
Dynamic Look Ahead Compilation: a technique to hide
JIT compilation latencies in multicore environment ⋆

Simone Campanoni⋆⋆, Martino Sykora, Giovanni Agosta and Stefano Crespi Reghizzi

Politecnico di Milano, Milano 20133, Italy,
{campanoni,sykora,agosta,crespi}@elet.polimi.it

http://compilergroup.elet.polimi.it

Abstract. Object-code virtualization, commonly used to achieve software porta-
bility, relies on a virtual execution environment, typically comprising an inter-
preter used for initial execution of methods, and a JIT for native code gener-
ation. The availability of multiple processors on current architectures makes it
attractive to perform dynamic compilation in parallel with application execu-
tion. The major issue is to decide at runtime which methods to compile ahead
of execution, and how much time to invest in their optimization. This research
introduces an abstract model, termed Dynamic Look Ahead (DLA) compilation,
which represents the available information on method calls and computational
weight as a weighted graph. The graph dynamically evolves as computation pro-
ceeds. The model is then instantiated by specifying criteria for adaptivelychoos-
ing the method compilation order. The DLA approach has been applied within
our dynamic compiler for .NET. Experimental results are reported andanalyzed,
for both synthetic programs and benchmarks. The main finding is that a careful
choice of method-selection criteria, based on light-weight program analysis and
execution tracing, is essential to mask compilation times and to achieve higher
overall performances. On multi-processors, the DLA approach is expected to
challenge the traditional virtualization environments based on bytecode interpre-
tation and JITing, thus bridging the gap between ahead-of-time and just-in-time
translation.

1 Introduction

Portable, byte-code based, Object Oriented languages suchas Java, Python and C# have
achieved widespread adoption in both industry and academia. Modern Virtual Machines
(VM) frequently include a dynamic translation system, theJust In Time(JIT) compiler.
A JIT compiler translates a byte-code portion (typically a method) to native binary code,
when needed. The generated binary code is then executed every time it is required. Dy-
namically compiled code can achieve large speedups, especially in the long run, since
the execution time of a native method is dramatically lower than that of an interpreted
one. However, the performance of a JIT-based VM is still lower than that of native code
produced by static byte-code compilation [23], orAhead Of Time(AOT) compilation.
The loss of performance is due to compilation overhead – often calledstartup time– and
to the poor quality of the generated code, since the startup time minimization prevents
the aggressive and costly optimizations usually performedby static compilers.

⋆ This work is supported in part by the European Commission under Framework Programme 7,
OpenMedia Platform project

⋆⋆ This author is supported in part by the ST Microelectronics

At the same time, multi-core technology is being employed inmost recent high-
performance architectures as a way to provide more computational power without rely-
ing on the reduction of the clock cycle, which is becoming increasingly difficult due to
technology limitations.

Thus, we consider a multiprocessor environment and study how specialized threads
of a dynamic compiler can compile bytecode portions in advance, in parallel with the
application execution. In a best case scenario, there is no compilation overhead, because
compilation fully overlaps with execution and methods are already compiled when they
are invoked. Moreover, optimizations are applied to provide high quality code. Our goal
is to prove that, given enough hardware resources, it is possible to effectively mask the
compilation delays, approximating the ideal case shown in Figure 1, where compilation
threadsTh1 andTh2 – running on processorsP1 andP2 – supply the requested native
methods to the execution thread in advance. Compilation times depend both on method
size and on the optimizations applied. To reach this ideal case, the dynamic compiler
should predict the execution trace, and be able to recognizehot-spots. We call such a
compiler aDynamic Look Ahead Compiler.

...
...

...
...

...
...

...
...

...
...

...
...

Compile (TH2)

Compile (TH1)

Execution

 m
1

 m
1

 m
2

 m
2

 m
3

 m
5

 m
3

 m
2

 m
4

 m
4

 m
6

 m
5

 m
6

 time

P3

P2

P1

Fig. 1: An ideal case. Each invoked method has already been compiled and optimized.

While a processor is executing a method, compilation threads(running on different
processors)look aheadinto the call graph, detecting methods that have good chances
to be executed in the next future. Moreover, they guess whether a method is anhot
spotor not, and apply aggressive optimizations accordingly. Hence, DLA compilation
dynamically exploits static code properties (call graph, structure of the method) for
execution trace prediction and hot-spot optimization.

The DLA compilation paradigm, conceived for multiprocessor architectures and
object-oriented languages, is the main contribution of this paper. In the rest of the paper,
we outline the theoretical model in Section 2 and describe DLA compilation in Section
3. Section 4 reports the experimental results. Section 5 provides a survey of prior works,
highlighting the distinctive aspects of the DLA compilation. Conclusions are discussed
in the last Section.

2 Model

A DLA compiler examines the methods to be compiled with the aim of deciding:

Compilation order In which order methods should be compiled. Thecompilation or-
derquality is measured by its similarity to the actual execution order of the methods
– considering only the first call of each method, since no compilation is required
for further invocations.

Optimization level Which optimizations should be applied in compiling. To this end,
a level of optimizationis assigned to each method.

Different platforms may use different criteria for dispatching and fine-tuning meth-
ods compilation. For a program, the basic concept is theStatic Call GraphSCG =
(M, I), whereM is the set ofmethodsandI is the set of possibleinvocations. A direct
arca = (mi,mj) ∈ I connects methodmi to mj if the former may call the latter at
run-time. Themain method belongs toM and is named theroot. The set of immediate
successors of a methodm ∈ M is S(m).

Initially, the SCG is not known to the DLA compiler, which progressively discovers
it. We call this graph theDynamically Known Static Call Graph (DKSCG). Thus, the
DKSCG is the portion of the SCG that is dynamically known: each time a methodm is
compiled, the DKSCG is updated with the subset ofS(m) not yet compiled.

Next we enrich the DKSCG with arcs and node weights, summarizing the relevant
properties for deciding compilation order and optimization level. Figure 2 shows a por-
tion of a generic DKSCG, wherew andw′ are the weights assigned to the arcs and
nodes, respectively.

M 0

M 1 M 2

M 3 M 4

WM2,M4WM2,M3

WM0,M2

WM1,M2

W’M0

W’M2

W’M3 W’M4

W’M1

WM0,M1

WM3,M1

Fig. 2: Dynamically Known Static Call Graph

First consider the weight-less graph. Knowledge of the set of successors of a method
gives some hints on the compilation order. It is obvious that, when a method is running,
its immediate successors are likely to be executed soon. Following this assumption, the
methods can be ordered according to their distance from the root. Letm be a method in-
volved in the compilation process andn be the methods ordered so far; not yet compiled
methods inS(m) will be ordered starting fromn + 1, as their appear inm body.

However such an ordering is rather unsatisfactory, as it neglects the effect of con-
ditional branches – the execution order of the successors ofa method depends on the
control flow and input data. Adding information on the likelihood of the execution of
each method, can improve the ordering quality. To this end, the model is enriched with
weights. An arca = (mi,mj) of the DKSCG is characterized by two attributes: the

likelihood of invocationλ, i.e. the likelihood thata is taken after execution reaches node
mi; and theestimated time distanceδ between the execution of the first instructions of
mi and ofmj , if that arc is taken.

The weight of an arca = (mi,mj) is defined aswa = f(1

λ
, δ) wheref is a

monotonic function of its parameters. Hence, given a methodm, the not yet compiled
methods inS(m) can be ordered by increasing arc weights.

For a nodemi, letγ(m,mi) be the weighted distance from the executing methodm.
We here define the so calledLook Ahead Region(LAR) asLAR = {mi|γ(m,mi) ≤
Thr}, whereThr is an implementation dependent threshold. LAR should contain those
methods having good chance to be executed in the next future.A method is a candidate
for compilation if it belongs to the LAR. In this case it is enqueued for compilation,
with an order depending onf . The weights on arcs dynamically change their values, as
well as LAR. Details about LAR updating are provided in Section 3.

The weights on arcs must be combined with the information on the computational
load of methods, providing hints on the most appropriate level of optimization. To
achieve this, to each methodm is given attribute indicating the computational load,
texc. The weight of the node is a monotonic function of the attributes:w′

m = f ′(texc)
By convention, the higherw′

m, the higher is the benefit due to an aggressive optimiza-
tion of m.

Note that the proposed general model may have different implementations, depend-
ing on: the definition of functionsf andf ′; the way the function arguments are com-
puted. In the sequel, we present two model implementations,integrated in our DLA
compilation framework [7]. Anaive one, whereλ, the likelihood of invocation, is
dropped;δ is the order of appearance of a method into the bytecode andf(1

λ
, δ) = δ. A

more refined implementation, where static branch prediction techniques [5] are used to
estimate the parametersλ, δ and the functionf . For both modelsf ′ depends on hot-spot
detection and is defined asf ′(texc) = texc. Our implementation closely follows [5]. On
the set of benchmarks used in Section 4 the branch predictor achieves a missrate of 18%
comparable to the 20% declared in [5].

3 Dynamic Look Ahead Compilation

In this section, we focus on the DLA principle, presenting the application scenario and
analyzing the main problems: execution trace prediction and hot spot detection. Specific
choices concerning the definition of the main components of the model – functions and
parameters – are also discussed.

Figure 3 shows the control flow of a DLA system, composed of several threads
(shown as ovals) connected by queues and composing a compilation pipeline. First
the methods are pushed into a compilation queue and translated from bytecode (BC)
to an intermediate representation (IR). Then multiple threads, running onto multiple
processors, optimize the IR methods and provide them for a final step of translation
toward native code. Native methods, when ready, are installed in memory and invoked
when needed. A method can be pushed for compilation in two cases: it is required for
the execution but it has never been compiled (dashed arc in figure); it is detected by the
DLA system as a method with high chances to be executed soon (bold arcs). The DLA
decision is taken in the first stage, where the DKSCG is updated with new weighted
nodes and the pipeline is supplied with new methods.

IR−>IR

IR−>IR

IR−>IR

IR−>IR

BC−>IR

BC−>IR

DLA

DLA

IR−>Bin EX

Ram

invoke

Fig. 3: DLA in a Pipelined Compilation Framework: the framework shown takes as input bytecode (BC) produced from
source files, and uses an intermediate representation (IR) to perform machine independent optimization. The pipeline is
based on a priority queue implemented by pairs of FIFO queues. Priorities of individual methods can change on information
discovered at runtime. The execution goes through the trampoline if the calledmethod has not been compiled yet.

Two queues with different priority are shown in Figure 3. Thelow priority queue
contains those methods detected by the DLA engine as the mostlikely candidates for
execution in the near future. The high priority one containsthe method that is presently
required for execution and the methods potentially invokedby it. Ideally, the high prior-
ity queue should always be empty, since all the invoked methods should be provided as
native code in advance. However, the prioritization mechanism is useful when – due to
wrong prediction or compilation delay – an invoked method has not yet been compiled
(thus it has to be enqueued with high priority or moved from low to the high priority
queue –method prioritization).

3.1 Applicative Scenario and Technique

DLA compilation is effective when the number of available processors is at least equal
to the number of threads dedicated to execution, compilation and optimization, to avoid
threads switching overhead. In this paper, for the sake of clarity, we focus on single
thread applications. Thus, only one processor is dedicatedto the execution and the
remaining ones are exploited for compilation and optimization.

Let us consider the first invocation of a method in a typical JIT execution. The con-
trol flow jumps to a code fragment known astrampoline, which yields control to the
dynamic compiler. The dynamic compiler, in turn, generates(and possibly optimizes)
the native binary code, then replaces the trampoline with the address of the generated
binary. In the DLA compilation the dynamic compiler also prepares other methods for
parallel compilation. To this end, the compilation routinelooks aheadinto the portion
of the SCG seen by the method it is currently processing, i.e.composed of its children
methods. They are added to the DKSCG and, if they belong to theLAR, they are pushed
into thecompilation queue, in an order depending on the underlying model. Concep-
tually, it is equivalent to an assignment of weights to the DKSCG arcs, in accordance
with the function presented in Section 2. The queue elementsare consumed by one or
more compilation and optimization threads, running in parallel with the execution flow
and distributed over multiple processors. Each dequeued method is compiled and opti-
mized, making it ready for the execution as soon as possible.During its compilation,
the above process is iterated.

If the DLA compilation is well tuned, the LAR is constantly updated, with the aim
of (i) compiling methods in advance;(ii) controlling the pressure on the compilation
queue. Figure 4 shows a DLA compilation thread in the large.

dequeue a method m

i = 0

 wait for methods

METHOD READy

i++

YES

NO

DLA COMPILATION
THREAD

YES

NO

i >= |C|

C[i] inpush C[i]

C = children(m)

LAR

Fig. 4: DLA compilation thread(s), shown as multiple boxes. Each of them wait for methods in the compilation queue.
When a methodm is ready, it is dequeued and compiled. The setC of its children is then computed, as shown by the third
stage (shaded in light grey), where thelook aheadprocess is effectively performed. Elements ofC belonging to the LAR and
not yet compiled are pushed into the compilation queue. The update of the DKSCG is not explicitly shown in figure, as well
as the pushing order is not highlighted.

Summarizing, the DLA compilation tries to compile in advance (exploiting hard-
ware parallelism) those methods that will be useful in the near future. To make pre-
dictions on the execution flow, compilation threads:(i) build and update the DKSCG;
(ii) keep information about the Dynamic Call Graph (DCG), the SCGsubgraph of the
methods effectively executed;(iii) keep information about the execution trace, which
is a linearization of the DCG. Both the execution trace and the DCG need a tracing
mechanism (e.g. trampolines). In absence of this mechanismwe observe a loss of infor-
mation.(iv) update the LAR, which both limits the pressure on the compilation queue
and drives the prediction. Figure 5 shows the relations between these concepts. Since a

SCG

known
 DCG

DKSCG

LAR

Fig. 5: Information exploited in DLA compilation.
The SCG, unknown at run time, is the region bounded
by dotted lines, while bold lines mark the DKSCG. This
graph contains the DCG which is disconnected since, in
the absence of a full execution tracing, this information
is partial. The LAR is shaded in light grey.

DLA
EXECUTION
REGIME

JIT
EXECUTION
REGIME

tr
am

po
lin

e

tr
am

po
lin

e

time

compilation delay

Fig. 6: DLA compilation falls into the worst applica-
tion scenario (JIT) each time a trampoline is called.

correct prediction of the methods to compile in advance depends on the ability to trace
the execution flow, we devote the remaining part of this Section to it.

3.2 Execution Trace Prediction

The correct prediction of the execution flow is required to keep the Look Ahead Re-
gion (LAR) correctly updated. It needs two kinds of information: the DKSCG, built at
compile time, and the past execution trace, monitored at runtime.

The execution can be traced viacode instrumentation, asynchronous call stack sam-
pling [10] or trampoline instrumentation. Code instrumentation – e.g. at each method
call – introduces an overhead, while asynchronous access tothe call stack is required to
be thread-safe, and must thus stall the execution.

On the other hand, trampoline instrumentation reduces the cost of tracing, but can
lead to a loss of trace information since once a method is translated, its native address
replaces the trampoline. In DLA compilation, this effect isamplified by the early compi-
lation, which potentially replaces a large number of trampolines before their execution.
This loss of information can be observed in Figure 5, which ishighlighted by a discon-
nected known-DCG. Figure 6 shows the working of the trampolines. The execution of
trampoline code means that the system is invoking a method not yet compiled, hence
it is not working in an optimum DLA compilation regime due to bad execution trace
prediction. Figure 7 shows this case, where bold lines represent methods invocations,
and dotted lines represent the DKSCG.

(a) (b) (c)
LAR LAR LAR

Fig. 7: Incorrect Execution Trace Prediction. (a) A method outside LAR is called through a trampoline. (b) LAR is
updated, erroneously discarding two of the four children of the current method. (c)A method outside LAR – thus surely not
yet compiled when invoked – is called through a trampoline.

In Figure 8, a good prediction leads to the compilation of several methods, but
also to the loss of tracing information, as the removed trampolines cannot be exploited
for execution tracing. The bold line encloses the compiled methods, while the LAR is
shown in grey. The execution trace is represented by an arrowed line. This execution
trace is unknown, as it always passes through native methods, without invoking tram-
polines. Moreover, since it enters into the LAR boundary, itis correctly predicted. But,
due to the loss of information, LAR is not updated (Figure 8.b) and the execution exits
the boundary (Figure 8.c), thus a trampoline is invoked.

When a trampoline is taken, the compilation overhead can be very large, since the
just invoked method must wait for the compilation of all methods in the compilation
queue. A two-queues prioritization mechanism can be used toreduce this delay, as

(a) (b) (c)

LAR LAR LAR

Fig. 8: Correct prediction with loss of tracing information. (a) (Unknown) execution tracestays inside the native methods
region. (b) It enters into LAR, but the latter is not updated. (c) Trampoline call.

shown in the compilation framework of Figure 3. The invoked method is pushed into
the high priority queue. The LAR is updated, and methods in the low priority queue,
but not belonging to the new LAR, are dequeued.

Method Enqueueing Order Each time the LAR is updated, all new methods belong-
ing to the compilation boundary are moved into the compilation queue. The enqueueing
order is driven by the prediction model, which takes into account the likelihood of ex-
ecution of each method in the next future. Static branch prediction techniques can help
in building an accurate model [19, 9, 5].

If enqueueing order differs from the invocation order, the compilation overhead can
be dramatic. If the executor invokes a method that is still into the compilation queue,
the execution stalls until the method is dequeued and compiled.

In our DLA implementation, we consider two kinds of methods enqueueing order.
The first is a simple FIFO ordering. The second exploits static branch prediction tech-
niques [5] to compute the likelihood of each invocation (by setting parametersλ and
δ of the model in Section 2). The LAR is updated on using a rough DKSCG distance
based criterion in the first case, while in the latter this criterion is coupled with the
likelihood of invocation. Section 4 provides an experimental evaluation, showing how
a fine tuned model can lead to a better prediction.

3.3 Hot-Spots Detection

The effectiveness of DLA compilation in the long run dependson the ability to generate
high quality native code for the applicationhot spots. The DLA compiler estimates
whether a method could be a hot spot before compiling it. It computes the node weight
w′ described by the model of Section 2. Specifically, the hot spot detection affects the
parametertexc, which measures the time complexity of a method. For this purpose, the
DLA compiler analyzes the method structure and the DKSCG.

The former provides clues on its run-time behavior, e.g indicators are number of
instructions, presence of computationally intensive loops. This information is partial,
but can be enough for hot-spot detection. More detailed overviews of static method
time complexity evaluation can be found in [1, 17]. For DKSCGcontribution, consider
the scenario shown in Figure 9, where the hot-spot marking ispropagated through the
DKSCG.

(b) COMPILING m1

m0

m1

public void m0(){

 for(....){

 m1()
 }

}

(a) COMPILING m0

m0

m1

m2 m3 m4 m5

120
89 3

15

Fig. 9: Static hot spot detection based both on DKSCG
and method structure. (a) While compilingm0, the DLA com-
piler discovers that it callsm1 into a loop.m1 is added to the
DKSCG and marked as hot-spot. (b) While compilingm1, the
DLA compiler marks as hot spots also its children that can be
invoked through low weighted arcs.

m0

m1

public void m0(){

 for(....){

 m1()
 }

}

COMPILATION ORDER: mz, m0, m1

mz

public void mz(){

 m1()

}

Fig. 10:Example of hot spot detection failure.

This approach, however, is not universally effective. Consider the example in Fig-
ure 10, wherem1 can be called both bym0 andmz. In the latter case, the call is not
within a loop. If mz is compiled beforem0, thenm1 will not be marked as hot spot.
When hot spot detection fails, a recompilation mechanism canbe exploited. When a
method is recognized as hot-spot it is pushed again into the compilation queue, even
though previously compiled. This approach is similar to what described in [14].

4 Experimental Results

To give a first evaluation of typical performance improvements achieved by the DLA
compilation we have considered two well known scientific benchsuite (JavaGrande
[16] andScimark [20]) as target. The DLA technique has been implemented intoour
dynamic compiler, called Intermediate Language Distributed Just In Time (ILDJIT) [7],
briefly described by Figure 3. It has three different workingmodes: AOT, JIT and DLA.
The target platform is an8 processor Xeon at2G-Hz, with16GB of RAM and a4MB

cache for each pair of processors.
To show the benefits due to DLA compilation w.r.t. the standard JIT compilation, we

have considered the ILDJIT JIT working mode as the baseline.We do not compare with
other JIT compilers such as Mono or the Microsoft .NET Framework, since the goal of
the experimental study is to evaluate the DLA technique rather than comparing different
JIT compilers. The results of an experiment using differentJIT compilers would be
affected primarily by the differences in the quality of the generated code, thus making
it more difficult to understand the impact of the DLA technique. However the ILDJIT
compiler currently outperforms Mono with full optimization enabled by 3% on the set
of benchmarks considered in this work.

To show the impact of the different choices in the abstract model parametrization,
execution tracing technique, and prioritization of the compilation queues, we compare
four versions of the DLA technique, shown in Table 1. In all versions, aggressive opti-
mizations and hot-spot detection are used.

The two abstract models adopted use different definitions ofthe functionf , which
controls the enqueueing order (see Section 2):

Table 1: DLA implementations

Name Model Priority queue Execution tracing
DLA1 M1 Yes Trampolines
DLA2 M2 Yes Trampolines
DLA3 M1 Yes Execution Stack Sampling
DLA4 M2 Yes Execution Stack Sampling

Table 2: Characterization of the full benchmarks in terms of methods defined, static call points
and number of method invocations performed at runtime.

Benchmark Methods Call Method Benchmark Methods Call Method
definedPointsinvocations definedPointsinvocations

JGFArith 34 46 58 JGFFFT 58 1191 4191
JGFLoop 35 46 59 JGFSparseMatmult 54 1102 25094
JGFCast 34 46 58 JGFRayTracer 67 691 1678
JGFAssign 39 60 79 SciMarkSOR 47 2891 70267
JGFheapsort 54 67 35079 SciMarkMonteCarlo 45 4017 5600071

SciMarkLU 55 10849 71367

M1 a naive implementation, whereλ is dropped,δ is the order of appearance of a
method in the parent body andf(1

λ
, δ) = δ.

M2 a refined one, whereλ andδ are estimated on the base of branch prediction analy-
sis, as described in [5].

For both the models, a hot spot detector estimates the time complexity of the methods,
texc, and the DKSCG node is weighted asf ′(texc) = texc. Moreover, the LAR is
updated following a fixed distance criterion over the DKSCG.We call this distance,
theboundary. In model M2, this criterion is coupled with the informationprovided by
the branch prediction technique; in this case, a method belongs to the LAR only if its
distance is within the boundaryand the branch prediction detects it as highly likely to
be invoked.

Table 2 reports a characterization of the Java Grande and SciMark benchmarks in
terms of methods defined and executed as well as of static callpoints. Since the DLA
technique tries to compile methods before their invocation, the effectiveness of the pre-
diction becomes more important when the number of invoked methods grows.

Table 3 reports the dynamic behavior of the different DLA approaches. The greater
effectiveness of a well tuned prediction model can be explained in terms of the num-
ber of prioritized methods and taken trampolines. The lowerthese measures, the more
precise the prediction of the execution flow. It means that the compilation threads are
effectively able to provide in advance many native methods effectively executed in the
near future.

Table 4 shows the execution time for several settings of the system. JIT and AOT
compilers are provided with and without optimizations, JIT1 and JIT2 (AOT, respec-
tively). Their performance are compared to DLA1, DLA2, DLA3and DLA4. Three
main considerations arise. First, DLA2 is always faster than DLA1, as well as DLA4 is
faster than DLA3; this proves that a fine-tuning of the prediction model is significant for
making the DLA compilation effective. Second, the higher the number of different in-
vocable methods that make up the benchmark, the more important the execution tracing

Table 3: Dynamic execution characterization of JIT and DLA techniques.JIT1 and JIT2 (both
reported as JIT) have the same behavior. AOT1 and AOT2 are neglected, since they have zeros
for each column.

Benchmark Compiler Methods Trampolines Methods ClassesBenchmark Compiler Methods Trampolines Methods Classes
Techniquetranslated taken prioritized analyzed Techniquetranslated taken prioritized analyzed

JGFArith JIT 34 34 0 7 JGFSparseMatmultJIT 54 54 0 16
DLA1 48 43 14 15 DLA1 138 83 24 25
DLA2 45 6 1 7 DLA2 108 4 4 18
DLA3 47 43 31 14 DLA3 128 80 61 23
DLA4 45 5 0 7 DLA4 108 3 3 18

JGFLoop JIT 35 35 0 7 JGFRayTracer JIT 67 67 0 52
DLA1 55 37 13 13 DLA1 141 101 41 62
DLA2 45 3 1 7 DLA2 121 11 7 54
DLA3 49 37 29 12 DLA3 133 101 72 60
DLA4 45 2 0 7 DLA4 119 9 5 54

JGFCast JIT 34 34 0 7 SciMarkSOR JIT 47 47 0 13
DLA1 48 38 4 9 DLA1 69 51 13 17
DLA2 45 4 1 7 DLA2 56 3 1 14
DLA3 47 38 31 9 DLA3 66 51 42 16
DLA4 45 4 1 7 DLA4 55 2 0 14

JGFAssign JIT 39 39 0 13SciMarkMonteCarloJIT 45 45 0 12
DLA1 61 45 15 15 DLA1 69 46 10 18
DLA2 52 3 1 13 DLA2 53 3 1 13
DLA3 58 45 39 15 DLA3 66 46 37 17
DLA4 52 2 0 13 DLA4 53 2 0 13

JGFheapsortJIT 54 54 0 14SciMarkLU JIT 55 55 0 12
DLA1 81 42 10 17 DLA1 81 51 25 16
DLA2 64 8 3 14 DLA2 62 4 1 13
DLA3 80 41 34 17 DLA3 78 51 43 16
DLA4 64 6 1 14 DLA4 62 3 0 13

JGFFFT JIT 58 58 0 18
DLA1 91 61 13 23
DLA2 74 9 4 20
DLA3 91 61 42 21
DLA4 72 7 2 20

becomes. For these benchmarks, execution tracing efficiently drives DLA compilation.
Hence, DLA3 and DLA4 translate fewer methods than DLA1 and DLA2. Finally, these
results show how DLA compilation is a successful technique,which effectively bridges
the gap between JIT and AOT compilation – often reaching an execution time close to
that obtained executing a statically compiled code.

The following experimental results describes the LAR boundary impact on the DLA
compilation, as well as the scaling of this technique w.r.t.the number of available CPUs.

Table 5 shows how more methods will be promoted for compilation in advance,
when the boundary increases. Increasing the boundary, DLA1scales worse than DLA2.
The latter is able to determine – thanks to branch prediction– which methods are effec-
tively to be pushed for compilation, choosing them from the large number of meth-
ods within the boundary. Moreover, execution tracing leadsto a speedup when the
benchmark has a sufficient number of methods, introducing overheads otherwise. In
fact DLA3 and DLA4 outperform DLA1 and DLA2 only for JGFheapsort, JGFFFT,
JGFSparseMatmult and JGFRayTracer.

Finally, Table 6 provides a characterization of DLA approaches as a function of
the number of CPUs, taking into account DLA2 and DLA4 only. Asexpected, we can
see that the DLA technique is only effective when multiple CPUs are available, and
then only for benchmarks with a high number of methods. The performance scaling
is not linear, and the performance quickly converges to an asymptote, as the number

Table 4: Java Grande and SciMark benchmarks: Execution time

Benchmark Metric JIT1 JIT2 AOT1 AOT2 DLA1 DLA2 DLA3 DLA4
JGFArith Total time 171.96 145.72 171.5 127.05 141.15 129.15 141.291 129.171

Machine code execution time 171.5 127.05 171.05 127.05 127.05 127.05 127.05 127.05
Compilation delay 0.46 18.67 0 0 14.1 2.1 14.241 2.121

JGFLoop Total time 6.774 5.211 6.136 3.644 4.454 4 4.462 4.003
Machine code execution time 6.136 3.644 6.136 3.644 3.644 3.644 3.644 3.644
Compilation delay 0.638 1.567 0 0 0.81 0.356 0.818 0.36

JGFCast Total time 21.302 17.159 21.256 14.62 15.938 15.53 15.952 15.539
Machine code execution time21.256 14.62 21.256 14.62 14.62 14.62 14.62 14.62
Compilation delay 0.046 2.539 0 0 1.318 0.91 1.331 0.919

JGFAssign Total time 167.655 146.059 167.551 131.476 143.98 136.08 144.105 136.126
Machine code execution time167.551 131.47 167.551 131.476 131.47 131.47 131.47 131.47
Compilation delay 0.104 14.589 0 0 12.51 4.61 12.635 4.656

JGFheapsort Total time 58.022 56.696 57.943 53.303 55.922 54.213 55.896 54.204
Machine code execution time57.943 53.303 57.943 53.303 53.303 53.303 53.303 53.303
Compilation delay 0.079 3.393 0 0 2.619 0.91 2.593 0.901

JGFFFT Total time 66.561 61.671 65.294 54.983 59.032 56.943 58.951 56.904
Machine code execution time65.294 54.983 65.294 54.983 54.983 54.983 54.983 54.983
Compilation delay 1.267 6.688 0 0 4.048 1.96 3.967 1.921

JGFSparseMatmultTotal time 17.439 13.374 16.714 8.487 12.397 9.617 12.319 9.594
Machine code execution time16.714 8.487 16.714 8.487 8.487 8.487 8.487 8.487
Compilation delay 0.725 4.887 0 0 3.91 1.13 3.832 1.107

JGFRayTracer Total time 51.91 45.535 50.981 28.62 37.53 31.23 37.263 31.152
Machine code execution time50.981 28.62 50.981 28.62 28.62 28.62 28.62 28.62
Compilation delay 0.929 16.915 0 0 8.91 2.61 8.643 2.532

SciMarkSOR Total time 61.342 58.24 61.25 49.12 55.27 51.93 55.332 51.958
Machine code execution time 61.25 49.12 61.25 49.12 49.12 49.12 49.12 49.12
Compilation delay 0.092 9.12 0 0 6.15 2.81 6.212 2.838

SciMarkMonteCarloTotal time 39.3 23.303 39.25 16.222 20.601 18.322 20.645 18.343
Machine code execution time 39.25 16.222 39.25 16.222 16.222 16.222 16.222 16.222
Compilation delay 0.05 7.081 0 0 4.379 2.1 4.423 2.121

SciMarkLU Total time 31.131 23.13 31.1 18.92 22.73 20.04 23.061 20.051
Machine code execution time 31.1 18.92 31.1 18.92 18.92 18.92 18.92 18.92
Compilation delay 0.031 4.21 0 0 3.81 1.12 4.141 1.131

of CPUs needed to perform the compilation steps is limited bythe number of meth-
ods to compile. Thus, the scaling is expected to become more pronounced for large
benchmarks, with many more methods. By the same token, we expected the difference
between DLA2 and DLA4 to increase for larger benchmarks, as precision loss due to
execution stack tracing would have a greater impact on the DLA performance.

Due to space constraints, we omit discussion about the negligible memory over-
head due to DKSCG storage needed by the DLA compiler. We note,however, that the
computation of DKSCG is performed using information that isrequired for the usual
operation of the dynamic compiler, thus not resulting in significant performance over-
head.

5 Related Works

A wide survey ofJust in Time(JIT) andAhead of Time(AOT) compilation can be found
in [3] and [21].

Continuous Program Optimization[13] allows periodic code recompilation for adapt-
ing it to different workloads. In BEA’s JRockit [6], methodsare first compiled without

Table 5: DLA total execution time (in seconds) as a function of the maximum look-ahead distance
from the executing method (Boundary).

DLA1 Boundary DLA2 Boundary DLA3 Boundary DLA4 Boundary
Benchmark 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
JGFArith 141.15 144.15 143.966 143.941 143.941140.56 137.15 135.46 129.15 129.15141.291 144.321 144.135 144.11 144.11140.695 137.251 135.544 129.171 129.171
JGFLoop 5 4.624 4.454 4.454 4.454 4.8 4.284 4 4 4 5.013 4.633 4.462 4.462 4.4624.811 4.29 4.003 4.003 4.003
JGFCast 15.938 15.955 15.941 15.942 15.94215.921 15.932 15.53 15.53 15.5315.952 15.968 15.954 15.955 15.95515.934 15.945 15.539 15.539 15.539
JGFAssign 145.59 145.28 143.98 145.62 145.62141.78 138.62 136.08 136.08 136.08145.731 145.418 144.105 145.762 145.762141.883 138.692 136.126 136.126 136.126
JGFheapsort 55.922 56.696 56.684 56.513 56.54355.922 55.915 55.821 54.613 54.21355.896 56.662 56.65 56.481 56.51155.896 55.889 55.796 54.6 54.204
JGFFFT 59.032 61.008 59.745 59.727 59.72758.989 58.926 58.188 56.943 56.94358.951 60.887 59.65 59.632 59.63258.909 58.847 58.124 56.904 56.904
JGFSparseMatmult13.197 12.637 12.497 12.397 12.39713.167 12.497 11.697 9.637 9.61713.103 12.554 12.417 12.319 12.31913.073 12.417 11.633 9.614 9.594
JGFRayTracer 37.797 38.87 37.645 37.53 37.5337.796 37.686 37.537 31.56 31.2337.522 38.563 37.374 37.263 37.26337.521 37.414 37.269 31.472 31.152
SciMarkSOR 58.13 55.27 57.22 56.94 56.9457.24 52.24 51.93 51.93 51.9358.22 55.332 57.301 57.018 57.01857.321 52.271 51.958 51.958 51.958
SciMarkMonteCarlo20.601 21.132 21.372 21.472 21.47220.232 19.626 18.322 18.322 18.32220.645 21.181 21.423 21.524 21.52420.272 19.66 18.343 18.343 18.343
SciMarkLU 23.02 22.73 23.02 23.02 23.0222.04 21.16 20.04 20.04 20.0423.061 22.768 23.061 23.061 23.06122.071 21.182 20.051 20.051 20.051

Table 6: DLA characterization over the number of CPUs; results are in seconds and they are the
total execution time of the compiler

JIT CPUs DLA2 CPUs DLA4 CPUs
Benchmark 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
JGFArith 171.96182.684 137.147 129.214 129.15 129.15 129.15 129.15 129.15191.604 138.745 130.8 129.171 129.171 129.171 129.171 129.171
JGFLoop 6.774 7.257 4.247 4.002 4 4 4 4 4 9.817 4.503 4.317 4.003 4.003 4.003 4.003 4.003
JGFCast 21.302 22.744 16.492 15.538 15.53 15.53 15.53 15.53 15.5328.254 17.744 16.55 15.539 15.539 15.539 15.539 15.539
JGFAssign 167.655183.761 150.826 136.197 136.08 136.08 136.08 136.08 136.08200.291 152.082 137.396 136.126 136.126 136.126 136.126 136.126
JGFheapsort 58.022134.438 57.497 54.902 54.268 54.213 54.213 54.213 54.213146.998 57.372 54.79 54.266 54.204 54.204 54.204 54.204
JGFFFT 66.561171.745 62.374 57.168 56.944 56.943 56.943 56.943 56.943190.275 62.123 57.047 56.904 56.904 56.904 56.904 56.904
JGFSparseMatmult 17.439 28.521 13.339 9.647 9.617 9.617 9.617 9.617 9.61737.721 13.214 9.635 9.594 9.594 9.594 9.594 9.594
JGFRayTracer 51.91161.373 50.607 40.803 37.476 36.851 35.915 34.353 31.23174.688 49.351 39.878 37.376 36.839 35.894 33.432 31.152
SciMarkSOR 61.342 89.431 57.188 52.013 51.93 51.93 51.93 51.93 51.9396.851 57.176 52.013 51.958 51.958 51.958 51.958 51.958
SciMarkMonteCarlo 39.3 42.28 20.875 18.342 18.322 18.322 18.322 18.322 18.32245.53 20.851 18.343 18.343 18.343 18.343 18.343 18.343
SciMarkLU 31.131 35.797 23.142 20.065 20.04 20.04 20.04 20.04 20.0437.953 23.127 20.065 20.051 20.051 20.051 20.051 20.051

optimizations. A single thread is used both for compilationand execution, while a par-
allel one samples the execution and triggers aggressive recompilation of “hot” methods.
While this paper focuses on the DLA technique itself, continuous optimization is just
as easily implemented in a DLA compiler as in a traditional JIT. A method that needs
recompilation is treated as a new method by the DLA compiler.

Selective Compilationis used to minimize compilation overheads while still achiev-
ing the largest part of the beneficial effects of JIT compilation. The Sun Microsystems
Java HotSpot Virtual Machine [24] runs both an interpreter and a compiler, the latter
invoked on hot-spots [18]. In [1], an evaluation of several techniques forhot spotde-
tection is presented. The main difference between DLA and Selective Compilation is
that the former aims at predicting in advance which methods are hot spot and which
not, both hiding the compilation time and ensuring good quality binary code. More-
over, DLA compilation is based on prediction techniques that analyzes the static code
properties, even though they are applied dynamically; conversely, selective compilation
is mainly based on dynamic profiling, which requires code instrumentation. However,
the two techniques could be adapted to work together.

Adaptive OptimizationmergesContinuous Program OptimizationandSelective Com-
pilation. A complete survey can be found in [2], while further considerations are pre-
sented by Kulkarnyet al. [15]. This approach exploits a dedicated thread to detect hot
spots and optimize them. The optimizer thread is run asynchronously w.r.t. the execu-
tion flow. In a multiprocessor environment, the optimization time can be masked.

Background Compilation[14] is directly related to DLA compilation. Optimization
is performed on dedicated hardware, on the base of an off-line profiling phase. If a

method still lies into the optimization queue at its invocation, lazy compilation is em-
ployed. This is the main difference w.r.t. DLA compilation.However, these techniques
could be coupled since DLA compilation is orthogonal w.r.t dynamic code profiling.
A more distantly related approach has been proposed in [12],involving the use of a
compilation thread to guarantee an upper bound to the occupation of processor by the
compiler by means of earliest deadline first scheduling.

Another work partially matching the DLA compilation is presented by Unnikrish-
nanet al. in [25]. Multiple threads on multiple processors re-compile and optimize in
advance those code portions with high chances to be executedsoon or requiring further
improvements. The main difference w.r.t DLA compilation isthat two kinds of run-time
information are required in this case: the sampling of the execution trace and the profil-
ing of properties such as time or energy consumption. Code instrumentation is needed
to collect this information, which would impact the performance. Moreover, a method
is only optimized after it has been invoked several times.

To be really effective, the DLA compilation has to follow a precise prediction
model, described in Section 2 and based on the assignment of merit factors to the ver-
tices and the arcs of a call-graph portion. These are computed in theLook Aheadphase
on the base of structural parameters. State of the art branchprediction techniques are
described in [19, 9, 5]. An approach for fast hot spot estimation/detection is reported
in [1]; another method-time-complexity evaluation can be found in [17]. Sophisticated
techniques for optimization profit estimation are described in [26] and [4].

Last but not least, some considerations on polymorphism in OO languages are
needed, since we claim that DLA compilation is most effective for those applications
characterized by large static and dynamic call graphs, in terms of number of methods.
These call graphs are typical of OO application, as also underlined in the DaCapo1

benchmark suite [11]. Polymorphism introduces an uncertainty in method naming, thus
making the run-time alias analysis a costly but effective optimization, as pointed in [22,
8]. On-line method versioning explicit the uncertain on themethod to invoke producing
several versions of the same method.

6 Conclusions

We have introduced the DLA compilation technique, coveringtheoretical and practical
problems related to it and showing how DLA compilation can bea powerful technique
to reduce the impact of dynamic compilation time and to generate high quality native
code. Its effectiveness proves to be strictly related to theability both to correctly predict
the execution flow and to apply the right set of optimizationsto each code region. A
more precise matching of the DLA compiled methods set to the execution trace directly
results into a reduction of the compilation delay, while theoptimization of the hot spots
should guarantee the execution of good quality code. On the Java Grande and SciMark
benchmark set (not a favourable one, since it has a reduced use of polymorphism) we
obtain an average speedup of 15%, and an average reduction ofthe overhead to less than
1% of the JIT compilation time. It is to be expected that the benefits of DLA compilation

1 We do not take DaCapo benchmarks into consideration in the experimentalevaluation because
ILDJIT does not support generics at this time.

will be higher for applications characterized by large callgraphs, which are typical of
Object Oriented highly polymorphic applications. This will be investigated in the future.

References
1. G. Agosta, S. Crespi Reghizzi, P. Palumbo, and M. Sykora. Selective compilation via fast

code analysis and bytecode tracing. InSAC ’06: Proceedings of the 2006 ACM symposium
on Applied computing, pages 906–911, New York, NY, USA, 2006. ACM.

2. M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A Survey of Adaptive Opti-
mization in Virtual Machines.Proceedings of the IEEE, 93(2):449–466, Feb 2005.

3. J. Aycock. A Brief History of Just-In-Time.ACM Comp. Surveys, 35(2):97–113, Jun 2003.
4. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler Transformations for High-Performance

Computing.ACM Computing Surveys, 26(4):345–420, 1994.
5. T. Ball and J. R. Larus. Branch Prediction For Free. InSIGPLAN Conference on Program-

ming Language Design and Implementation, pages 300–313, 1993.
6. BEA JRockit: Java for the enterprise technical white paper, 2006.
7. S. Campanoni, G. Agosta, and S. Crespi Reghizzi. A parallel dynamic compiler for CIL

bytecode.SIGPLAN Not., 43(4):11–20, 2008.
8. J. Dean, D. Grove, and C. Chambers. Optimization of Object-OrientedPrograms Using

Static Class Hierarchy Analysis.Lecture Notes in Computer Science, 952:77–101, 1995.
9. B. L. Deitrich, B.-C. Cheng, and W.-M. W. Hwu. Improving Static Branch Prediction in a

Compiler. InIEEE PACT, pages 214–221, 1998.
10. Michael Dunlavey. Performance tuning with instruction-level cost derived from call-stack

sampling.SIGPLAN Not., 42(8):4–8, 2007.
11. S. M. Blackburnet al. The DaCapo benchmarks: java benchmarking development and anal-

ysis. InOOPSLA, pages 169–190, 2006.
12. Timothy Harris. Controlling run-time compilation. InIn Procedings of the IEEE Workshop

on Programming Languages for Real-Time Industrial Applications, pages 75–84, 1998.
13. T. Kistler and M. Franz. Continuous program optimization: A case study. ACM Trans.

Program. Lang. Syst., 25(4):500–548, 2003.
14. C. J. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the overhead of dynamic compi-

lation. Software Practice and Experience, 31(8):717–738, 2001.
15. P. Kulkarni, M. Arnold, and M. Hind. Dynamic compilation: the benefitsof early investing.

In VEE, pages 94–104, 2007.
16. J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and development of Java

Grande benchmarks. InJAVA ’99: Proceedings of the ACM 1999 conference on Java Grande,
pages 72–80, New York, NY, USA, 1999. ACM.

17. D. Le Métayer. ACE: an automatic complexity evaluator.ACM Trans. Program. Lang. Syst.,
10(2):248–266, 1988.

18. M. Paleczny, C. A. Vick, and C. Click. The Java HotSpot Server Compiler. InJava Virtual
Machine Research and Technology Symposium, 2001.

19. J. R. C. Patterson. Accurate Static Branch Prediction by Value RangePropagation. InSIG-
PLAN Conf. on Programming Language Design and Implementation, pages 67–78, 1995.

20. R. Pozo and B. Miller. http://math.nist.gov/scimark2. SciMark benchmark.
21. T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham, and S. A. Watterson.

Toba: Java For Applications, A Way Ahead of Time (WAT) Compiler. InProc. of the Third
Conference on Object-Oriented Technologies and Systems, Jun 1997.

22. D. Rayside. Polymorphism is a Problem. InPanel on Reverse Engineering and Architecture,
CSMR’02, Mar 2002.

23. Kazuyuki Shudo. Performance comparison of java/.net runtimes.
http://www.shudo.net/jit/perf, 2005.

24. Sun Microsystems Java team. The Java HotSpot Virtual Machine, v1.4.1.
25. P. Unnikrishnan, M. Kandemir, and F. Li. Reducing dynamic compilation overhead by over-

lapping compilation and execution. InASP-DAC ’06: Proceedings of the 2006 conference
on Asia South Pacific design automation, pages 929–934, Piscataway, NJ, USA, 2006. IEEE.

26. M. Zhao, B. R. Childers, and M. L. Soffa. An approach toward profit-driven optimization.
ACM Trans. Archit. Code Optim., 3(3):231–262, 2006.

