage flux, which
compromises power and performance efficiency severely, especially looking ahead to future tech-
nology generations. Existing conservative approaches will have severe implications on the ability
to deliver efficient microprocessors. The proposed technique reassembles a traditional reliabil-
ity problem as a runtime performance optimization problem, thus allowing us to design pro-
cessors for typical case operation by building intelligent algorithms that can prevent recurring
violations.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing,
and Fault-Tolerance

General Terms: Performance, Reliability

Additional Key Words and Phrases: Voltage noise, dI/dt, inductive noise, voltage emergencies

Authors’ addresses: V. J. Reddi, S. Campanoni, M. S. Gupta, M. D. Smith, G.-Y. Wei, D. Brooks,
Harvard University; K. Hazelwood, University of Virginia.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1544-3566/2010/09-ART12 $10.00
DOI 10.1145/1839667.1839674 http://doi.acm.org/10.1145/1839667.1839674

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:2 • V. J. Reddi et al.

ACM Reference Format:
Reddi, V. J., Campanoni, S., Gupta, M. S., Smith, M. D., Wei, G.-Y., Brooks, D., and Hazelwood,
K. 2010. Eliminating voltage emergencies via software-guided code transformations. ACM Trans.
Architec. Code Optim. 7, 1, Article 12 (September 2010), 28 pages.
DOI = 10.1145/1839667.1839674 http://doi.acm.org/10.1145/1839667.1839674

1. INTRODUCTION

Power supply noise directly affects the robustness and performance of micro-
processors. With the use of ever lower supply voltages and aggressive power
management techniques, such as clock gating, resulting large current swings
are becoming inevitable. These current swings, when coupled with the parasitic
inductances in the power-delivery subsystem, can cause voltage fluctuations
that violate the processor’s operating margins. A significant drop in the voltage
can lead to timing-margin violations due to slow logic paths, while significant
overshoots in the voltage can cause long-term degradation of transistor char-
acteristics. For reliable and correct operation of the processor, large voltage
swings, also called voltage emergencies, should be avoided.

The traditional way of dealing with voltage emergencies has been to overde-
sign the system to accommodate the worst-case voltage swing. A recent paper
analyzing supply noise in a Power6 processor [James et al. 2007] shows the
need for operating margins greater than 20% of the nominal voltage (200mV
for a nominal voltage of 1.1V). Conservative processor designs with large tim-
ing margins ensure robustness. However, conservative designs either lower the
operating frequency or sacrifice power efficiency. For instance, Bowman et al.
[2008] show that removing a 10% operating voltage margin leads to a 15%
improvement in clock frequency.

As an alternative to such conservative design, researchers have proposed
designing for average-case operating conditions while providing a “fail-safe”
hardware-based mechanism that guarantees correctness in the presence of
voltage emergencies. Such a fail-safe mechanism enables more aggressive tim-
ing margins in order to maximize clock frequency, or even improve energy
efficiency, but at the expense of some runtime penalty when violations occur.
Architecture- and circuit-level techniques either proactively take measures to
prevent a potentially impending voltage emergency [Ayers 2002; Joseph et al.
2003; Powell and Vijaykumar 2003, 2004], or operate reactively by recovering a
correct processor state after an emergency corrupts machine execution [Gupta
et al. 2008].

Traditional hardware techniques do not exploit the effect of program struc-
ture on emergencies. Figure 1 shows the number of unique static program
locations or instructions that are responsible for emergencies1 on our simu-
lated platform (see Section 4.1), and the total number of emergencies they con-
tribute over the lifetime of a program. The stacked log-scale distribution plot
indicates that, on average, fewer than 100 program instructions are responsible

1We use the event categorization algorithm described by Gupta et al. [2007] to identify the instruc-
tion that gives rise to an emergency.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:3

Fig. 1. A small set of static program locations or instructions (fewer than 100) are responsible for
nearly all voltage emergencies. Any voltage crossing beyond the 4% operating margin is considered
an emergency in our experimental setup, which is described in Section 4.1.

for several hundreds of thousands of emergencies. Even an ideal oracle-based
hardware technique will need to activate its fail-safe mechanism once per
emergency, and cannot exploit the fact that there are just a few emergency
code hotspots responsible for nearly all emergencies. Additionally, hardware-
based schemes must ensure that performance gains from operating at a re-
duced margin outweigh the fail-safe penalties. They, therefore, rely on tuning
the fail-safe mechanism to the underlying processor and power delivery sys-
tem specifics [Gupta et al. 2008]. When combined with implementation costs,
potential changes to traditional architectural structures, and challenges like
response-time delays [Gupta et al. 2008], design, validation, and wide-scale
retargetability all become increasingly difficult.

In this article, we present a hardware–software collaborative approach for
handling voltage emergencies. Hazelwood and Brooks [2004] suggest the poten-
tial for a collaborative scheme, but we demonstrate and evaluate a full-system
implementation. The collaborative approach relies on a general-purpose fail-
safe mechanism as infrequently as possible to handle emergencies, while hav-
ing a software layer dynamically smooth bursty machine activity via code trans-
formation to prevent frequently occurring emergencies. Ideally, the fail-safe
mechanism activates only once per static emergency location and, therefore,
only a few times in all, as shown in Figure 1.

Our software transformation to prevent emergencies is a form of perfor-
mance optimization because preventing emergencies at aggressive margins
leads to better performance, due to reduced fail-safe recoveries. The software
layer relies on feedback from the hardware to identify and eliminate emergency-
prone program addresses, which is similar to present day industrial-strength
virtual machines that target runtime performance optimization using feedback
from hardware performance counters [Schneider et al. 2007; Lau et al. 2006].
In the future, we envision runtime systems treating reliability transformations
as a class of dynamic performance optimization.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:4 • V. J. Reddi et al.

Dynamic optimization systems [Bala et al. 2000] are well suited for scenarios
where “90% of the execution time is spent in 10% of the code.” Figure 1 shows
similar behavior with respect to emergencies. In contrast to hardware tech-
niques, a compiler-assisted scheme can exploit the fact that programs have so
few static emergency-prone hot spots. In our scheme, a dynamic compiler elim-
inates a large fraction of the Dynamic emergency count. We demonstrate a compiler-
based issue rate staggering technique that reduces emergencies by applying
transformations such as rescheduling existing code or injecting new code into
the dynamic instruction stream of a program.

Unlike throttling-based hardware schemes, our solution does not require
design-time package- and microarchitecture-specific solutions. A dynamic com-
piler is inherently fine-grained, code-aware, and machine-specific, and it can
adapt to the runtime environment. Our collaborative design is a more holistic
technique for handling voltage emergencies, as compared to prior hardware
techniques. Therefore, our solution allows us to more easily harness the bene-
fits of improved energy efficiency or performance improvement that aggressive
margins enable.

The primary contributions of this article are as follows.

(1) Design and implementation of a dynamic compiler-based system for sup-
pressing recurring voltage emergencies.

(2) An instruction-rescheduling algorithm that prevents voltage emergencies
by staggering the issue rate.

(3) Demonstration that general-purpose checkpoint-recovery hardware is use-
ful to infrequently tolerate voltage emergencies at aggressive operat-
ing margins when combined with our hardware and software co-design
approach.

The rest of the article is organized as follows: Section 2 presents the structure
of the proposed hardware–software collaborative approach along with design
details for each of the individual hardware and software components. Section 3
presents a code transformation algorithm that we employ to smooth the volt-
age of the executing program, after the region has been identified. Section 4
discusses performance results, Section 5 discusses related work, and Section 6
concludes the article.

2. A COLLABORATIVE FRAMEWORK TO MITIGATE VOLTAGE NOISE

The benefits of a collaborative hardware–software approach are twofold: First,
recurring emergencies are avoidable via software code transformation. Second,
a collaborative scheme allows hardware designers to relax worst-case timing
margin requirements because of the reduced number of emergencies. The net
effect is better energy efficiency or improved performance. In this section, we
first present an overview of how our collaborative architecture works and high-
light the critical components. Following that, we present details about each of
the hardware and software components.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:5

Fig. 2. Workflow diagram of the proposed software-assisted hardware-guaranteed architecture to
deal with voltage emergencies.

2.1 Overview

Figure 2 illustrates the operational flow of our system. An Emergency Detector

continuously monitors execution. When it detects an emergency, it activates
the hardware’s Fail-safe Mechanism. We assume that a general-purpose checkpoint-
recovery mechanism restores execution to a previously known valid processor
state whenever an emergency is detected. After recovery, the detector notifies
the software layer of the voltage emergency.

The software operates in lazy mode; it waits for emergency notifications
from the hardware. Whenever a notification arrives, the software’s Profiler ex-
tracts information about recent processor activity from the Event History Tracker,
which maintains information about cache misses, pipeline flushes, and so on.
The profiler uses this information to identify the code region corresponding to
an emergency. Subsequently, the profiler calls a runtime Compiler to alter the
code responsible for causing the emergency in an attempt to eliminate future
emergencies at the same program location.

2.2 Hardware Design

The hardware support mechanism consists of a voltage emergency detector
that identifies when an emergency has occurred, a fail-safe mechanism that
engages after every emergency to provide a rollback mechanism, and an event
history tracker that is used to communicate to the software component.

2.2.1 Emergency Detector. To detect operating margin violations, we rely
on a voltage sensor. The detector invokes the fail-safe mechanism when it

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:6 • V. J. Reddi et al.

detects an emergency. After recovery, the detector invokes the software layer
for profiling and code transformation to eliminate subsequent emergencies.

2.2.2 Fail-Safe Mechanism. Our scheme allows voltage emergencies to oc-
cur in order to identify emergency-prone code regions for software transforma-
tion. We, therefore, require a mechanism for recovering from a corrupt pro-
cessor state. We use a recovery mechanism similar to that found in reactive
techniques for processor error detection and correction that have been proposed
for handling soft errors [Wang and Patel 2006; Agarwal et al. 2004]. These are
primarily based on checkpoint and rollback. We use explicit checkpointing,
which is a scheme already shipping in production systems [Ando et al. 2003;
Slegel et al. 1999].

Explicit checkpoint mechanisms rely on explicitly saving the architectural
state of the processor, that is, the architectural registers and updated memory
state. But there is substantial overhead associated with restoring the register
state, and there are additional cache misses at the time of recovery (a buffered
memory update is assumed, with updated lines between checkpoints marked
as volatile). Moreover, a robust explicit checkpoint mechanism for noise margin
violations must be independent of sensor delays. Any checkpoint falling after a
violation but before its subsequent detection due to sensor delays must be con-
sidered corrupt. Therefore, providing correct recovery semantics requires main-
taining two checkpoints. The interval between checkpoints is just tens of cycles.

While we choose explicit checkpointing for evaluation in this article, the
overall approach is independent of the specific checkpointing implementation.
So, we refer readers to Section 5 for alternative checkpointing schemes that
could be used in place of the explicit checkpointing mechanism.

2.2.3 Event History Tracker. The software layer requires pertinent infor-
mation to locate the instruction sequence responsible for an emergency in order
to do code transformation. For this purpose, we require the processor to main-
tain two circular structures similar to those already found in existing archi-
tectures like the IPF and PowerPC systems. The first is a branch trace buffer
(BTB), which maintains information about the most recent branch instructions,
their predictions, and their resolved targets. The second is a data event address
register (D-EAR), which tracks recent memory instruction addresses and their
corresponding effective addresses for all cache and translation lookaside buffer
(TLB) misses. The software extracts this information whenever it receives a
notification about an emergency.

2.3 Software Design

The software component consists of a profiler that converts the information
gathered by the hardware event history tracker into a particular location in
the code, and a compiler that analyzes and modifies the program to prevent
future recurrences.

2.3.1 Profiler. The profiler is notified whenever a hardware emergency
occurs. The profiler identifies emergency-prone program locations for the

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:7

480 490 500 510 520 530

10

20

30

C
ur

re
nt

480 490 500 510 520 530

2
4
6
8

10

Is
su

e
R

at
e

480 490 500 510 520 530

Flush

Longlat

Cache

TLB
P

ro
ce

ss
or

 E
ve

nt

480 490 500 510 520 530
0.96

0.98

1

1.02

1.04

V
ol

ta
ge

480 490 500 510 520 530

Flush

Longlat

Cache

TLB

480 490 500 510 520 530

2
4
6
8

10

480 490 500 510 520 530
0.96

0.98

1

1.02

1.04
480 490 500 510 520 530

10

20

30

Before Software Optimization After Software Optimization

Steep dI/dt causes voltage to
 drop below the minimum margin

Data dependence on a long latency operation
 causes all pipeline activity to stall

Software optimization reduces issue
 rate, thereby causing a smaller dI/dt

Smaller dI/dt prevents
 the voltage emergency

Rapid issue rate causes steep dI/dt

Fig. 3. A 50-cycle execution snapshot of benchmark Sieve. It shows the impact of a pipeline stall
due to a long latency operation on processor current and voltage. An operating margin of 4% is
assumed (i.e., a maximum of 1.04V and minimum of 0.96V). (a) Before Software Optimization shows how
a stall triggers an emergency as the issue rate ramps up quickly once the long-latency operation
completes. (b) After Software Optimization demonstrates how compiler-assisted code rescheduling slows
the issue rate after the long-latency operation to eliminate the emergency illustrated in (a).

compiler to optimize. It records the time and frequency of emergency occur-
rences in addition to recent microarchitectural event activity extracted from
the performance counters. Using this information, the profiler locates the in-
struction responsible for an emergency using the event categorization algo-
rithm [Gupta et al. 2007]. The algorithm works on an out-of-order superscalar
machine, and it is important to note that the compiler is sensitive to the algo-
rithm’s effectiveness, as the algorithm is responsible for directing the compiler
to the appropriate code location to target. We refer to this problematic in-
struction as the root-cause instruction, and we rely on the robustness of the
algorithm provided by prior work to identify the root-cause correctly.

Event categorization identifies root-cause instructions based on the under-
standing that microarchitectural events along with long-latency operations can
give rise to pipeline stalls. A burst of activity following the stall can cause the
voltage to drop below the minimum operating margin due to a sudden increase
in current draw. Such a violation of the minimum voltage margin is by definition
a voltage emergency. Figure 3(a) illustrates such a scenario using the experi-
mental setup we describe in Section 4.1. A data dependence on a long-latency
operation stalls all processor activity. When the operation completes, the is-
sue rate increases rapidly as several dependent instructions are successively
allocated to different execution units. This gives rise to a voltage emergency
because of the sudden increase in current draw. The categorization algorithm
associates the long-latency operation as the root cause, since it caused the burst
of activity that gave rise to an emergency.

Generally, there are several other causes of voltage emergencies, ranging
from cache misses to branch mispredictions and TLB misses. We characterize

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:8 • V. J. Reddi et al.

these for the benchmarks we evaluate later in Section 4.1.3. The profiler is
equipped to detect the root cause for all types of emergencies. In this work, we
do not focus on eliminating the events that lead to an emergency, rather we
focus on smoothing activity following the event to prevent an emergency, since
in reality, it is impossible to eliminate every microarchitectural event from a
real system.

2.3.2 Compiler. Figure 3(a) illustrates that voltage emergencies depend
on the issue rate of the machine. Therefore, slowing the issue rate of the ma-
chine at the appropriate point can prevent voltage emergencies. We can achieve
the same goal in software by altering the program code that gives rise to emer-
gencies at execution time, and we can do so without large performance penal-
ties. The compiler tries to exploit pipeline delays by rescheduling instructions
to decrease the issue rate close to the root-cause instruction. Pipeline delays
exist because of NOP instructions or read-after-write (RAW), write-after-read
(WAR), or write-after-write (WAW) dependencies between instructions. Hard-
ware optimization techniques like register renaming in a superscalar machines
can optimize away WAR and WAW dependencies, so a RAW dependence is the
only kind that forces the hardware to execute in sequential order. The compiler
tries to exploit RAW dependencies that already exist in the program to slow
the issue rate by placing the dependent instructions close to one another.

In the following sections, we discuss two approaches we explored for injecting
pipeline delays at the software level. We outline one simple approach consisting
of inserting nops as well as a more sophisticated approach that exploits existing
RAW dependencies. Later, in Section 4, we evaluate each approach in turn.

NOP injection. A simple way for the compiler to slow the pipeline is to insert
NOP instructions specified in the instruction set architecture into the dynamic
instruction stream of a program. However, modern processors discard NOP
instructions at the decode stage. Therefore, the instruction does not affect the
issue rate of the machine. Instead of real NOPs, the compiler can generate
a sequence of instructions containing RAW dependencies that have no effect.
Since these pseudo-NOP instructions perform no useful work, this approach
often degrades performance.

The compiler attempts to construct the pseudo-NOP instruction sequence
utilizing only dead registers. However, this is not always feasible. In such
cases, the compiler spills the contents of live general-purpose registers needed
for pseudo-NOP code generation. Following the creation and insertion of the
pseudo-NOP code in the appropriate location, the compiler fills back live reg-
ister state and returns control back to the original program code instruction
sequence. Therefore, in addition to wasted cycles due to pseudo-NOP code exe-
cution, the system may experience additional performance loss due to register
spills and fills.

Code-rescheduling. A better way to smooth processor activity is to exploit
RAW dependencies already existing in the original control flow graph (CFG) of
the program. This constrains the burst of activity when the machine resumes
execution after the stall, which prevents the emergency. Whether the compiler

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:9

Fig. 4. Effect of code rescheduling on an emergency-prone loop from benchmark Sieve. (a) An
emergency consistently occurs in basic block 3 along the dotted loop backedge path 4→1→2→3.
(b) Moving Instruction A ← B from block 1 to block 2 puts dependent instructions closer together,
thereby constraining the issue rate. This prevents all subsequent emergencies in basic block 3.

can successfully move instructions to create a sequence of RAW dependencies
depends on whether moving the code violates either control dependencies or
data dependencies. From a high level, the compiler’s instruction scheduler
does not break data dependencies, but it works around control dependencies by
cloning the required instructions and moving them around the CFG such that
the original program semantics are still maintained.

To illustrate our code-rescheduling approach, in Figure 4(a), we present a
simplified sketch of the code corresponding to the activity shown in Figure 3(a).
The long-latency operation illustrated in Figure 3 corresponds to the divide
instruction shown in basic block 4 of Figure 4. An emergency repeatedly occurs
in basic block 3 along the dotted loop backedge path 4 → 1 → 2 → 3. The
categorization algorithm identifies the divide instruction corresponding to C ←
A / B in basic block 4 as the root-cause instruction. The compiler identifies the
CFP using the branch history information extracted by the profiler from the
BTB counters, and recognizes that moving Instruction A ← B from basic block 1
to 2 will constrain the issue rate of the machine because of a tighter sequence of
RAW dependencies. But the compiler also recognizes that the result of A ← B
is live along edge 1→3, so it clones the instruction into a new basic block (basic
block 5) along that edge to ensure correctness.

The resulting effect after rescheduling is illustrated in Figure 3(b). Activity
in this figure is slightly offset to the right by about five clock cycles from
Figure 3(a) due to subtle changes to the loop structure from code rescheduling.
Nevertheless, the stall event still occurs at the same program location. The
slight change in current activity between cycles 490 and 500 is a result of code
rescheduling. After dependent instructions are packed close to one another in
basic block 2, the issue rate in Figure 3(b) does not spike as high as it does in
Figure 3(a) once pipeline activity resumes after the stall.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:10 • V. J. Reddi et al.

Table I. Types of Instructions That the Code-Rescheduling Algorithm Targets Depending on
the Event Responsible for an Emergency

Instruction Description Event Type
Root-cause Instruction identified by the hardware as the

cause of an emergency.
All but BR.

Last-writeback Most recent instruction in the write back stage of
the pipeline.

All but BR.

Wrong-path First instruction along the speculative path prior
to detecting a misprediction.

All (including BR).

Code rescheduling alters the current and voltage profile. Therefore, the
scheduler must be careful not to simply displace emergencies from one location
to another by arbitrarily moving code from far away regions. To retain the orig-
inal activity, the code-rescheduling algorithm searches for RAW dependencies,
starting with the basic block containing the root-cause instruction. Using this
anchor point, the software code scheduler enlarges its search window itera-
tively over the CFG until it finds a RAW dependence to exploit or it reaches the
scope of a function body, at which point it gives up.

Out-of-order execution complicates instruction rescheduling, as the machine
can bypass the RAW dependence chain generated by the compiler if there is
enough other code available for execution in the hardware’s scheduling window.
The scheduler handles this by choosing a RAW candidate from a set C1 of can-
didates by computing the subset C2 ⊆ C1 such that each element of C2 has the
longest RAW dependence chain after moving the instructions to the required
location. By targeting long RAW dependence chains, the compiler increases the
chances that the machine’s scheduling window will fill with dependent code,
reducing the issue rate. Otherwise, the compiler must generate multiple sets
of smaller RAW dependence chains.

In the following section, we present a detailed description of our algorithm,
which is a specific instantiation of the general concept we propose to prevent
emergencies—staggering the issue rate using RAW dependence chains.

3. SOFTWARE-BASED CODE-RESCHEDULING ALGORITHM

Given a root-cause instruction, our scheduler constrains the instruction issue
rate at different points within the CFG. The scheduler transforms the code
differently depending on whether the emergency was caused by a branch mis-
prediction. In the simple case, such as an emergency caused by a sudden burst
of activity following a cache miss event or a long-latency stall (as illustrated in
Figure 3), the scheduler targets the root-cause instruction and the last write-
back instruction to successfully remove emergencies. Table I describes these
instruction types and indicates under which event conditions the code resched-
uler targets them. We consider these two particular locations to prevent the
out-of-order issue logic from intelligently bypassing the RAW dependence chain
put in place to prevent the emergency. The hardware may discover some other
instruction sequences also ready for execution. These other sequences could
lead to a burst of activity that can cause an emergency, thus rendering our

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:11

Algorithm 1: Highest-level routine for performing instruction scheduling to pre-
vent voltage emergencies

Input: Emergence type t
Input: Root-cause instruction r
Input: Last writeback instruction l
Input: Wrong instruction w
Scheduler(l) ;
switch t do

case Branch misprediction-related emergency
a ∈ Succ(r)|a �= w ;
Scheduler(a) ;
Scheduler(w) ;

endsw
otherwise

a ∈ Succ(r) ;
Scheduler(a) ;

endsw
endsw

Function Scheduler(a)
Input: Instruction a
l = GlobalCandidate(a) ;
if length(i) > 0 then

MarkScheduled(i) ;
GCSMove(i, a) ;

end

transformations ineffective. Therefore, we conservatively target two locations
to constrain the issue rate.

When an emergency is caused by a branch misprediction (BR), the scheduler
must take into account the speculative set of instructions executed by the
machine. We experimentally discovered that constraining the issue rate before
a pipeline flush event along the wrong path significantly increases the chances
of preventing an emergency. Therefore, to prevent BR-related emergencies, the
scheduler targets the root-cause instruction, the last writeback instruction, as
well as the first instruction along the speculative path that is executed just
prior to detecting the branch misprediction.

Algorithm 1 illustrates the highest-level pseudocode that the compiler in-
vokes to transform the code at the point of an emergency (i.e., root-cause in-
struction r). It takes as input the three input instructions described earlier
that the Profiler mechanism (illustrated in Figure 2) identified. The algorithm
then invokes the Scheduler function to transform the code in order to constrain
the issue rate just before a specific instruction: The algorithm constrains the
issue rate on the last writeback instruction regardless of the emergency type
and before every successor of the root-cause instruction. However, depending
on the emergency type, we decide the successor paths on which to constrain the
issue rate. In the case of a BR-related emergency, we constrain the issue rate

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:12 • V. J. Reddi et al.

on the fallthrough, as well the taken path, thereby smoothing voltage along
the speculative path as well.

Determining candidates for code motion. The Scheduler function discovers and
schedules a RAW chain before its input parameter instruction a. To locate the
closest and longest RAW chain, the Scheduler invokes the GlobalCandidate func-
tion. The GlobalCandidate function defines the scope or range of basic blocks from
within, which the LocalCandidate function attempts to construct the longest RAW
dependence chain. When LocalCandidate fails (for instance, when no dependent
instructions can be found), GlobalCandidate enlarges the range of basic blocks to
consider and the process repeats.

The return value of GlobalCandidate is a linked list of instructions l that can
be successfully scheduled. If this list is not null, the Scheduler function notes
these instructions as already visited using the MarkScheduled function. Visited or
previously scheduled instructions cannot be subsequently rescheduled, as that
would perturb or invalidate a previously scheduled RAW chain, or could lead
to schedule thrashing.

Performing code motion. Upon identifying a useful RAW chain from
GlobalCandidate, the Scheduler function calls GCSMove to migrate the necessary set
of instructions from one location to another. GCSMove is based on the standard
global code scheduling (GCS) algorithm [Aho et al. 2006]. Briefly, the GCS al-
gorithm clones instructions as necessary to move instructions. It discovers the
necessary set of clones by means of the pre- and postdominance relations com-
puted using the CFG. Instruction a predominates Instruction b if and only if
Instruction a always executes before Instruction b. Instruction b postdominates
Instruction a if and only if Instruction b is always executed after executing
instruction a before the end. If the Instruction to schedule, say b, postdomi-
nates target Instruction a, and a predominates b, then no instruction cloning
is necessary. However, if b does not postdominate a, or a does not predomi-
nate b, instructions must be cloned and inserted within the CFG in a manner
that preserves program semantics. Cloning rules are well described in the
literature [Aho et al. 2006].

The LocalCandidate function attempts to construct the longest dependence
chain using the MoveableBefore function. This intermediate MoveableBefore function
checks to see if the first Instruction s given as its input can be moved just prior
to its target a by means of GCS. We impose constraints within MovableBefore to
prevent perturbing the original voltage profile so much so that our constructive
code transformations become ineffective. Specifically, we impose instruction
cloning rules.

(1) The head of the RAW chain, Instruction s, can be scheduled before target a
assuming no limit on the number of clones necessary to migrate s anywhere
within the scope defined by the GlobalCandidate function.

(2) All other instructions belonging to the RAW chain can be cloned at most
once.

(3) Allowed cloning cannot increase the dynamic instruction of the program,
since aggressive cloning can potentially impact performance.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:13

Function GlobalCandidate(a)
Input: Instruction a
Output: Linked list of instructions
S = BasicBlock(a) ;
i = {} ;
while i == {} ∧ S �= CFG do

i = LocalCandidate(S, a) ;
S1 = S ;
forall the s ∈ S do

S1 = S1∪ Succ(s) ∪ Prev(s) ;
end
S = S1 ;
forall the s ∈ S do

S1=S1∪ BasicBlock(s) ;
end
S = S1 ;

end
return i ;

Function LocalCandidate(S, a)
Input: Instruction set S
Input: Instruction a
Output: Linked list of instructions
C = ∅ ;
forall the s ∈ S do

if MovableBefore(s, a) ∧¬ Marked(s) then
C = C ∪ {s} ;

end
end
j ∈ C ;
forall the c ∈ C do

if DataDependencesLength(c, a) > DataDependencesLength(j, a) then
j = a ;

end
end
return LongestRAWDependenceChain(j) ;

If these conditions are not satisfied, the LocalCandidate function returns a null
list of instructions, forcing GlobalCandidate to enlarge the scope and retry. Readers
are welcome to relax these constraints in an attempt to improve the chances of
finding a suitable RAW dependence chain. However, there is a risk of increasing
the execution time and even potentially perturbing neighboring code so much
so that the transformed code leads to new emergencies.

A demonstration of the code-rescheduling algorithm. To facilitate better un-
derstanding, here we illustrate the functionality of the code-rescheduling algo-
rithm with a simplified example extracted from a real scenario in benchmark
RayTrace. Consider the original program CFG and its related data-dependence
graph (DDG) shown in Figure 5(a) and Figure 5(c), respectively. Instruction 4

is the root cause related to a BR. Instruction 8 corresponds to the wrong path

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:14 • V. J. Reddi et al.

Fig. 5. (a) CFG of an emergency-prone piece of code from benchmark RayTrace. (b) Rescheduled
code after the compiler moves instructions to remove the emergency caused by the frequently
mispredicted branch at location 4. (c) DDG corresponding to the original code that the rescheduling
algorithm uses to extract the safest RAW dependence chain.

instruction, or the first instruction executed along the incorrectly speculated
path. In order to smooth the voltage emergency at the root cause, the scheduler
attempts to add a RAW dependence chain of nstructions between Instructions
4 and 5, Instructions 4 and 8, and just before the last writeback instruction. For
simplicity, we only elaborate the steps taken to construct the chain between
Instructions 4 and 5.

The algorithm starts by looking for the best RAW chain by calling the
GlobalCandidate function, giving Instruction 5 as its input. The GlobalCandidate func-
tion calls LocalCandidate to find the longest RAW chain inside the present scope
of interest, which is the basic block containing Instruction 5. The LocalCandidate

function returns null on first invocation. Consequently, GlobalCandidate enlarges

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:15

the scope and reinvokes the LocalCandidate function. Figure 5(a) illustrates this
scope enlargement process using the initially small dotted inner circle and
subsequently enlarging the scope to include more basic blocks.

During the subsequent call to LocalCandidate, several additional blocks are
chosen for creating the RAW chain. These basic blocks are chosen because they
are within one edge distance away from all basic blocks previously considered.
At this point, the algorithm finds six candidate instructions (1, 2, 9, 10, 11, and
14) as heads of RAW chains. Hence, we have C = {1, 2, 9, 10, 11, 14}. From
this set of six potential chains, LocalCandidate chooses the longest RAW chain
it can create without violating our cloning rules. It finds Instruction 1 as the
best candidate. Moving Instruction 1 along with its data-dependent sequence
(Instructions 1, 2, and 3) between Instructions 4 and 5 leads to an optimum
solution with a chain length of three. Note that while Instruction 9 can lead to
a RAW chain length of 4, LocalCandidate cannot choose this alternative because we
specified that cloning cannot increase the dynamic instruction of the program.
Alternative implementations of our algorithm that relax this constraint are
possible for improving emergency coverage, albeit at the risk of potentially
slower runtime performance. The transformed CFG is shown in Figure 5(b),
where we see that Instructions 1, 3, and 5 have been replicated and migrated
down the CFG.

4. EVALUATION

Our system evaluation demonstrates the effectiveness of the compiler at re-
ducing voltage emergencies and shows the impact of its code changes on per-
formance. After showing that the compiler can reduce over 60% of emergencies
(Section 4.2) with minimal overheads (Section 4.3), we present a performance
study (Section 4.4), showing that our software-assisted scheme overcomes the
challenges of existing hardware techniques effectively.

4.1 Experimental Setup

Given that modern hardware does not support fine-grained access to voltage
sensors, we explored our design using a hardware simulator together with an
existing software compilation infrastructure.

4.1.1 Hardware Simulator. We used SimpleScalar/x86 to simulate a Pen-
tium 4 with the characteristics shown in Table II. The modified 8-way super-
scalar x86 SimpleScalar gathers detailed cycle-accurate current profiles using
Wattch [Brooks et al. 2000]. This tool is an architectural simulator that esti-
mates CPU power consumption based on a set of parameterizable power models
for different hardware structures using per-cycle resource accounting. To model
voltage variations, the simulator convolves the simulated current profiles with
an impulse response of the power delivery subsystem [Powell and Vijaykumar
2004; Joseph et al. 2003] each cycle. In this work, we focus on a power delivery
subsystem model based on the characteristics of the Pentium 4 package [Aygun
et al. 2005], which exhibits a midfrequency resonance at 100MHz with a peak
impedance of 5m�. Finally, we assume peak current swings of 16-50A.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:16 • V. J. Reddi et al.

Table II. Baseline Architecture Parameters for SimpleScalar

Clock Rate 3GHz RAS 64 Entries
Inst. Window 128ROB, 64-LSQ Branch Penalty 10 cycles

Functional 8 Int ALU, 4 FP ALU, Branch 64KB bimodal
Units 2 Int Mul/Div, Predictor gshare/chooser

2 FP Mul/Div BTB 1K Entries
Fetch Width 8 Instructions Decode Width 8 Instructions
L1 D-Cache 64KB 2-way L1 I-Cache 64KB 2-way

L2 I/D-Cache 2MB 4-way, Main Memory 300-cycle
16-cycle latency latency

Table III. Benchmark Descriptions

Benchmark Description
FFT Performs a 1D forward transform of N different complex numbers
RayTrace Measures the performance of a 3D ray tracer on a scene containing 64 spheres
LU Linear system solver that is based on Linpack
Montecarlo Financial simulation using MonteCarlo techniques
Sor Performs successive over-relaxation over a grid
SparseMM Matrix-vector multiplication using an unstructured sparse matrix
Heapsort Sorts an array of integers using a heap sort algorithm
Method Determines virtual machine method call overheads
Sieve Algorithm for finding the prime numbers in a given interval

4.1.2 Compiler Infrastructure. We use the ILDJIT [Campanoni et al. 2008]
CIL compiler as our framework for optimizing emergencies at runtime. The
compiler dynamically generates native x86 code from CIL byte code, which it
then executes directly on the simulator. We extended the ILDJIT compiler to
include the code injection and scheduling algorithms described in Section 2.3.
The compiler has access to metadata such as the complete CFG and data flow
graph, all of which is utilized at runtime for optimization.

4.1.3 Benchmarks. We use the C++ benchmarks that come from the Java
Grande benchmark suite [Bull et al. 2000]. Table III presents a summary de-
scription of each of the benchmarks. While the programs run for an extended
period of time, on the order of billions of instructions, we shorten their execu-
tion time to approximately 150 million instructions because of the hardware
simulation overhead exhibited by SimpleScalar.

To briefly characterize the voltage emergencies in our benchmarks, Figure 6
shows the distribution of root causes across the benchmarks. The majority of
the emergencies in the Java Grande benchmark suite arise because of stalls due
to Long Latency operations, Cache Miss and Branch Misprediction events. The Others cate-
gory corresponds to those events we were unable to successfully attribute to any
specific microarchitectural event. This likely resulted from code-based bursts
of activity such as the “power virus” demonstrated by other researchers [Joseph
et al. 2003]. Finally, TLB Miss events did not tend to result in emergencies in our
evaluated benchmark suite. The absolute number of emergencies per bench-
mark is shown in Table V.

The emergency distribution we present allows readers to compare the traits
of our benchmarks to more traditional benchmarks such as CPU2006. CIL byte

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:17

Fig. 6. Aggregate distribution of root causes across benchmarks in the Java Grande benchmark
suite.

code is unavailable for SPEC workloads, so we were unable to evaluate them
directly. However, since the distribution and number of emergencies for the
Java Grande programs is representative of prior hardware-based work using
SPEC workloads [Gupta et al. 2009], we expect our results to generalize, and
we feel that the results and contributions of this article outweigh this limitation
of the experimental infrastructure.

4.2 Effectiveness of the Compiler-Based Transformations

The goal of our software-based voltage emergency elimination is to: (i) reduce
the number of voltage emergencies, and (ii) ensure that performance does not
suffer as a result of our code transformations. We first evaluate the effective-
ness of NOP injection and code rescheduling, where we find that (i) the choice
of transformation affects performance, and that (ii) the transformation itself
can introduce new emergencies if the scheduler is not careful. Following this
analysis, in the next section, we will factor in all costs to evaluate full-system
performance.

4.2.1 NOP Injection. As described earlier, the NOP injection algorithm
inserts new instructions into the program path that slows down the machine
issue rate as needed to prevent an emergency. In our specific implementation,
the sequence is made up of three instructions that form a RAW chain at the
intermediate representation level. But after code generation, we find that the
sequence typically grows to between six and eight instructions due to register
allocation.

The effectiveness of the scheme is shown by the left bar in Figure 7. The
bar shows the percentage of emergencies remaining after the compiler has at-
tempted to prevent emergencies by injecting pseudo-NOP code. The number
of emergencies is reduced by ∼50% or more in benchmarks FFT, RayTrace,
Method, Sieve, and Heapsort, which shows that the transformation can be ef-
fective. However, the transformation is not as effective across the remaining
benchmarks LU, Montecarlo, Sor, and SparseMM. In fact, the number of emer-
gencies increases by over twofold for benchmark LU. The loops and the specific
code paths within that the compiler targets in these benchmarks are under

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:18 • V. J. Reddi et al.

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
0

100

200

300

P
er

ce
nt

ag
e

of
E

m
er

ge
nc

ie
s

R
em

ai
ni

ng

NOP injection
Code rescheduling

Baseline

Fig. 7. Percentage of emergencies remaining after code transformation. Lower than the base-
line 100% is good, implying fewer emergencies than the original code. Otherwise, it means the
transformation lead to more emergencies than the original code.

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
0

100

200

300

400

%
 R

el
at

iv
e

P
er

fo
rm

an
ce

(w
/o

 e
m

er
ge

nc
y

pe
na

lti
es

)

NOP injection
Code rescheduling

Baseline

Fig. 8. Code performance after transformation. The cost for handling emergencies is not shown
in this plot to isolate the effect of code transformation on the runtime performance. Section 4.4
evaluates overall performance after factoring in code performance costs, along with penalties for
handling emergencies.

extreme register pressure. Consequently, adding new code leads to frequent
spills and fills during each loop iteration. These memory loads and stores cause
additional cache and TLB misses. Some become new root causes that lead to
more emergencies than the original code experiences.

Analysis reveals that pseudo-NOP injection does reduce the original pro-
gram’s emergencies, but the transformation itself also gives rise to new emer-
gencies. The compiler generates spill and fill code to create the pseudo-NOP
code sequence. This has the adverse effect of not only increasing the number
of instructions needed to simulate the NOP, but also potentially causing archi-
tectural events like cache misses (from the spill and fill code) that dramatically
alter the current and voltage profile. These side effects depend on the number of
registers available for use and the properties of the original instruction sched-
ule, among other conditions. It is difficult to predict the current and voltage
response activity that will result from injecting new code, so the new emergen-
cies are not easy to avoid, as we see in the case of LU, Montecarlo, Sor, and
SparseMM.

Additionally, the runtime performance of the original program suffers with
the injection of pseudo-NOP code, as the injected code does not serve the orig-
inal program’s purpose. The left bar in Figure 8 shows execution performance
of the program with the injected code. The data indicates that the effect of
simply adding new code to prevent emergencies can be severely detrimental
to performance. In the case of benchmarks Heapsort and Sieve, performance
degrades by as much as 300%. Large execution overheads indicate that while
a transformation can be very effective at reducing voltage emergencies (e.g.,
benchmark Sieve has fewer than 10 emergencies remaining), the compiler must
be sensitive to its runtime performance implications.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:19

Table IV. Only a Small Percentage of the Static Code (in the
order of tens of instructions) Need Modification to Eliminate
Emergencies. Additionally, the Changes the Compiler Makes

has Minimal Impact on the Dynamic Instruction Count

of Instructions % Change in
Benchmark Cloned Moved Dynamic Instructions
FFT 7 30 0.0
RayTrace 20 40 −0.24
LU 28 64 0.1
Montecarlo 23 53 5.2
Sor 39 77 2.3
SparseMM 33 67 3.3
Heapsort 37 61 −1.0
Method 2 8 −3.7
Sieve 7 11 0.0

4.2.2 Code-Rescheduling. A compiler approach that relocates RAW
dependencies following the root-cause instruction does not suffer from the
severely unpredictable behavior of injecting code to prevent emergencies. Code
rescheduling is superior to simple NOP injection for the following reasons.
First, it successfully reduces more emergencies across all the benchmarks
(illustrated by the bars on the right in Figure 7). Second, it does so without
dramatically increasing the execution time of a program (as shown in Figure 8).
Our analysis also shows that it does not introduce new emergencies, as the
compiler does not inject new code that significantly alters the current and
voltage profile.

For instance, consider benchmark FFT. The NOP injection transformation
and the code-rescheduling transformation eliminate approximately the same
number of emergencies. However, the effect on performance between the two
transformations is substantially different. The NOP injection transformation
causes the original program to take twice as long to execute, whereas code
rescheduling has a negligible effect on the original program’s performance.
That is because the NOP code wastes processor cycles, while the rescheduled
instructions are real program code that is simply restructured to prevent emer-
gencies.

By restricting the compiler’s scheduling algorithm to the strict cloning rules
described in Section 2.3.2, we were able to effectively limit performance loss
from injecting new instructions. Table IV shows that the number of instructions
added due to cloning is in the order of tens of instructions. Thus, when the
dynamic instruction count of the program does increase (resulting from the
register allocator generating spill/fill code), it does so by a tiny amount. These
instruction increases are especially insignificant when considering that the
benchmarks execute hundreds of millions of instructions. In some benchmarks
such as Method and Heapsort, the dynamic instruction count decreases by
a small percentage because code transformations change register allocation,
leading to fewer register spills and fills along the specialized paths.

Changes in the runtime performance of the rescheduled code are generally in
the noise for all benchmarks, and the reduction in emergencies averages ∼61%.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:20 • V. J. Reddi et al.

FFT RayTrace LU Montecarlo Sor SparseMMHeapsort Method Sieve

100

80

60

40

20

0%
 R

oo
t−

ca
us

e
D

is
tr

ib
ut

io
n

 New
 Persistent
 Eliminated

Fig. 9. Not all emergencies can be eliminated. Some root causes cannot be fixed because the
compiler cannot find sufficient code to construct RAW dependence chains. Also, new emergencies
can be introduced as a result of making transformations to existing code.

1.4 1.6 2.1 4 4.8 5 6 6.1 7
0

20

40

60

80

100

%
 E

m
er

ge
nc

ie
s

E
lim

in
at

ed

Fig. 10. There is a correlation between the number of emergencies the compiler can eliminate
and the average length of the dependence chains it creates. The compiler can eliminate more
emergencies as it creates chain lengths that approach the machine’s issue width. Our machine is
8-wide.

Reductions are smaller over benchmarks LU, Sor, and SparseMM (around 30%)
because the compiler could not find enough RAW dependencies that it could
relocate to slow the issue rate at the frequently occurring root cause locations.
Therefore, some emergencies continue to persist. Making code transformations
can lead to new emergencies root-causes as well. Figure 9 illustrates this break-
down. As we are careful to not aggressively modify the code surrounding a root
cause, we see that the percentage of new emergencies introduced is a very small
fraction of all emergencies.

Ideally, the scheduling algorithm should attempt to create a RAW depen-
dence chain long enough to block the issue width of the machine. We find that
there is a strong correlation between the length of the RAW dependence chain
and how successfully the compiler can eliminate emergencies. Figure 10 plots
the average RAW chain length on the x axis. The percentage of emergencies
eliminated across the different benchmarks is presented on the y axis. The sim-
ulated machine has an issue width of eight instructions, and we find that the
number of emergencies eliminated steadily grows toward 100% as the length
of the RAW chain approaches the issue width of the machine.

In Section 2.3.2, we mentioned that the compiler’s instruction scheduler
targeted three specific points of interest in the CFG for an emergency: the
root-cause instruction, the last write-back instruction, and in the case of

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:21

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 E
m

er
ge

nc
ie

s
R

em
ov

ed

 Root−cause
 Root−cause + Wrong Path
 Root−cause + Wrong Path + Last Writeback

Fig. 11. This figure justifies the use of three program points for resolving voltage emergencies.
The combination of the root-cause instruction, the wrong path instruction, and the last writeback
instruction, results in the ability to identify and resolve nearly all of the voltage emergencies
encountered.

a branch misprediction-related emergency, the first instruction along the
speculative path. We made a qualitative argument that these three points pro-
vided good coverage to eliminate emergencies successfully, but here we quan-
titatively justify that claim.

Assuming all three points are covered as the baseline, Figure 11 shows how
effective the compiler is at removing emergencies as we increase the number of
points the scheduler targets. We examine the three points here cumulatively,
starting with the root cause, but we do not claim they are disjoint. The graph is
normalized to 1, which indicates the utmost number of emergencies we are able
to eliminate using the code-rescheduling algorithm. This number corresponds
to the Code rescheduling bar shown in Figure 7.

The leftmost bar in Figure 11 shows the effect of targeting only the Root-cause

instruction. Since higher values mean fewer emergencies, we observe that the
root-cause instruction alone is insufficient, and the effectiveness of the sched-
uler increases as we consider the Last writeback and Wrong path points. This is es-
pecially the case for programs that are control intensive, such as benchmarks
RayTrace and Method. Most of the emergencies in these benchmarks arise
because of branch mispredictions; therefore, ignoring the issue rate on the in-
correctly speculated path can have a significant impact. However, by covering
the speculative execution path as well, efficiency improves on RayTrace by 60%
and Method by nearly 80%.

Finally, all benchmarks, with the exception of RayTrace and Method, cover
100% of emergencies when we take into account the Last writeback point. Our gen-
eral consensus is that if the program is highly data intensive with few control
flow changes, then throttling the issue rate at the last writeback instruction
has a positive effect. The benchmark that benefits the most from the Last writeback

transformation is Sieve, where all emergencies eliminated were the result of
focusing on the Last writeback instruction.

4.3 Compiler-Based Transformation Overhead

Our compiler cannot recompile itself; therefore, we incur rollback penalties
whenever the compiler is itself executing. This includes the scenario when
the compiler is generating new dynamic code, as well as when the compiler is

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:22 • V. J. Reddi et al.

Table V. Number of Emergencies that Arise as the
Compiler Generated Application Code is Running Versus

When the Compiler is Itself Running (either for
generating newly requested dynamic code or while
transforming existing application code to prevent

emergencies)

Number of Emergencies
Benchmark Runtime Compiler Application Code
FFT 639 431368
RayTrace 16 834753
LU 2 29639
Montecarlo 0 201355
Sor 16 286487
SparseMM 203 203759
Heapsort 299 196915
Method 763 428671
Sieve 0 1407500

Table VI. Distribution of Execution Time Spent Handling
Emergencies in the Compiler Versus Running Application

Code

% of Execution Time
Benchmark Runtime Compiler Application Code
FFT 0.087 99.913
RayTrace 0.151 99.849
LU 0.082 99.918
Montecarlo 0.010 99.990
Sor 0.020 99.980
SparseMM 0.024 99.976
Heapsort 0.021 99.979
Method 0.010 99.990
Sieve 0.001 99.999

transforming existing code to prevent emergencies. Table V shows the distribu-
tion of emergencies between the compiler and generated application code. The
data strongly indicates that the fraction of emergencies encountered during
compiler execution is less than 1%, on average, across all benchmarks. Since
the fraction of emergencies is so small, compiler-associated rollback overhead
is insignificant.

Based on these results, the overhead of runtime code transformation to fix
and eliminate emergencies appears to be insignificant. Figure 1 showed that the
number of static emergency-prone program locations (root-cause instructions)
is fewer than 100. Therefore, our compiler is rarely invoked during execution
to transform the code. Table VI substantiates this claim by demonstrating
that the percentage of execution time spent running generated application
code is substantially larger than the time spent in the compiler executing the
rescheduling algorithm.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:23

Table VII. Increase in CPI to Handle Voltage Emergencies, and Net Performance
Improvement After Scaling the Operating Margin and Factoring in the Overheads

Scheme CPI Overhead Performance Gain
Fail-safe mechanism 25.0% 3.0%
Fail-safe mechanism with code rescheduling 7.6% 19.8%
Oracle-based throttling 4.0% 23.8%

The upper bound on performance improvement is 29% assuming the margin is scaled from 18% to
4%. These results are the average measured across all benchmarks

4.4 Full-System Performance Evaluation

Reducing operating voltage margins allows for frequency improvements and/or
improved energy efficiency. However, there are fail-safe mechanism penal-
ties associated with handling voltage emergencies at tighter margins. In this
section, we demonstrate that our dynamic compilation strategy complements
general-purpose checkpoint recovery for voltage emergencies, enabling very ag-
gressive operating margins in the processor. Performance gains for our collabo-
rative approach are within four percentage points of an oracle-based throttling
scheme. Results are presented in Table VII.

Bowman et al. [2008] show that removing a 10% operating voltage margin
leads to a 15% improvement in clock frequency. This indicates a 1.5× scal-
ing factor from operating voltage margin to clock frequency. We assume an
aggressive operating margin of 4% in our experiments as compared to a 18%
worst-case margin.2 Based on the 1.5× scaling factor, the 4% operating voltage
margin assumed in this article corresponds to a 6% loss in frequency. Simi-
larly, a conservative voltage margin of 18%, sufficient to cover the worst-case
drops, leads to 27% lower frequency. If we take this conservative margin as the
baseline and reduce the 18% margin to 4% while avoiding voltage emergencies,
the resulting ideal clock frequency improvement could be ∼29%. This sets the
upper bound on frequency gains achievable. We make the simplifying assump-
tion that frequency improvements directly translate to higher overall system
performance.

4.4.1 Fail-Safe Mechanism. An explicit checkpointing scheme recovers
from an emergency by rolling back execution. The explicit checkpoint scheme
suffers from the penalty of rolling back useful work done whenever a voltage
emergency occurs. The restart penalty is a direct function of the sensor delay
in the system, that is, the time required to detect a margin violation. An ex-
plicit checkpoint scheme incurs additional overhead associated with restoring
the registers (assumed to be 8 cycles, for 32 registers with 4 write ports) and
memory state (when volatile lines are flushed, additional misses can occur at
the time of rollback).

Assuming a 50-cycle rollback penalty per recovery, an explicit checkpoint
scheme incurs an average increase of 25% in CPI for the benchmarks we eval-
uated. Performance gains from scaling the operating margin down to 4% are
minor at only 3%. This minimal improvement in performance implies that

2The worst voltage drop we observe for our power delivery package is 18%.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:24 • V. J. Reddi et al.

explicit checkpointing by itself cannot handle voltage emergencies successfully
at aggressive margins.

4.4.2 Fail-Safe Mechanism with Code-Rescheduling. While the perfor-
mance gains using only explicit-checkpointing are minimal, the gains are larger
when the fail-safe mechanism is combined with our proposed software coun-
terpart. Of the two compiler transformations discussed in Section 2.3, we eval-
uate the code-rescheduling transformation only, since it appeared to be the
most promising technique for effectively reducing the number of emergencies
without a detrimental performance impact.

The profiler identifies root-cause instructions as the fail-safe checkpoint
scheme initiates rollbacks. So there is some amount of rollback penalty as-
sociated with initially discovering root-cause instructions for transformation.
Thereafter, however, the compiler optimizes the root-cause instructions to per-
manently prevent subsequent occurrences of emergencies at the same program
location. If the rescheduling algorithm is ineffective at fixing certain emergency
points, rollback penalties may still arise at those points (as shown in Figure 7
and discussed in Section 4.2). Combining explicit checkpointing with compiler
assistance reduces checkpointing overhead substantially, from 25% to 7.6%.
This translates to a net performance gain of ∼20%.

4.4.3 Performance Comparison to Other Schemes. Several researchers
have proposed mechanisms that spread out a sudden increase in current via ex-
ecution throttling. Several kinds of throttling have been proposed [Ayers 2002;
Joseph et al. 2003; Powell and Vijaykumar 2003]. For evaluation purposes, we
compare the performance of our scheme against a frequency throttling mecha-
nism that quickly reduces current load. The frequency of the system is halved
whenever throttling is turned on, which results in performance loss.

We compare against an oracle-based throttling scheme, which throttles once
per emergency and always successfully prevents the emergency. As a result, an
oracle scheme does not suffer from rollback costs, nor does it suffer from per-
formance loss due to throttles that cannot prevent emergencies. Oracle-based
throttling enables ∼24% improvement in performance for tightened margins,
which is just four percentage points better than our scheme. Of course, our
scheme represents a practical design.

While an oracle-based scheme always successfully prevents emergencies, it
is important to remember that realistic sensor-based implementations suffer
from a tight feedback loop that involves detecting an imminent emergency
and then activating the throttling mechanism in a timely manner to avoid
the emergency. The detectors are either current sensors or voltage sensors
that trigger when a certain threshold is crossed, indicating that a violation is
likely to occur. Unfortunately, the delay required to achieve acceptable sensor
accuracy inherently limits the effectiveness of these feedback-loop schemes,
and operating margins must remain large enough to allow time for the loop to
respond [Gupta et al. 2008].

In contrast, our collaborative approach does not suffer from the limitations
of sensor-based schemes. It leverages general-purpose checkpointing hardware

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:25

that is already shipping in production systems [Ando et al. 2003; Slegel et al.
1999] to reduce voltage emergencies at very aggressive margins that enable
significant performance gains.

5. RELATED WORK

Fail-safe mechanism alternatives. There are unique trade-offs one should con-
sider in choosing a fail-safe mechanism. One that is relevant to this work
involves balancing the complexity of the checkpoint-recovery hardware with
the recovery scheme’s impact on runtime performance while the machine is
executing smoothly.

Gupta et al. [2008] propose an implicit-checkpoint-restart scheme based on
delayed commit and rollback that speculatively buffers processor updates to
the machine state until it is verified that no noise margin violations have
occurred within the time it takes to detect an emergency. To guarantee system
correctness, the implicit-checkpoint mechanism distinguishes between a noise-
verified state and a noise-speculative state. In the noise-verified state, the
machine is known to be free of corruption caused by inductive noise. Completed
results are buffered in the reorder buffer (ROB) or store queue (STQ) until they
are verified to reflect no ill effects from noise violations.

The buffer time for the implicit scheme is determined by the emergency de-
tector’s sensor delays; it takes time for voltage sensors across the chip to detect
a droop event and subsequently broadcast the error signal across the proces-
sor to initiate recovery. However, this delay is only in the order of a few clock
cycles; therefore, its impact on performance while the machine is executing
smoothly is small, if not even negligible in some workloads. Moreover, the cost
of restoring state under this scheme is effectively as low as flushing the pipeline
due to a branch misprediction. Overall, this design greatly simplifies the com-
plexity of the checkpoint-recovery hardware, since it leverages existing tradi-
tional microarchitectural structures. But therein lies the problem. The scheme
is intrusive and requires changes to traditional microarchitectural structures
that increase design cost and validation time. Moreover, it is a highly custom
solution to deal with voltage emergencies with no general-purpose applicability.

By comparison, the explicit checkpointing we use as our fail-safe mechanism
is a less intrusive addition to existing processor designs, and it is likely to
be useful for other purposes than suppressing voltage emergencies. Several
researchers have proposed a variety of diverse applications using checkpoint-
recovery hardware [Wang and Patel 2006; Sorin et al. 2000; Martı́nez et al.
2002; Kirman et al. 2005; Shyam et al. 2006; Narayanasamy et al. 2005].
Our use of checkpoint recovery for handling inductive noise in collaboration
with software is another novel application of this general-purpose hardware.
Explicit checkpointing by itself, however, cannot be used to handle voltage
emergencies because the performance penalties are too large (as discussed in
Section 4.4.1).

Hardware-based solutions. Prior work suggests preventing emergencies by
altering machine behavior via execution throttling [Ayers 2002; Joseph et al.
2003; Powell and Vijaykumar 2003, 2004] or staggering the issue rate [Powell

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:26 • V. J. Reddi et al.

and Vijaykumar 2003; Pant et al. 1999]. Hardware mechanisms face increasing
sensor delay problems, as the margins are reduced aggressively. The feedback
loop delay between detecting and engaging the preventive mechanism becomes
a limiting factor to how aggressively we can reduce the operating voltage mar-
gins. By comparison, the mechanism we propose allows emergencies to occur
and then recovers and eliminates them, thus avoiding the sensor delay issue
altogether.

Software-based prior effort. Toburen [1999] and Yun and Kim [2001] demon-
strate static compiler techniques that can target voltage emergencies. However,
voltage emergencies are the result of complex interactions between the appli-
cation, the execution engine, and the power delivery subsystem. Therefore,
these static optimizations are not easily retargetable across different combina-
tions of platform and application. Our mechanism dynamically discovers the
emergency hotspots, and can adapt to them effectively, so our scheme is more
robust for wide-scale deployment in the coming era where designing reliable
processors is becoming increasingly challenging.

6. CONCLUSION

The primary contribution of this work is a full-system design and implemen-
tation for a hardware–software collaborative approach to handle voltage emer-
gencies. The collaborative approach reduces hardware penalties associated
with handling voltage emergencies by having the software (a dynamic com-
piler) permanently fix the code region responsible for emergencies. The hard-
ware provides fail-safe guarantees via a coarse-grained checkpoint-recovery
mechanism, while the software layer identifies the emergency-prone code re-
gions and reschedules that code to prevent further emergencies. The compiler
eliminates over 60% of the emergencies, on average, and therefore dramati-
cally reduces the recurring overhead of the fail-safe mechanism. We show that
by scaling the operating margin down from a conservative 18% to an aggres-
sive 4% setting, we can achieve ∼20% higher performance, which is within 4
percentage points of an oracle-based throttling scheme.

Our rescheduling algorithm and general framework are a first step toward
exposing voltage noise to the higher-level software stack. But with even tighter
coupling between hardware and software, we can reduce the complexity of
noise-reduction algorithms, making it more readily feasible for software to
play an integral role in assisting with hardware issues. For instance, rather
than trying to dynamically construct dependence chains that throttle the is-
sue rate of the machine, a hardware hook that allows the compiler to more
directly request temporary reductions in issue width would greatly simplify
the algorithm. The compiler would then only need to identify and customize
the path along, which the issue throttling request is triggered, and not have to
worry about finding dependence chains. With such integrated effort designers
can recoup increasing operating voltage margin inefficiencies using software
assistance and compiler-guided code transformations.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

Voltage Emergencies via Software-Guided Code Transformations • 12:27

REFERENCES

AGARWAL, S., GARG, R., GUPTA, M. S., AND MOREIRA, J. E. 2004. Adaptive incremental check-pointing
for massively parallel systems. In Proceedings of the 18th Annual International Conference on
Super-Computing. ACM, New York 277–286.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 2006. Compilers: Principles, Techniques and Tools.
Prentice Hall, Upper Saddle River, NJ.

ANDO, H., YOSHIDA, Y., INOUE, A., SUGIYAMA, I., ASAKAWA, T., MORITA, K., MUTA, T., MOTOKURUMADA, T.,
OKADA, S., ET AL. 2003. A 1.3GHz fifth-generation sparc64 microprocessor. In Proceedings of
the 40th Annual Design Automation Conference. ACM, New York, 702–705.

AYERS, D. 2002. Microarchitectural simulation and control of di/dt-induced power supply voltage
variation. In Proceedings of the 8th International Symposium on High-Performance Computer
Architecture. IEEE, Los Alamitos, CA, 7.

AYGUN, K., HILL, M. J., EILERT, K., RADHAKRISHNAN, K., AND LEVIN, A. 2005. Power delivery for
high-performance microprocessors. Intel Tech. J. 9.

BALA, V., DUESTERWALD, E., AND BANERJIA, S. 2000. Dynamo: A transparent dynamic optimization
system. In Proceedings of the Conference on Programming Language Design and Implementation.
ACM, New York.

BOWMAN, K. A. ET AL. 2008. Energy-efficient and metastability-immune timing-error detection
and instruction replay-based recovery circuits for dynamic variation tolerance. In Proceedings of
the International Solid-State Circuits Conference. IEEE, Los Alamitos, CA.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Watch: A framework for architectural-level
power analysis and optimizations. In Proceedings of the 27th Annual International Symposium
on Computer Architecture. IEEE, Los Alamitos, CA.

BULL, M., SMITH, L., WESTHEAD, M., HENRY, D., AND DAVEY, R. 2000. Benchmarking java grande
applications. In The Practical Applications of Java.

CAMPANONI, S., AGOSTA, G., AND REGHIZZI, S. C. 2008. A parallel dynamic compiler for cilbytecode.
SIGPLAN Not.

GUPTA, M. S., RANGAN, K. K., SMITH, M. D., WEI, G.-Y., AND BROOKS, D. 2007. Towards a software
approach to mitigate voltage emergencies. In Proceedings of the International Symposium on
Low-Power Electronics and Design. ACM, New York, 123–128.

GUPTA, M. S., RANGAN, K. K., SMITH, M. D., WEI, G.-Y., AND BROOKS, D. 2008. DeCoR: A delayed
commit and rollback mechanism for handling inductive noise in processors. In Proceedings of the
14th International Symposium on High-Performance Computer Architecture (HPCA-14). IEEE,
Los Alamitos, CA.

GUPTA, M. S., REDDI, V. J., SMITH, M. D., WEI, G.-Y., AND BROOKS, D. M. 2009. An event-guided
approach to handling inductive noise in processors. In Proceedings of the Conference on Design,
Automation and Test in Europe. ACM, New York.

HAZELWOOD, K. AND BROOKS, D. 2004. Eliminating voltage emergencies via microarchitectural
voltage control feedback and dynamic optimization. In Proceedings of the International Sympo-
sium on Low- Power Electronics and Design. ACM, New York.

JAMES, N., RESTLE, P., FRIEDRICH, J., HUOTT, B., AND MCCREDIE, B. 2007. Comparison of split-versus
connected-core supplies in the POWER6 microprocessor. In Proceedings of the International
Solid-State Circuits Conference. IEEE, Los Alamitos, CA.

JOSEPH, R., BROOKS, D., AND MARTONOSI, M. 2003. Control techniques to eliminate voltage emer-
gencies in high-performance processors. In Proceedings of the 9th International Symposium on
High-Performance Computer Architecture. IEEE, Los Alamitos, CA.

KIRMAN, N., KIRMAN, M., CHAUDHURI, M., AND MARTINEZ, J. 2005. Checkpointed early load re-
tirement. In Proceedings of the 11th International Symposium on High-Performance Computer
Architecture. IEEE, Los Alamitos, CA.

LAU, J., ARNOLD, M., HIND, M., AND CALDER, B. 2006. Online performance auditing: Using hot opti-
mizations without getting burned. In Proceedings of the Conference on Programming Language
Design and Implementation. ACM, New York.

MART’INEZ, J. F., RENAU, J., HUANG, M. C., PRVULOVIC, M., AND TORRELLAS, J. 2002. Cherry: Check-
pointed early resource recycling in out-of-order microprocessors. In Proceedings of the 35th An-
nual International Symposium on Microarchitecture. ACM, New York.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

12:28 • V. J. Reddi et al.

NARAYANASAMY, S., POKAM, G., AND CALDER, B. 2005. BugNet: Continuously recording program
execution for deterministic replay Debugging. In Proceedings of the International Symposium on
Computer Architecture. IEEE, Los Alamitos, CA.

PANT, M. D., PANT, P., WILLS, D. S., AND TIWARI, V. 1999. An architectural solution for the inductive
noise problem due to clock-gating. In Proceedings of the 1999 International Symposium on Low-
Power Electronics and Design (ISLPED’99). ACM, New York, 255–257.

POWELL, M. D. AND VIJAYKUMAR, T. N. 2003. Pipeline muffling and a priori current ramping:
Architectural techniques to reduce high-frequency inductive noise. In Proceedings of the 2003
International Symposium on Low-Power Electronics and Design. ACM, New York.

POWELL, M. D. AND VIJAYKUMAR, T. N. 2004. Exploiting resonant behavior to reduce inductive
noise. In Proceedings of the 28th Annual International Symposium on Computer Architecture.
IEEE, Los Alamitos, CA.

SCHNEIDER, F. T., PAYER, M., AND GROSS, T. R. 2007. Online optimizations driven by hardware per-
formance monitoring. In Proceedings of the 2007Conference on Programming Language Design
and Implementation. ACM, New York.

SHYAM, S., CONSTANTINIDES, K., PHADKE, S., BERTACCO, V., AND AUSTIN, T. 2006. Ultra low-cost defect
protection for microprocessor pipelines. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM, New York.

SLEGEL, T. J., AVERILL III, R. M., CHECK, M. A., GIAMEI, B. C., KRUMM, B. W., KRYGOWSKI, C. A., LI, W.
H., LIPTAY, J. S., MACDOUGALL, J. D., ET AL. 1999. IBM’s s/390 g5 microprocessor design. IEEE
Micro 19, 2, 12–23.

SORIN, D. J., MARTIN, M. M. K., HILL, M. D., AND WOOD, D. A. 2000. Fast checkpoint/recovery
to support Kilo-instruction speculation and hardware fault tolerance. Tech. rep. University of
Wisconsin-Madison.

TOBUREN, M. 1999. Power Analysis and Instruction Scheduling for Reduced di/dt in the Execution
Core of High-Performance Microprocessors. M.S. thesis, NC State University, USA.

WANG, N. J. AND PATEL, S. J. 2006. ReStore: Symptom-based soft error detection in microproces-
sors. Trans. Depend. Secure Comput. 3, 4, 401–405.

WILLIAMS, D., SANYAL, A., UPTON, D., MARS, J., GHOSH, S., AND HAZELWOOD, K. 2009. A cross-layer
approach to heterogeneity and reliability. In Proceedings of the 7th International Conference on
Formal Methods and Models for Co-Design. ACM, New York, 88–97.

YUN, H.-S. AND KIM, J. 2001. Power-aware modulo scheduling for high-performance VLIW proces-
sors. In Proceedings of the 2001 International Symposium on Low-Power Electronics and Design.
ACM, New York.

Received November 2009; accepted March 2010

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 2, Article 12, Pub. date: September 2010.

