Dynamic Look Ahead Compilation: atechniqueto hide
JIT compilation latencies in multicore environment *

Simone Campanotti, Martino Sykora, Giovanni Agosta and Stefano Crespi Retjhiz

Politecnico di Milano, Milano 20133, Italy,
{canpanoni , sykor a, agosta, crespi }@l et.polim.it
http://conpilergroup.elet.polim.it

Abstract. Object-code virtualization, commonly used to achieve software porta-
bility, relies on a virtual execution environment, typically comprising an inter-
preter used for initial execution of methods, and a JIT for native caeg
ation. The availability of multiple processors on current architecturesemak
attractive to perform dynamic compilation in parallel with application execu-
tion. The major issue is to decide at runtime which methods to compile ahead
of execution, and how much time to invest in their optimization. This research
introduces an abstract model, termed Dynamic Look Ahead (DLA) datign,
which represents the available information on method calls and computationa
weight as a weighted graph. The graph dynamically evolves as compupatio
ceeds. The model is then instantiated by specifying criteria for adaptihelys-

ing the method compilation order. The DLA approach has been applied within
our dynamic compiler for .NET. Experimental results are reporteceaadyzed,

for both synthetic programs and benchmarks. The main finding is theatefut
choice of method-selection criteria, based on light-weight program sisaynd
execution tracing, is essential to mask compilation times and to achieve higher
overall performances. On multi-processors, the DLA approach pecrd to
challenge the traditional virtualization environments based on bytecodprieter
tation and JITing, thus bridging the gap between ahead-of-time and jtisteén-
translation.

1 Introduction

Portable, byte-code based, Object Oriented languagesasutdva, Python and C# have
achieved widespread adoption in both industry and acadéfaidern Virtual Machines
(VM) frequently include a dynamic translation system, st In TimgJIT) compiler.
A JIT compiler translates a byte-code portion (typicallyethod) to native binary code,
when needed. The generated binary code is then executgdtieneiit is required. Dy-
namically compiled code can achieve large speedups, edlydaithe long run, since
the execution time of a native method is dramatically lowamntthat of an interpreted
one. However, the performance of a JIT-based VM is still lothan that of native code
produced by static byte-code compilation [23],Altead Of TimgAOT) compilation.
The loss of performance is due to compilation overhead -nafidledstartup time- and
to the poor quality of the generated code, since the staimugminimization prevents
the aggressive and costly optimizations usually perforlmestatic compilers.

* This work is supported in part by the European Commission under Frarké>rogramme 7,
OpenMedia Platform project
** This author is supported in part by the ST Microelectronics

At the same time, multi-core technology is being employedist recent high-
performance architectures as a way to provide more conipaghipower without rely-
ing on the reduction of the clock cycle, which is becomingéasingly difficult due to
technology limitations.

Thus, we consider a multiprocessor environment and studysipecialized threads
of a dynamic compiler can compile bytecode portions in adeaim parallel with the
application execution. In a best case scenario, there ismpitation overhead, because
compilation fully overlaps with execution and methods dready compiled when they
are invoked. Moreover, optimizations are applied to previgdjh quality code. Our goal
is to prove that, given enough hardware resources, it istpess effectively mask the
compilation delays, approximating the ideal case showngareé 1, where compilation
threadsTh1 andTh2 — running on processotd, and P, — supply the requested native
methods to the execution thread in advance. Compilatioegidepend both on method
size and on the optimizations applied. To reach this ides¢ cthe dynamic compiler
should predict the execution trace, and be able to recodwizepots. We call such a
compiler aDynamic Look Ahead Compiler

P3 o o ® o s [1s) ©
gl E £ £ = £ £
Execution
time
P2 b=l ® <
Compile (TH2) El E E
P1
Compile (TH1) E E g

Fig. 1: An ideal case. Each invoked method has already been compileaptimized.

While a processor is executing a method, compilation thréauising on different
processorshook aheadinto the call graph, detecting methods that have good clsance
to be executed in the next future. Moreover, they guess wehethmethod is amot
spotor not, and apply aggressive optimizations accordinglyndée DLA compilation
dynamically exploits static code properties (call graphyucture of the method) for
execution trace prediction and hot-spot optimization.

The DLA compilation paradigm, conceived for multiprocasaechitectures and
object-oriented languages, is the main contribution &f piaiper. In the rest of the paper,
we outline the theoretical model in Section 2 and describ& Bampilation in Section
3. Section 4 reports the experimental results. Section\Gges a survey of prior works,
highlighting the distinctive aspects of the DLA compilaticConclusions are discussed
in the last Section.

2 Modd

A DLA compiler examines the methods to be compiled with the af deciding:

Compilation order In which order methods should be compiled. Tuenpilation or-
derquality is measured by its similarity to the actual exeautieder of the methods
— considering only the first call of each method, since no dtatipn is required

for further invocations. o -)
Optimization level Which optimizations should be applied in compiling. To thigle

alevel of optimizations assigned to each method.

Different platforms may use different criteria for dispaitty and fine-tuning meth-
ods compilation. For a program, the basic concept isStatic Call GraphSCG =
(M, I), whereM is the set omethodsandI is the set of possiblevocations A direct
arca = (m;,m;) € I connects methodh; to m; if the former may call the latter at
run-time. Themai n method belongs td/ and is named theot. The set of immediate
successors of a methed € M is S(m).

Initially, the SCG is not known to the DLA compiler, which gn@ssively discovers
it. We call this graph th®ynamically Known Static Call Graph (DKSCGJhus, the
DKSCG is the portion of the SCG that is dynamically known:retime a methodn is
compiled, the DKSCG is updated with the subsef'¢f:) not yet compiled.

Next we enrich the DKSCG with arcs and node weights, sumimgrihe relevant
properties for deciding compilation order and optimizatievel. Figure 2 shows a por-
tion of a generic DKSCG, where andw’ are the weights assigned to the arcs and

nodes, respectively.

Wio,m1 Wio,m2
‘ o %

w,
M2,M4
Wiz, M3
Wizm1

Fig. 2: Dynamically Known Static Call Graph

First consider the weight-less graph. Knowledge of the ssticcessors of a method
gives some hints on the compilation order. It is obvious, twhien a method is running,
its immediate successors are likely to be executed soolovinf this assumption, the
methods can be ordered according to their distance fronotitelretr be a method in-
volved in the compilation process ande the methods ordered so far; not yet compiled
methods inS(m) will be ordered starting from + 1, as their appear im body.

However such an ordering is rather unsatisfactory, as itesegthe effect of con-
ditional branches — the execution order of the successcasnuéthod depends on the
control flow and input data. Adding information on the likedbd of the execution of
each method, can improve the ordering quality. To this ér&lntodel is enriched with
weights. An araz = (m;, m;) of the DKSCG is characterized by two attributes: the

likelihood of invocation\, i.e. the likelihood that is taken after execution reaches node
m;; and theestimated time distanegebetween the execution of the first instructions of
m; and ofm;, if that arc is taken.

The weight of an ara = (m;, m;) is defined asv, = f(4,6) wheref is a
monotonic function of its parameters. Hence, given a methpthe not yet compiled
methods inS(m) can be ordered by increasing arc weights.

For anoden;, let~(m, m;) be the weighted distance from the executing method
We here define the so callédok Ahead RegiofLAR) asLAR = {m;|y(m, m;) <
Thr}, whereT hr is an implementation dependent threshold. LAR should dotitase
methods having good chance to be executed in the next flkunethod is a candidate
for compilation if it belongs to the LAR. In this case it is ereyed for compilation,
with an order depending ofi The weights on arcs dynamically change their values, as
well as LAR. Details about LAR updating are provided in Sects.

The weights on arcs must be combined with the informatiorhencomputational
load of methods, providing hints on the most appropriatell®f optimization. To
achieve this, to each methad is given attribute indicating the computational load,
teze- The weight of the node is a monotonic function of the attésuw!, = f/(texc)

By convention, the highew,,, the higher is the benefit due to an aggressive optimiza-
tion of m.

Note that the proposed general model may have differenemehtations, depend-
ing on: the definition of functiong and f’; the way the function arguments are com-
puted. In the sequel, we present two model implementatiotsgrated in our DLA
compilation framework [7]. Anaive one, where), the likelihood of invocation, is
droppedy is the order of appearance of a method into the bytecodg“ebdi) =4.A
more refined implementation, where static branch predid¢gghniques [5] are used to
estimate the parametexsd and the functiory. For both modelg” depends on hot-spot
detection and is defined g&(t....) = te... Ourimplementation closely follows [5]. On
the set of benchmarks used in Section 4 the branch predit@ees a missrate of 18%
comparable to the 20% declared in [5].

3 Dynamic Look Ahead Compilation

In this section, we focus on the DLA principle, presenting #pplication scenario and
analyzing the main problems: execution trace predictiahran spot detection. Specific
choices concerning the definition of the main componentee@htodel — functions and
parameters — are also discussed.

Figure 3 shows the control flow of a DLA system, composed o&ssvthreads
(shown as ovals) connected by queues and composing a ctiowpifapeline. First
the methods are pushed into a compilation queue and traddiaim bytecode (BC)
to an intermediate representation (IR). Then multipledbtse running onto multiple
processors, optimize the IR methods and provide them forad $itep of translation
toward native code. Native methods, when ready, are iestail memory and invoked
when needed. A method can be pushed for compilation in twescdtsis required for
the execution but it has never been compiled (dashed araureigt is detected by the
DLA system as a method with high chances to be executed sotthglcs). The DLA
decision is taken in the first stage, where the DKSCG is updaith new weighted
nodes and the pipeline is supplied with new methods.

invoke

Fig. 3:DLA in a Pipelined Compilation Framework: the framework shown takes ag inytecode (BC) produced from
source files, and uses an intermediate representaf®riq perform machine independent optimization. The pipeline is
based on a priority queue implemented by pairs of FIFO queues. Prioritiesiatiirgl methods can change on information
discovered at runtime. The execution goes through the trampoline if the cadibebd has not been compiled yet.

Two queues with different priority are shown in Figure 3. Toe priority queue
contains those methods detected by the DLA engine as thelikelgtcandidates for
execution in the near future. The high priority one cont#éiiresmethod that is presently
required for execution and the methods potentially invdked. Ideally, the high prior-
ity queue should always be empty, since all the invoked nuitisbould be provided as
native code in advance. However, the prioritization meddrmans useful when — due to
wrong prediction or compilation delay — an invoked methosd hat yet been compiled
(thus it has to be enqueued with high priority or moved from to the high priority
queue -method prioritizatioi.

3.1 Applicative Scenario and Technique

DLA compilation is effective when the number of availablegessors is at least equal
to the number of threads dedicated to execution, compilatia optimization, to avoid
threads switching overhead. In this paper, for the sakeaftgl we focus on single
thread applications. Thus, only one processor is dedicatdatle execution and the
remaining ones are exploited for compilation and optinidrat

Let us consider the first invocation of a method in a typicaleédecution. The con-
trol flow jumps to a code fragment known stampoline which yields control to the
dynamic compiler. The dynamic compiler, in turn, generdsesl possibly optimizes)
the native binary code, then replaces the trampoline wighatifidress of the generated
binary. In the DLA compilation the dynamic compiler also jpaees other methods for
parallel compilation. To this end, the compilation routlneks aheadnto the portion
of the SCG seen by the method it is currently processingcammposed of its children
methods. They are added to the DKSCG and, if they belong toARe they are pushed
into thecompilation queugin an order depending on the underlying model. Concep-
tually, it is equivalent to an assignment of weights to theSWG arcs, in accordance
with the function presented in Section 2. The queue elensmstsonsumed by one or
more compilation and optimization threads, running in pparavith the execution flow
and distributed over multiple processors. Each dequeudidatiés compiled and opti-
mized, making it ready for the execution as soon as posdileng its compilation,
the above process is iterated.

If the DLA compilation is well tuned, the LAR is constantly dgited, with the aim
of (¢) compiling methods in advancéii) controlling the pressure on the compilation
queue. Figure 4 shows a DLA compilation thread in the large.

DLA COMPILATION
THREAD

wait for methods

METHOD READy

dequeue a method m

C = children(m)
i=

Fig. 4: DLA compilation thread(s), shown as multiple boxes. Each of them wait for adstin the compilation queue.
When a methodnis ready, it is dequeued and compiled. The@etf its children is then computed, as shown by the third
stage (shaded in light grey), where thek aheadprocess is effectively performed. Element<dbelonging to the LAR and
not yet compiled are pushed into the compilation queue. The update oKBED is not explicitly shown in figure, as well
as the pushing order is not highlighted.

Summarizing, the DLA compilation tries to compile in advar(exploiting hard-
ware parallelism) those methods that will be useful in tharrdature. To make pre-
dictions on the execution flow, compilation threa¢g:build and update the DKSCG;
(1) keep information about the Dynamic Call Graph (DCG), the SDBgraph of the
methods effectively executediii) keep information about the execution trace, which
is a linearization of the DCG. Both the execution trace arelDICG need a tracing
mechanism (e.g. trampolines). In absence of this mechanesobserve a loss of infor-
mation.(iv) update the LAR, which both limits the pressure on the cortipitequeue
and drives the prediction. Figure 5 shows the relations éetwhese concepts. Since a

known compilation delay
DCG -
k aT
EXECUTION
REGIME

2 L
DLA 3 s
) EXECUTION 5 £
"""" SCG REGIME = s

Fig.5: Information exploited in DLA compilation.
The SCG, unknown at run time, is the region bounded
by dotted lines, while bold lines mark the DKSCG. This
graph contains the DCG which is disconnected since, in
the absence of a full execution tracing, this informatio
is partial. The LAR is shaded in light grey.

time

"Fig. 6: DLA compilation falls into the worst applica-
tion scenario (JIT) each time a trampoline is called.

correct prediction of the methods to compile in advance ddpen the ability to trace
the execution flow, we devote the remaining part of this $adi it.

3.2 Execution Trace Prediction

The correct prediction of the execution flow is required tegkéhe Look Ahead Re-
gion (LAR) correctly updated. It needs two kinds of inforinat the DKSCG, built at
compile time, and the past execution trace, monitored dirmen

The execution can be traced wade instrumentatigrasynchronous call stack sam-
pling [10] or trampoline instrumentatianCode instrumentation — e.g. at each method
call — introduces an overhead, while asynchronous acceks t@ll stack is required to
be thread-safe, and must thus stall the execution.

On the other hand, trampoline instrumentation reducesdbeaf tracing, but can
lead to a loss of trace information since once a method islaged, its native address
replaces the trampoline. In DLA compilation, this effecimplified by the early compi-
lation, which potentially replaces a large number of tralimes before their execution.
This loss of information can be observed in Figure 5, whidhighlighted by a discon-
nected known-DCG. Figure 6 shows the working of the tranmaali The execution of
trampoline code means that the system is invoking a methogleticompiled, hence
it is not working in an optimum DLA compilation regime due tadexecution trace
prediction. Figure 7 shows this case, where bold lines smmtemethods invocations,
and dotted lines represent the DKSCG.

@

Fig. 7: Incorrect Execution Trace Prediction. (a) A method outside LAR is called through gafam®. (b) LAR is
updated, erroneously discarding two of the four children of the current methodnfethod outside LAR — thus surely not
yet compiled when invoked — is called through a trampoline.

In Figure 8, a good prediction leads to the compilation ofesamethods, but
also to the loss of tracing information, as the removed t@mps cannot be exploited
for execution tracing. The bold line encloses the compiledhmods, while the LAR is
shown in grey. The execution trace is represented by an addiwe. This execution
trace is unknown, as it always passes through native metiottout invoking tram-
polines. Moreover, since it enters into the LAR boundarig dorrectly predicted. But,
due to the loss of information, LAR is not updated (Figure) &d the execution exits
the boundary (Figure 8.c), thus a trampoline is invoked.

When a trampoline is taken, the compilation overhead can helamge, since the
just invoked method must wait for the compilation of all nadk in the compilation
queue. A two-queues prioritization mechanism can be usaeduace this delay, as

LAR LAR LAR
@ ®) ©

Fig. 8: Correct prediction with loss of tracing information. (a) (Unknown) execution tstags inside the native methods
region. (b) It enters into LAR, but the latter is not updated. (c) Trampolirle cal

shown in the compilation framework of Figure 3. The invokeethod is pushed into
the high priority queue. The LAR is updated, and methods énldfwv priority queue,
but not belonging to the new LAR, are dequeued.

Method Enqueueing Order Each time the LAR is updated, all new methods belong-
ing to the compilation boundary are moved into the compilatjueue. The enqueueing
order is driven by the prediction model, which takes intocact the likelihood of ex-
ecution of each method in the next future. Static branchiptied techniques can help
in building an accurate model [19, 9, 5].

If enqueueing order differs from the invocation order, tbenpilation overhead can
be dramatic. If the executor invokes a method that is stith the compilation queue,
the execution stalls until the method is dequeued and cenhpil

In our DLA implementation, we consider two kinds of methodsj@eueing order.
The first is a simple FIFO ordering. The second exploitsstatinch prediction tech-
nigues [5] to compute the likelihood of each invocation (kytiag parameters and
¢ of the model in Section 2). The LAR is updated on using a routs0OG distance
based criterion in the first case, while in the latter thigecion is coupled with the
likelihood of invocation. Section 4 provides an experinatmvaluation, showing how
a fine tuned model can lead to a better prediction.

3.3 Hot-Spots Detection

The effectiveness of DLA compilation in the long run depeodshe ability to generate
high quality native code for the applicatidrot spots The DLA compiler estimates
whether a method could be a hot spot before compiling it. ihjotes the node weight
w’ described by the model of Section 2. Specifically, the hot dptection affects the
parametet.,., which measures the time complexity of a method. For thippse, the
DLA compiler analyzes the method structure and the DKSCG.

The former provides clues on its run-time behavior, e.gdattirs are number of
instructions, presence of computationally intensive &adfhis information is partial,
but can be enough for hot-spot detection. More detailedvisws of static method
time complexity evaluation can be found in [1, 17]. For DKSE€@htribution, consider
the scenario shown in Figure 9, where the hot-spot markipgapagated through the
DKSCG.

public void mO({
for(..{ public void mz()}{ public void mo0(
- T
wio 120 \3 mi() f(y
}
m1()
(2) COMPILING m0 (b) COMPILING m1 }
}
Fig. 9: static hot spot detection based both on DKSCG COMPILATION ORDER: mz, m0, m1

and method structure. (a) While compilin@, the DLA com-

piler discovers that it calle1l into a loop.ml is added to the . X . .
DKSCG and marked as hot-spot. (b) While compiliriy the 19+ 10:Example of hot spot detection failure.
DLA compiler marks as hot spots also its children that can be

invoked through low weighted arcs.

This approach, however, is not universally effective. Gdersthe example in Fig-
ure 10, wherarl can be called both by0 andne. In the latter case, the call is not
within a loop. If mz is compiled beforexD, thenni will not be marked as hot spot.
When hot spot detection fails, a recompilation mechanismbeapexploited. When a
method is recognized as hot-spot it is pushed again into dhgpiation queue, even
though previously compiled. This approach is similar to indescribed in [14].

4 Experimental Results

To give a first evaluation of typical performance improvetseachieved by the DLA
compilation we have considered two well known scientificdieuite JavaG ande
[16] andSci mar k [20]) as target. The DLA technique has been implementedanto
dynamic compiler, called Intermediate Language Distedutust In Time (ILDJIT) [7],
briefly described by Figure 3. It has three different workingdes: AOT, JIT and DLA.
The target platform is a8 processor Xeon &G-Hz, with16GB of RAM and a4 M B
cache for each pair of processors.

To show the benefits due to DLA compilation w.r.t. the stadd&F compilation, we
have considered the ILDJIT JIT working mode as the baselifeedo not compare with
other JIT compilers such as Mono or the Microsoft .NET Fraammwsince the goal of
the experimental study is to evaluate the DLA techniquearatian comparing different
JIT compilers. The results of an experiment using differ#it compilers would be
affected primarily by the differences in the quality of thengrated code, thus making
it more difficult to understand the impact of the DLA techreégtdowever the ILDJIT
compiler currently outperforms Mono with full optimizatienabled by 3% on the set
of benchmarks considered in this work.

To show the impact of the different choices in the abstraal@hparametrization,
execution tracing technique, and prioritization of the pilation queues, we compare
four versions of the DLA technique, shown in Table 1. In alisiens, aggressive opti-
mizations and hot-spot detection are used.

The two abstract models adopted use different definitionthefunctionf, which
controls the enqueueing order (see Section 2):

Table 1: DLA implementations

Name|M odel|Priority queue Execution tracing

DLA1 M1 |Yes Trampolines

DLA2 M2 |Yes Trampolines

DLA3 M1 |Yes Execution Stack Sampling
DLA4A M2 |Yes Execution Stack Sampling

Table 2: Characterization of the full benchmarks in terms of methodsetkfstatic call points
and number of method invocations performed at runtime.

Benchmark|Method$ Calll Method[Benchmark Method$ Calll Method
definedPointsinvocations| definedPointsinvocations

JGFArith 34, 46 58||JGFFFT 58 1191 4191
JGFLoop 35 46 59 |JGFSparseMatmult 54 1102 25094
JGFCast 34 46 58||JGFRayTracer 67| 691 1678
JGFAssign 39 60 79||SciMarkSOR 47| 2891 70267
JGFheapsort 54 67 35079|SciMarkMonteCarlo 45/ 4017 5600071
SciMarkLU 5510849 71367

M1 a naive implementation, where\ is dropped,) is the order of appearance of a
method in the parent body anfd+,d) = 4.

M2 arefined one, wherk andé are estimated on the base of branch prediction analy-
sis, as described in [5].

For both the models, a hot spot detector estimates the timglexity of the methods,
teze, and the DKSCG node is weighted #8te.c) = tese. Moreover, the LAR is
updated following a fixed distance criterion over the DKSQ@& call this distance,
theboundary In model M2, this criterion is coupled with the informatiprovided by
the branch prediction technique; in this case, a methodigslto the LAR only if its
distance is within the boundagndthe branch prediction detects it as highly likely to
be invoked.

Table 2 reports a characterization of the Java Grande amdaBicbenchmarks in
terms of methods defined and executed as well as of statipaialls. Since the DLA
technique tries to compile methods before their invocatioa effectiveness of the pre-
diction becomes more important when the number of invokethats grows.

Table 3 reports the dynamic behavior of the different DLAraghes. The greater
effectiveness of a well tuned prediction model can be erphiin terms of the num-
ber of prioritized methods and taken trampolines. The Ialwese measures, the more
precise the prediction of the execution flow. It means thatabmpilation threads are
effectively able to provide in advance many native methdfistively executed in the
near future.

Table 4 shows the execution time for several settings of yseem. JIT and AOT
compilers are provided with and without optimizations, J&nd JIT2 (AOT, respec-
tively). Their performance are compared to DLA1, DLA2, DLABd DLA4. Three
main considerations arise. First, DLA2 is always fastentbaAl, as well as DLA4 is
faster than DLAS3; this proves that a fine-tuning of the prédicmodel is significant for
making the DLA compilation effective. Second, the higher ttumber of different in-
vocable methods that make up the benchmark, the more inmpdin&execution tracing

Table 3: Dynamic execution characterization of JIT and DLA techniqlid4. and JIT2 (both
reported as JIT) have the same behavior. AOT1 and AOT2 are natjlsatee they have zeros
for each column.

Benchmark|Compiler | Methods Trampolines Methods Clas@enchmark Compiler| Methods Trampolines Methods Classes
Techniquetranslated taken prioritized analyzed Techniquétranslated taken prioritized analyzed
JGFArith [JIT 34 34 0 7|JGFSparseMatmullJIT 54 54 0 1
DLA1 48 43 14 1 DLA1 138 83 24 25
DLA2 45 6 1 1 DLA2 108 4 4 1
DLA3 47 43 31 1 DLA3 128 80 61 28
DLA4 45 5 0 1 DLA4 108 3 3 1
JGFLoop [JIT 35 35 0 TJGFRayTracer JIT 67 67 0 5
DLAL 55 37 13 1 DLAL 141 101 41 6p
DLA2 45 3 1 1 DLA2 121 11 7 54
DLA3 49 37 29 1 DLA3 133 101 72 60
DLA4 45 2 0 1 DLA4 119 9 5 54
JGFCast [JIT 34 34 0 7/SciMarkSOR JIT 47 47 0 1
DLAL 48 38 4 DLAL1 69 51 13 17
DLA2 45 4 1 1 DLA2 56 3 1 14
DLA3 47 38 31 DLA3 66 51 42 1
DLA4 45 4 1 1 DLA4 55 2 0 14
JGFAssign [JIT 39 39 0 13SciMarkMonteCarl@)IT 45 45 0 1
DLAL1 61 45 15 1 DLAL1 69 46 10 1
DLA2 52 3 1 13 DLA2 53 3 1 13
DLA3 58 45 39 1 DLA3 66 46 37 17
DLA4 52 2 0 1 DLA4 53 2 0 13
JGFheapsodIT 54 54 0 14SciMarkLU JIT 55 55 0 1
DLA1 81 42 10 1 DLA1 81 51 25 1
DLA2 64 8 3 14 DLA2 62 4 1 1
DLA3 80 41 34 1 DLA3 78 51 43 1
DLA4 64 6 1 14 DLA4 62 3 0 13
JGFFFT [JIT 58 58 0 1
DLAL 91 61 13 2
DLA2 74 9 4 2
DLA3 91 61 42 2
DLA4 72 7 2 2

becomes. For these benchmarks, execution tracing efficidmies DLA compilation.

Hence, DLA3 and DLA4 translate fewer methods than DLA1 and\RLFinally, these
results show how DLA compilation is a successful techniguhgch effectively bridges
the gap between JIT and AOT compilation — often reaching acwgion time close to
that obtained executing a statically compiled code.

The following experimental results describes the LAR baurgdmpact on the DLA
compilation, as well as the scaling of this technique viltg.number of available CPUs.

Table 5 shows how more methods will be promoted for compitath advance,
when the boundary increases. Increasing the boundary, BcAlks worse than DLA2.
The latter is able to determine — thanks to branch predietishich methods are effec-
tively to be pushed for compilation, choosing them from taeyé number of meth-
ods within the boundary. Moreover, execution tracing letds speedup when the
benchmark has a sufficient number of methods, introduciregh®ads otherwise. In
fact DLA3 and DLA4 outperform DLA1 and DLA2 only for JGFheaps JGFFFT,
JGFSparseMatmult and JGFRayTracer.

Finally, Table 6 provides a characterization of DLA appilteg as a function of
the number of CPUs, taking into account DLA2 and DLA4 only.expected, we can
see that the DLA technique is only effective when multipleUSRare available, and
then only for benchmarks with a high number of methods. Théopeance scaling
is not linear, and the performance quickly converges to gmptote, as the number

Table 4: Java Grande and SciMark benchmarks: Execution time

Benchmark Metric JIT1 JIT2 AOT1 AOT2 DLAl DLA2 DLA3 DLA4
JGFArith Total time 171.96 145.72 1715 127.05141.15129.15141.291 129.171
Machine code execution time 171.5 127.05 171.05 127.05 127.05 127.05 127.05 127.05
Compilation delay 0.46 18.67 0 0 141 2.1 14241 2121
JGFLoop Total time 6.774 5.211 6.136 3.644 4.454 4 4462 4.003
Machine code execution time 6.136 3.644 6.136 3.644 3.644 3.644 3.644 3.644
Compilation delay 0.638 1.567 0 0 0.81 0.356 0.818 0.36
JGFCast Total time 21.302 17.159 21.256 14.62 15.938 15.53 15.952 15.539
Machine code execution time21.256 14.62 21.256 14.62 14.62 14.62 14.62 14.62
Compilation delay 0.046 2.539 0 0 1.318 091 1.331 0.919
JGFAssign Total time 167.655 146.059 167.551 131.476 143.98 136.08 144.103.236.
Machine code execution tin67.551 131.47 167.551 131.476 131.47 131.47 131.47 131.47
Compilation delay 0.104 14.589 0 0 1251 4.61 12.635 4.656
JGFheapsort Total time 58.022 56.696 57.943 53.303 55.922 54.213 55.896 54.204
Machine code execution timeé7.943 53.303 57.943 53.303 53.303 53.303 53.303 53.303
Compilation delay 0.079 3.393 0 0 2619 091 2593 0.901
JGFFFT Total time 66.561 61.671 65.294 54.983 59.032 56.943 58.951 56.904
Machine code execution times5.294 54.983 65.294 54.983 54.983 54.983 54.983 54.983
Compilation delay 1.267 6.688 0 0 4.048 196 3.967 1.921
JGFSparseMatmultTotal time 17.439 13.374 16.714 8.487 12.397 9.617 12.319 9.594
Machine code execution timel6.714 8.487 16.714 8.487 8.487 8.487 8.487 8.487
Compilation delay 0.725 4.887 0 0 391 1.13 3.832 1.107
JGFRayTracer Total time 51.91 45535 50.981 28.62 37.53 31.23 37.263 31.152
Machine code execution timeé0.981 28.62 50.981 28.62 28.62 28.62 28.62 28.62
Compilation delay 0.929 16.915 0 0 891 261 8643 2532
SciMarkSOR Total time 61.342 58.24 61.25 49.12 55.27 51.93 55.332 51.958
Machine code execution time 61.25 49.12 61.25 49.12 49.12 49.12 49.12 49.12
Compilation delay 0.092 9.12 0 0 6.15 281 6.212 2.838
SciMarkMonteCarlgrotal time 39.3 23.303 39.25 16.222 20.601 18.322 20.645 18.343
Machine code execution time 39.25 16.222 39.25 16.222 16.222 16.222 16.222 16.222
Compilation delay 0.05 7.081 0 0 4.379 21 4423 2121
SciMarkLU Total time 31.131 23.13 31.1 18.92 22.73 20.04 23.061 20.051
Machine code execution time 31.1 18.92 31.1 18,92 18.92 18.92 18.92 18.92
Compilation delay 0.031 4.21 0 0 381 112 4141 1.131

of CPUs needed to perform the compilation steps is limitedhgynumber of meth-
ods to compile. Thus, the scaling is expected to become ntoropnced for large
benchmarks, with many more methods. By the same token, wectegbthe difference
between DLA2 and DLA4 to increase for larger benchmarks,rasigion loss due to
execution stack tracing would have a greater impact on th& pdrformance.

Due to space constraints, we omit discussion about thegielglimemory over-
head due to DKSCG storage needed by the DLA compiler. We hotegver, that the
computation of DKSCG is performed using information thatequired for the usual
operation of the dynamic compiler, thus not resulting imgigant performance over-
head.

5 Reated Works

A wide survey ofJust in TimgJIT) andAhead of TiméAOT) compilation can be found
in [3] and [21].

Continuous Program Optimizatidt3] allows periodic code recompilation for adapt-
ing it to different workloads. In BEA's JRockit [6], methodse first compiled without

Table 5: DLA total execution time (in seconds) as a function of the maximokiédhead distance
from the executing method (Boundary).

DLA1 Boundary DLA2 Boundary DLA3 Boundary DLA4 Boundary |
Benchmark 1 2 3 4 g 1 2 3 4 g 1 2 3 4 g 1 4 5
JGFArith 141.15 144.15 143.966 143.941 143.8410.56 137.15 135.46 129.15 129141.291 144.321 144.135 144.11 14414D.695 137.251 135.544 129.171 129.171
JGFLoop 5 4.624 4.454 4454 4454 48 4.284 4 4 4 5013 4.633 4.462 4.462 4.4624.811 429 4.003 4.003 4.003
JGFCast 15.938 15.955 15.941 15.942 15982921 15.932 15.53 15.53 15|535.952 15.968 15.954 15.955 15.9585.934 15.945 15.539 15.539 15.539
JGFAssign 145,59 145.28 143.98 145.62 145521.78 138.62 136.08 136.08 136/085.731 145.418 144.105 145.762 145.162.883 138.692 136.126 136.126 136.126
JGFheapsort 55.922 56.696 56.684 56.513 56.988.922 55.915 55.821 54.613 54.2156.896 56.662 56.65 56.481 56.5135.896 55.889 55.796 54.6 54.204

JGFFFT 59.032 61.008 59.745 59.727 59.

JGFSparseMatmult13.197 12.637 12.497 12.397 12.383.167 12.497 11.697 9.637 9.1¥3.103 12.554 12.417 12.319 12.3188.073 12.417 11.633

.989 58.926 58.188 56.943 56.948.951 60.887 59.65 59.632 59.6328.909 58.847 58.124 56.904 56.904

9.614 9.594

JGFRayTracer 37.797 38.87 37.645 37.53 37/83.796 37.686 37.537 31.56 31|237.522 38.563 37.374 37.263 37.268.521 37.414 37.269 31.472 31.152
SciMarkSOR 58.13 5527 57.22 56.94 56.957.24 52.24 51.93 51.93 51/9358.22 55.332 57.301 57.018 57.0187.321 52.271 51.958 51.958 51.958

SciMarkMonteCarl¢20.601 21.132 21.372 21.472 21

232 19.626 18.322 18.322 18.3220.645 21.181 21.423 21.524 21.5220.272 19.66 18.343 18.343 18.343

SciMarkLU 23.02 2273 23.02 23.02 23;. 22.04 21.16 20.04 20.04 20/023.061 22.768 23.061 23.061 23.0622.071 21.182 20.051 20.051 20.051

Table 6: DLA characterization over the number of CPUs; results arecomsis and they are the
total execution time of the compiler

JIT CPU DLA2 CPUs DLA4 CPUs \
Benchmark 1] 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
JGFArith 171.96182.684 137.147 129.214 129.15 129.15 129.15 129.15 1291604 138.745 130.8 129.171 129.171 129.171 129.1717P9.
JGFLoop 6.774 7.257 4.247 4.002 4 4 4 4 49.817 4503 4.317 4.003 4.003 4.003 4.003 4.003
JGFCast 21.302 22.744 16.492 15.538 15.53 15.53 15.53 15.53 1528254 17.744 16.55 15.539 15.539 15.539 15.539 15.539
JGFAssign 167.65%183.761 150.826 136.197 136.08 136.08 136.08 136.08 1200291 152.082 137.396 136.126 136.126 136.126 136.12623
JGFheapsort 58.022134.438 57.497 54.902 54.268 54.213 54.213 54.213 5412698 57.372 54.79 54.266 54.204 54.204 54.204 54.204
JGFFFT 66.561171.745 62.374 57.168 56.944 56.943 56.943 56.943 5498275 62.123 57.047 56.904 56.904 56.904 56.904 56.904
JGFSparseMatmult 17.439 28.521 13.339 9.647 9.617 9.617 9.617 9.617 9.67721 13.214 9.635 9.594 9594 9594 9594 9.594
JGFRayTracer 51.91161.373 50.607 40.803 37.476 36.851 35.915 34.353 B72H88 49.351 39.878 37.376 36.839 35.894 33.432 31.152
SciMarkSOR 61.342 89.431 57.188 52.013 51.93 51.93 51.93 51.93 5198851 57.176 52.013 51.958 51.958 51.958 51.958 51.958
SciMarkMonteCarl 39.3 4228 20.875 18.34218.32218.32218.322 18.322 18.323.53 20.851 18.343 18.343 18.343 18.343 18.343 18.343
SciMarkLU 31.131 35.797 23.142 20.065 20.04 20.04 20.04 20.04 2034953 23.127 20.065 20.051 20.051 20.051 20.051 20.051

optimizations. A single thread is used both for compilato execution, while a par-
allel one samples the execution and triggers aggressiven@tation of “hot” methods.

While this paper focuses on the DLA technique itself, corgumioptimization is just
as easily implemented in a DLA compiler as in a traditiondl 8 method that needs
recompilation is treated as a new method by the DLA compiler.

Selective Compilatiois used to minimize compilation overheads while still aghie
ing the largest part of the beneficial effects of JIT comlatThe Sun Microsystems
Java HotSpot Virtual Machine [24] runs both an interpretet a compiler, the latter
invoked on hot-spots [18]. In [1], an evaluation of seveealhniques fohot spotde-
tection is presented. The main difference between DLA arecBee Compilation is
that the former aims at predicting in advance which methedshat spot and which
not, both hiding the compilation time and ensuring good ip&iinary code. More-
over, DLA compilation is based on prediction techniques #ralyzes the static code
properties, even though they are applied dynamically; emsaly, selective compilation
is mainly based on dynamic profiling, which requires codérimeentation. However,
the two techniques could be adapted to work together.

Adaptive OptimizatiomergesContinuous Program OptimizatiandSelective Com-
pilation. A complete survey can be found in [2], while further considi®ns are pre-
sented by Kulkarnyt al. [15]. This approach exploits a dedicated thread to detetct ho
spots and optimize them. The optimizer thread is run asymdusly w.r.t. the execu-
tion flow. In a multiprocessor environment, the optimizatione can be masked.

Background CompilatiofiL4] is directly related to DLA compilation. Optimization
is performed on dedicated hardware, on the base of an @fgnofiling phase. If a

method still lies into the optimization queue at its invadoat lazy compilation is em-
ployed. This is the main difference w.r.t. DLA compilatidfowever, these techniques
could be coupled since DLA compilation is orthogonal w.ghamic code profiling.
A more distantly related approach has been proposed in [i&jlving the use of a
compilation thread to guarantee an upper bound to the otionpaf processor by the
compiler by means of earliest deadline first scheduling.

Another work partially matching the DLA compilation is pezdged by Unnikrish-
nanet al. in [25]. Multiple threads on multiple processors re-cora@hd optimize in
advance those code portions with high chances to be exesobedor requiring further
improvements. The main difference w.r.t DLA compilationtiat two kinds of run-time
information are required in this case: the sampling of trecakon trace and the profil-
ing of properties such as time or energy consumption. Costeumentation is needed
to collect this information, which would impact the perfante. Moreover, a method
is only optimized after it has been invoked several times.

To be really effective, the DLA compilation has to follow aepise prediction
model, described in Section 2 and based on the assignmergriffactors to the ver-
tices and the arcs of a call-graph portion. These are cordputhelL ook Aheadhase
on the base of structural parameters. State of the art byanechiction techniques are
described in [19,9, 5]. An approach for fast hot spot estiomédetection is reported
in [1]; another method-time-complexity evaluation can berfd in [17]. Sophisticated
techniques for optimization profit estimation are desatilng[26] and [4].

Last but not least, some considerations on polymorphism @ l@guages are
needed, since we claim that DLA compilation is most effecfior those applications
characterized by large static and dynamic call graphs,rimgef number of methods.
These call graphs are typical of OO application, as also wingd in the DaCapb
benchmark suite [11]. Polymorphism introduces an unagstan method naming, thus
making the run-time alias analysis a costly but effectiviéérogzation, as pointed in [22,
8]. On-line method versioning explicit the uncertain oniethod to invoke producing
several versions of the same method.

6 Conclusions

We have introduced the DLA compilation technique, covethgpretical and practical
problems related to it and showing how DLA compilation carakgowerful technique
to reduce the impact of dynamic compilation time and to gateehigh quality native
code. Its effectiveness proves to be strictly related tathikty both to correctly predict
the execution flow and to apply the right set of optimizatiotm&ach code region. A
more precise matching of the DLA compiled methods set toxkewion trace directly
results into a reduction of the compilation delay, while dép¢imization of the hot spots
should guarantee the execution of good quality code. Onabe Grande and SciMark
benchmark set (not a favourable one, since it has a redueedfymlymorphism) we
obtain an average speedup of 15%, and an average reductlmnaferhead to less than
1% of the JIT compilation time. Itis to be expected that theddits of DLA compilation

1 We do not take DaCapo benchmarks into consideration in the experinegatahtion because
ILDJIT does not support generics at this time.

will be higher for applications characterized by large ¢gaiphs, which are typical of
Object Oriented highly polymorphic applications. Thish# investigated in the future.

References

1. G. Agosta, S. Crespi Reghizzi, P. Palumbo, and M. Sykora. Sedemtimpilation via fast
code analysis and bytecode tracing.SAC '06: Proceedings of the 2006 ACM symposium
on Applied computingpages 906—911, New York, NY, USA, 2006. ACM.

. M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. Av8urof Adaptive Opti-

mization in Virtual MachinesProceedings of the IEER3(2):449-466, Feb 2005.

. J. Aycock. A Brief History of Just-In-TimeACM Comp. Survey85(2):97-113, Jun 2003.

D.F.Bacon, S. L. Graham, and O. J. Sharp. Compiler Transttomns for High-Performance

Computing.ACM Computing Survey26(4):345-420, 1994.

. T. Ball and J. R. Larus. Branch Prediction For FreeSIGPLAN Conference on Program-

ming Language Design and Implementatipages 300—-313, 1993.

BEA JRockit: Java for the enterprise technical white paper, 2006.

S. Campanoni, G. Agosta, and S. Crespi Reghizzi. A parallel dignemmpiler for CIL

bytecode SIGPLAN Not.43(4):11-20, 2008.

. J. Dean, D. Grove, and C. Chambers. Optimization of Object-OridAtegrams Using
Static Class Hierarchy Analysitecture Notes in Computer Scien®&2:77-101, 1995.

. B. L. Deitrich, B.-C. Cheng, and W.-M. W. Hwu. Improving Static Bch Prediction in a
Compiler. InIEEE PACT pages 214-221, 1998.

10. Michael Dunlavey. Performance tuning with instruction-level cesived from call-stack

sampling.SIGPLAN Not.42(8):4-8, 2007.

11. S. M. Blackburret al. The DaCapo benchmarks: java benchmarking development and anal-
ysis. INOOPSLA pages 169-190, 2006.

12. Timothy Harris. Controlling run-time compilation. In Procedings of the IEEE Workshop
on Programming Languages for Real-Time Industrial Applicatigrages 75-84, 1998.

13. T. Kistler and M. Franz. Continuous program optimization: A caseystldCM Trans.
Program. Lang. Syst25(4):500-548, 2003.

14. C. J. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing tletead of dynamic compi-
lation. Software Practice and Experienc&l(8):717—-738, 2001.

15. P. Kulkarni, M. Arnold, and M. Hind. Dynamic compilation: the benefitearly investing.

In VEE, pages 94-104, 2007.

16. J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis andettgyment of Java
Grande benchmarks. IAVA '99: Proceedings of the ACM 1999 conference on Java Grande
pages 72-80, New York, NY, USA, 1999. ACM.

17. D. Le Metayer. ACE: an automatic complexity evaluath€M Trans. Program. Lang. Syst.
10(2):248-266, 1988.

18. M. Paleczny, C. A. Vick, and C. Click. The Java HotSpot Servenfiter. InJava Virtual
Machine Research and Technology Sympos2061.

19. J. R. C. Patterson. Accurate Static Branch Prediction by Value RRnogagation. I18I1G-
PLAN Conf. on Programming Language Design and Implementgtiages 67—78, 1995.

20. R. Pozo and B. Miller. http://math.nist.gov/scimark2. SciMark benchma

21. T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, WsRam, and S. A. Watterson.
Toba: Java For Applications, A Way Ahead of Time (WAT) Compiler Pioc. of the Third
Conference on Object-Oriented Technologies and Systhmsl997.

22. D. Rayside. Polymorphism is a ProblemPemel on Reverse Engineering and Architecture,
CSMR’02 Mar 2002.

23. Kazuyuki Shudo. Performance comparison of java/.net rustime
http://www.shudo.net/jit/perf, 2005.

24. Sun Microsystems Java team. The Java HotSpot Virtual Machinke 1v1l

25. P. Unnikrishnan, M. Kandemir, and F. Li. Reducing dynamic cortipitaoverhead by over-
lapping compilation and execution. ASP-DAC '06: Proceedings of the 2006 conference
on Asia South Pacific design automatipages 929-934, Piscataway, NJ, USA, 2006. IEEE.

26. M. Zhao, B. R. Childers, and M. L. Soffa. An approach towamfipdriven optimization.
ACM Trans. Archit. Code Optim3(3):231-262, 2006.

~o o hw N

©o© o

