
Parallelism and Retargetability in the ILDJIT Dynamic Compiler
Michele Tartara, Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi
Politecnico di Milano, Italy

Abstract
Modern computer architectures are becoming increasingly parallel with each generation. At the same time, new, different
and binary incompatible platforms are becoming more and more widespread on the market. This paper presents ILDJIT,
a Just-In-Time compiler that aims at exploiting parallelism even when dealing with non-explicitly parallel programs, and
the advantages obtained by introducing portability.

1 Introduction
Users of modern computing systems have come to expect
faster and faster hardware, at each new generation, and so
do software developers, in need of constantly increasing
computational power.
Hardware manufacturers have been able to comply with
this request thanks to the fact that Moore’s Law, predicting
a doubling of the number of transistor on an integrated cir-
cuit approximately every two years, has proven to be quite
an accurate model of the advancements of chip manufac-
turing technology.
Unfortunately, bigger challenges are being faced every day,
while physical limits of the materials draw near. The con-
stant increasing of processors speed, measured in MHz,
has come to an end. Every advancement must now come
from architectural improvements, that are not easy to ob-
tain.
In this scenario, until now and for the foreseeable future,
the easier and most effective way to improve performances
has proven to be increasing the number of hardware cores,
thus incrementing the degree of parallelism of processors.
Unfortunately, this kind of improvement does not automat-
ically increase the performances of existing software, or of
new programs written in a sequential fashion.
In order to fully exploit these new multi-core architecture
and the future many-core ones, new programs have to be
written according to a parallel paradigm, and algorithms
have to be thought with parallelism in mind.
Traditional Just-In-Time (JIT) compilers executing single
threaded applications usually exploit only one processor
core. ILDJIT (Intermediate Language Distributed Just-
In-Time) is the research compiler designed at Politecnico
di Milano, focused on deep exploitation of parallelism in
multi-core machines.
It takes as its input files written in the Common Interme-
diate Language (CIL) bytecode (designed by Microsoft for
its DotNet framework and later standardized as ECMA-
335 [6] and ISO/IEC 23271:2006 [8]) and executes them
after translation to machine code by means of Just-In-Time
compilation.
Parallelism is exploited in different ways: by means of a
pipeline of translation and optimization phases (see Sec-
tion 2), and by using a predictive approach, termed Dy-

namic Look Ahead (DLA, described in Section 3) to
choose the methods to be compiled.
In particular, Section 2 and 3 presents ILDJIT’s parallel
features, Section 4 describes the recently obtained ILD-
JIT portability on different hardware architectures and the
overall improvements it brought, and Section 5 presents
some numeric results showing ILDJIT performances. Fi-
nally, Section 6 sets a road-map for future research and
Section 7 concludes.

2 Pipeline architecture
The work of dynamic compilers can be divided into a se-
ries of subsequent steps, namely, loading the input byte-
code, decoding it to an intermediate language, optimizing
it, translating it to machine code and finally executing the
program.
Most dynamic compilers, such as Mono and Portable.NET,
perform these steps in a completely sequential way: each
method of the program has to pass through all the phases
of the compilation process, one after the other. When the
method being executed needs to invoke another method,
the execution will be stopped and the new method will
have, in turn, to undergo the full compilation sequence.
In ILDJIT, this does not happen, because loading CIL byte-
code, translating it to ILDJIT’s Intermediate Representa-
tion (IR), applying optimization algorithms upon the IR,
translating IR code to machine code and, finally, executing
the program are parallel operations, executed in different
operating system threads (POSIX threads). Each of the
threads implements one of the compilation steps, and each
compilation step can be implemented by more than one
thread (in order let it be performed on different methods at
once).
The various threads operate as a software pipeline: each
of them performs one step of the compilation process on a
different method of the program.
The software pipeline allows even sequential programs
compiled in CIL to benefit from multiple hardware cores:
while one core executes the current method, the other ones
can be used to pre-compile and optimize methods that will
have to be used in the future. Each method will have a
flag indicating its current translation state, namely CIL,

IR, MACHINECODE, EXECUTABLE. While the names of
CIL and IR states are pretty self-explanatory, some word
needs to be spent to clarify the meaning of the other ones:
methods in MACHINECODE state are present in the sys-
tem in CIL and IR form, and have already been translated
to machine code. EXECUTABLE methods are present in
the same forms of MACHINECODE ones, but all the static
memory they need has been allocated and initialized, there-
fore they are ready to be executed.
Deciding which methods can be precompiled is done
through DLA, explained in the next Section.

3 Dynamic Look Ahead
Dynamic Look Ahead (DLA) [4] is the the abstract model
that describes the way ILDJIT uses to choose the methods
that have to be precompiled.
DLA compilation is effective when the number of avail-
able processors is at least equal to the number of threads
executing, translating or optimizing code.
This model is based upon the use of two priority queues (a
low priority one and a high priority one) and on statically
and dynamically available information about the program.
Most information comes from the Static Call Graph
(SCG): it is the graph where each node represents a method
of the program, and two nodes mi and mj are linked by a
directed arc mi → mj if mi can invoke mj .
Even if the information of the SCG is static (therefore it ex-
clusively depends on the source code of the program), the
dynamic compiler does not know all of the SCG immedi-
ately: it gets to know it a portion at a time, while execution
takes place. For this reason, the graph is defined Dynami-
cally Known Static Call Graph (DKSCG).
Each time a method m is compiled, all the methods mi it
can invoke are candidates for being executed in the near
future.
Let γ(m,mi) be the weighted distance between m and
mi. We define the Look Ahead Region as LAR = {mi |
γ(m,mi) ≤ Thr}, where Thr is an implementation-
dependent threshold.
It is worth noting that the distance has to be weighted to
take into consideration the probability of executing each
method. The weight of the arc a = (mi,mj) is defined as
f(1

λ , δ) where f is a monotonic function of its parameters,
λ is the likelihood of invocation of the method mj from
mi, and δ is the estimated time distance between the exe-
cution of the first instructions of mi and of mj if the a arc
is taken.
Methods in the LAR are added to the low priority queue
to be precompiled, in an order depending on their execu-
tion probability. If during the execution of the program a
not yet compiled method is invoked, a trampoline is taken,
that calls an internal function of the compiler which will
add the called method to the high priority queue (together
with methods potentially invoked by it), in order to imme-
diately compile it and resume the execution of the program.

As it can be seen, in an ideal situation, the high priority
queue should never be used, and all the methods should al-
ready be ready when needed, thus completely masking out
the delay introduced by JIT execution. However, it may
happen that a wrong prediction leads to the need to insert
a method in the high priority queue, or that compilation
delay makes necessary to move a method from the low pri-
ority queue to the high priority one.
Pushing the concept of DLA to the limit leads to Ahead of
Time compilation, where all of the methods are precom-
piled, obtaining performances comparable to those of stat-
ically compiled programs.

4 A multi-platform JIT
Another outstanding feature of ILDJIT is its portability.
In recent years, computational devices are changing. More
and more frequently we find that smartphones, PDAs and
other devices that are not usually associated with the con-
cept of “computational power” are using increasingly pow-
erful processors. In most cases, these processors are not
compatible with Intel x86 Instruction Set Architecture,
therefore, for a software to support them, it means that it
has to be ported.
The development of ILDJIT is mainly done on Intel x86
processors, but the compiler has now been ported to ARM
architectures too. This port has been done as part of
the work for the Open Media Platform (OMP) European
project, aiming at the definition of an “open and extensible
service & software architecture for media-rich end-user de-
vices, such as mobile phones or mobile media players, that
will address software productivity and optimal service de-
livery challenges”. [2]
The work led to the realization of a fully-working im-
plementation able to run on ARM9 hardware with Vector
Floating Point (VFP) coprocessor and, with partial func-
tionality, even on hardware without VFP. At the moment,
VFP is used just to perform floating point operations. Vec-
tor capabilities of this coprocessor are not yet used by ILD-
JIT.
ARM development is performed using the Qemu [1] em-
ulator as the development platform, targeting an ARM926
processor. This choice is due to the ease of development
offered by the emulated environment with respect to using
a development board.
From time to time, results are validated by running ILDJIT
on real hardware, namely an NHK15 development board
by STMicroelectronics. This is needed because there is
some difference between Qemu’s emulated hardware and
the real one, in particular with respect to the memory
model. ARM9 hardware does not allow unaligned accesses
to memory: each load or store operation has to be aligned
to a multiple of the size of the data that are being read. This
is due to architectural and performance reasons: in order to
reduce the time to access memory, the power consumption
and the cost of the processor, there is no hardware support

for unaligned access. Failing to comply with this limita-
tion, leads to having invalid data returned by load opera-
tions or saved by store operations. On the other hand, as of
version 0.11, Qemu emulation permissively supports un-
aligned memory accesses. This is probably due the fact
that Intel x86 processors support this kind of operation and
Qemu directly uses the underlying primitives to interact
with the emulated memory.
As of the end of the OMP project, ILDJIT is able to run on
the NHK15 board JIT-compiling a Scalable Video Decoder
translating an H.264 video to YUV format.
Porting ILDJIT to a second architecture brought several
advantages: first of all, it increased the number of po-
tential users and uses, and, due to the widespread adop-
tion of ARM processors in the embedded systems indus-
try, widened considerably the number of devices it can run
upon.
More than this, the quality of the source code was greatly
improved during the porting work: some fragments of
code, initially platform specific, have been rewritten to be
more adherent to ANSI C, with less platform-specific as-
sumptions. This brings as a bonus the possibility of intro-
ducing support for further platforms in the future, with a
reduced implementation effort.
Also, having to run the compiler on a more constrained
architecture such as ARM, pushed us to greatly improve
the code to better exploit the available resources, reducing
its memory footprint by up to two thirds and its execution
time by up to nearly one half, as shown in the next Sec-
tion. Most of this code rewriting has taken place in the
platform-independent part of ILDJIT, thus affecting per-
formance both on ARM and on x86 processors. This sen-
sible improvement is mainly due to changes in the data
structures used to represent the programs being compiled
by ILDJIT while in IR form. Removing many function
pointers from those structures, and substituting them with
a better use of include preprocessor directives, led to a
great reduction of the occupied memory space (since each

structure is used many times, thus magnifying the effect
of each modification). Moreover, less function pointers
means less indirections through memory when performing
function calls, and therefore more speed. Other speed im-
provements came from posticipating the initialization of
some fields to the moment when it was strictly required:
this way, if a field is not used, it is just cleared setting it
to a NULL value, but no time is wasted initializing it. De-
spite the work done, the amount of required memory is still
greater than that of Mono, but there is space for further im-
provement, to make ILDJIT even more apt to embedded
systems.
Recently, multi-core ARM processors are starting to show
up in commercial applications (such as the Cortex-A8
ARM dual core chip, used by Nokia’s N900 Linux-based
Internet tablet). ILDJIT’s internal structure focused on the
exploitation of hardware parallelism (already described in
Sections 2 and 3) and based upon the use of many differ-
ent operating system threads will automatically improve
the performances of the compiler when run on such pro-
cessors.

5 Experimental results
In this Section, some measurement will be provided, show-
ing the performance gain obtained after completing the
porting to the ARM architecture and the cleanup of the
code base that was required by the reduced resources avail-
able on these systems.
x86 results were obtained by running on an Intel Core 2
Duo P8400 dual core processor at 2.26GHz. ARM results
have been taken in Qemu 0.11, running on the same under-
lying Intel hardware.
The numerical results reported are the mean value of four
execution of the benchmarks out of five. The timings of
the first execution have been discarded to prevent negative
effects due to the caching of data to memory from the hard
disk.

FFT Montecarlo SOR Linpack BinaryTree SHA1 SparseMM
ILDJIT 0,048 0,072 0,042 0,081 0,202 0,18 0,054
Old ILDJIT 0,075 0,098 0,067 0,103 0,259 0,304 0,08
Speedup 36,00% 26,53% 37,31% 21,36% 22,01% 40,79% 32,50%

Table 1: Execution times for some test programs with the old version of ILDJIT and the new one

Figure 1: Performance improvement of ILDJIT running on x86

Figure 2: Distribution of times between the various phases of compilation for ILDJIT running Linpack

CIL loading CIL→IR IR Opt. IR→EXE Static mem. init. Trampolines Execution
0,27% 0,25% 0,61% 0,08% 0,15% 0,96% 97,67%

Table 2: Percentage of time required by each of the JIT compilation phases, for ILDJIT running Linpack (where “EXE”
stands for “executable machine code“.

Figure 3: Comparison of ILDJIT and Mono running on ARM

FFT Montecarlo SOR Linpack BinaryTree SHA1 SparseMM
Mono 0,968 13,869 0,677 4,389 1,238 1,176 2,45
ILDJIT 1,709 1,842 1,442 2,784 8,072 4,622 1,659

Table 3: Execution times for some test programs with ILDJIT, compared with Mono on ARM platform

Figure 4: DLA results as a function of the number of CPU

The chosen benchmarks are taken from well-known test
suites, such as Java Grande [7], Linpack and Scimark [9].
In particular, the following benchmarks have been used:

JGFFFT (FFT) part of the Java Grande benchmarks, it

computes Fourier coefficients, which test the com-
putation of floating point transcendental and trigono-
metric functions.

SciMarkMONTECARLO (Montecarlo) part of the Sci-

Mark test suite, it estimates π by approximating the
area of a circle using the Montecarlo method.

SciMarkSOR (SOR) part of the SciMark test suite, it
solves the Laplace equation in 2D by successive
over-relaxation.

Linpack measures how fast a computer solves a dense
N × N system of linear equations Ax = b. This
test was originally written for Fortran. This partic-
ular version is in C# and comes from the Pnet [10]
test suite.

BinaryTree taken from the Great Computer Language
Shootout website [3], aimed at measuring the per-
formance of various programming language, this test
performs a series of operations on binary trees.

SHA1 it contains an implementation of the Secure Hash
Algorithm (SHA), and in particular, of the SHA-1
variant, that produces a 160-bit message digest for
a given data stream. Therefore, this algorithm can
serve as a means of providing a "fingerprint" for a
message. The test applies the SHA-1 algorithm on a
series of test patterns.

JGFSparseMatMult (SparseMM) it is taken form the
Java Grande Benchmark Suite and it exercises indi-
rect addressing and non-regular memory references.
An N ×N sparse matrix (with a prescribed sparsity)
is multiplied by a dense vector 200 times.

As it can be seen in Table 1 and Figure 1, the modifications
led to greatly improved performances.
Looking at the bar diagram, it is clear that the speed gain
is constant, and does not depend on the specific program
being compiled.
As it can be seen in Figure 2 and in Table 2, overall JIT
compilation times are just a tiny fraction of the total exe-
cution time.
Data in Table 3 and Figure 3 show a comparison between
running times of some benchmarks with ILDJIT and Mono
on the ARM platform. Mono [5] is the main open source
JIT for CIL: it is a Virtual Execution System for programs
in CIL bytecode, and it is developed by a wide community
of programmers, with support from Novell.
As it can be seen in Figure 3, the results of the two compil-
ers are quite close, with Mono frequently ahead. The out-
standing results obtained by ILDJIT in some of the tests
(such as the Montecarlo benchmark) come from the fact
that its code generator is able to produce instructions for
the VFP coprocessor, where available, therefore obtaining
a great advantage in terms of performance on floating point
based benchmarks. On the other hand, in other cases Mono
is faster than ILDJIT, because of the better and more opti-
mized code produced by its code generator when there are
no floating point operation involved.
Figure 4 shows the effect of compiling a program with
DLA with respect to JIT. The benchmarks used are Jpeg

and Heapsort, taken from the MiBench suite. As it can be
seen, DLA is strongly dependent on the number of used
CPUs. With one CPU, it can be even slower than JIT com-
pilation (because of the cost of handling the compilation
pipeline) but as the number of CPUs increases, the result
become increasingly positive. However, it has to be noted
that the performance improvement is bounded. In partic-
ular, it depends on the branching factor of method calls
in the compiled program. Once there are enough CPUs to
precompile all of the methods, adding more CPUs does not
bring any additional improvement.

6 Future work
At this time, ILDJIT focuses on exploiting parallelism
internally, in order to make the JIT compilation as
lightweight and as hidden as possible, through its software
pipeline and DLA compilation. The executed program is
not influenced by this.
In the future, some exploratory work will be done aiming
at extracting parallelism from the executed code, in order
to make its execution even faster and to allow legacy se-
quential code to take advantage of the increased degree of
parallelism of the incoming architectures.
This could happen at two different levels, with detection of
either fine-grained or coarse-grained parallelism (or even
both). First of all, the code generator could be extended
to support vector instructions, to perform Single Instruc-
tion Multiple Data calculations. On the other end, blocks
of code that are not dependent on the rest of the program
could be moved to a new thread and run on a different pro-
cessor core, thus obtaining faster execution.

7 Conclusions
This paper presented the ILDJIT compiler and the features
it has aimed at exploiting hardware parallelism present in
recent architectures.
In particular, the software pipeline and DLA, built upon
operating system threads, allow the compiler to adapt to
the underlying hardware, fully exploiting its resources,
even when running programs non-explicitly written for
parallel systems.
Moreover, ILDJIT’s portability has been described, show-
ing the benefit that introducing support to a second archi-
tecture brought to the compiler in general.

References
[1] Qemu - open source processor emulator.

http://www.qemu.org.

[2] Open Media Platform (OMP) European project.
http://www.openmediaplatform.eu, 2008.

[3] The Great Computing Language Shootout.
http://shootout.alioth.debian.org/, 2009.

[4] S. Campanoni, M. Sykora, G. Agosta, and S. C.
Reghizzi. Dynamic look ahead compilation: A
technique to hide jit compilation latencies in mul-
ticore environment. In O. de Moor and M. I.
Schwartzbach, editors, Compiler Construction, pages
220–235. Springer, 2009.

[5] M. de Icaza, P. Molaro, and D. Maurer.
http://www.go-mono.com/docs. Mono docu-
mentation.

[6] ECMA. ECMA-335: Common Language Infrastruc-
ture (CLI). ECMA (European Association for Stan-

dardizing Information and Communication Systems),
Geneva, Switzerland, fourth edition, June 2006.

[7] Edinburgh Parallel Computing Centre.
Java Grande Forum Benchmark Suite.
http://www.epcc.ed.ac.uk/research/
javagrande/benchmarking.html.

[8] ISO-IEC. Programming Languages—C#, ISO/IEC
23270:2006(E) International Standard, ansi stan-
dards for information technology edition, 2006.

[9] R. Pozo and B. Miller. http://math.nist.gov/scimark2.
SciMark benchmark.

[10] Southern Storm Software. http://www.southern-
storm.com.au. DotGNU Portable .NET project.

