
Static Memory Management

within Bytecode Languages

on Multicore Systems

Simone Campanoni

Harvard University

33 Oxford street

02138, Cambridge, USA

Email: xan@eecs.harvard.edu

Luca Rocchini

Dipartimento di Elettronica e Informazione

Politecnico di Milano

34/5 Ponzio

20133, Milan, Italy

Email: rocchini@elet.polimi.it

Abstract—Object-code virtualization, commonly used to
achieve software portability, relies on a virtual execution en-
vironment, typically comprising an interpreter used for initial
execution of methods, and a JIT for native code generation.
The availability of multiple processors on current architectures
makes it attractive to perform dynamic compilation in parallel
with application execution. The pipeline model is appealing for
the compilation tasks that dynamic compilers need to perform,
but it can bring deadlock issues when static memories are
exploited by the running program. This research suggests a
solution that both solves the mentioned problem and reduces the

unnecessary compiler threads used to handle static memories.
The proposed solution is a self-aware runtime system that both
it is able to detect/avoid deadlocks and it adapts the number
of compilation threads needed to handle static memories to the
current workload.

I. INTRODUCTION

Software portability suggests the generation of portable

intermediate binary code, that remains independent from the

specific hardware architecture and is executed by a software

layer called virtual machine (VM). A virtual machine provides

an interface to an abstract computing machine that accepts the

intermediate binary code as its native language; in this way,

the virtualization of the Instruction Set Architecture (ISA) is

performed.

The first generation of VMs was entirely interpreted: they

interpreted byte-code [6], [3], [10], [12] rather than compiling

it to machine code and executing directly the machine code.

This approach, of course, did not offer the best possible

performance, as the system spent more time executing the

interpreter than the program it was supposed to be running.

These first VMs quickly fell into disuse for their slowness.

The next generation of VMs used just-in-time (JIT) [19],

[2], [15], [1] compilers to speed up the execution, by exploiting

more memory resources. Strictly defined, a JIT compiler

translates byte-code into machine code, before the execution,

in a lazy fashion: the JIT compiles a code path only when it

knows that code path is about to be executed (hence the name,

just-in-time compilation). This approach allows the program

to start up more quickly, as a lengthy compilation phase is not

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

Compile (TH2)

Compile (TH1)

Execution

 m
1

 m
1

 m
2

 m
2

 m
3

 m
5

 m
3

 m
2

 m
4

 m
4

 m
6

 m
5

 m
6

 time

P3

P2

P1

Fig. 1. An ideal case. Each invoked method has already been
compiled and optimized. .

needed before execution beginning. The JIT approach seemed

promising, but it presented some drawbacks: JIT compilation

removes the overhead due to the interpretation at the expense

of some additional startup cost, and the level of code opti-

mization is mediocre. To avoid a significant startup penalty for

portable applications, the JIT compiler has to be fast, which

means that it cannot spend much time in optimization. For this

reasons, researches proposed several approaches to find a good

trade-off between the time spent to compile the code and time

spent executing it [18], [8]. Moreover, the performance of JIT

compilers is still lower than that of native code produced by

static byte-code compilation [17], or Ahead Of Time (AOT)

compilation.

After JIT compilers became widely used, multi-core tech-

nology emerged in high-performance architectures. Such ar-

chitectures need specifically designed multi-threaded software

to exploit all the potentialities of their hardware parallelism.

Recently, a new generation of virtual machines, called

Dynamic Look-Ahead (DLA) compilers [5], has been intro-

duced. These dynamic compilers rely on a software pipeline

architecture for compilation, optimization and execution tasks.

This speeds up the execution by exploiting the parallelism

provided by the multi-core technology to produce optimized

Fig. 2. Compilation pipeline model. The languages used within the
pipeline are: BC - the input bytecode language of the compiler, IR
- the intermediate representation used by the compiler and Machine
code, which depends on the underlying platform.

code. Strictly defined, a DLA compiler translates and opti-

mizes byte-code looking ahead of the execution in order to

both anticipate the compilation before the execution asks for

it, and to produce optimized code. As [5], we consider a

multiprocessor environment where in the best case scenario,

there is no compilation overhead, because compilation fully

overlaps with execution and methods are already compiled

when they are invoked (see Figure 1).

The pipeline model is appealing to carry out compilation

tasks that dynamic compilers, like DLA, need to perform, but

it can bring deadlock issues when static memories are used by

the running program. This paper proposes a solution to this

problem, which is also able to reduce unnecessary compiler

threads.

The rest of the paper is organized as follows. Section II

describes the pipeline execution model, which targets multi-

core architectures. This section describes also DLA compilers,

which heavily exploit this model. After the description of the

problem of initializing static memories, Section III introduces

both an already introduced solution for single-threaded com-

pilers and the solution proposed in this paper, which is suitable

for compilers that rely on the pipeline model. Section IV

provides details on the evaluation of the solution proposed.

Finally, Section V concludes the paper.

II. PIPELINE EXECUTION MODEL

The pipeline model exploits the parallelism available across

compilation tasks within both dynamic and static compil-

ers [5], [4].

The delay spent within each compilation stage depends on

characteristics of the specific method that we are considering

(e.g. number of instructions, Control-Flow-Graph, etc. . .); for

this reason, the order of the methods that enter to the pipeline

may differ w.r.t. the output order. This effect has to be

considered both to avoid deadlock within the compilation

pipeline and to ensure that a method leaves the pipeline only

when it is ready to be executed (i.e., both available in machine

code and the static memories used by it have been initialized).

As shown in Figure 2, there are 4 stages within the

compilation pipeline; the first translate a method from the

input bytecode (e.g. Java, CIL, etc. . .) to the intermediate

representation used by the compiler, say IR. The second

stage optimizes the code by exploiting the language IR (i.e.,

translation from IR to IR). The third stage translates a method

to the machine code of the underlying platform (e.g. Intel

x86, ARM, etc. . .). Finally, the last stage initializes the static

memories that can be read or write (used) by the method in

the pipeline.

Every stage of the pipeline is composed by a set of

parallel threads, which are hereafter called compiler threads.

Moreover, compiler threads that compose the last stage of the

pipeline are called static threads because they are in charge

to initialize static memories (see Section III).

An example of usage of the pipeline model within dynamic

compilers is the Dynamic Look-Ahead compilation (DLA) [5],

which is following described.

A. Dynamic Look-Ahead compilation

Dynamic Look Ahead (DLA) [5] is a recent compilation

technique, which aims to mask as much as possible the

compilation delay by overlapping the compilation efforts. As

Figure 3 shows, this technique predicts at runtime where the

execution is going to go and it starts the compilation of parts

of the application code before the execution asks for it.

This model is based upon the use of two priority queues

(see Figure 4) (a low priority one and a high priority one) and

on runtime code profiling of the bytecode application. Most

information comes from the Static Call Graph (SCG): it is the

graph where each node represents a method of the program,

and two nodes mi and mj are linked by a directed arc mi →
mj if mi can invoke mj . Even if the information of the SCG

is static (therefore it exclusively depends on the source code of

the program), the dynamic compiler does not know all of the

SCG immediately: it gets to know it a portion at a time, while

execution takes place. For this reason, the graph is defined

Dynamically Known Static Call Graph (DKSCG).

Each time a method m is compiled, all the methods mi

it can invoke are candidates for being executed in the near

future.

Let γ(m,mi) be the weighted distance between m and mi.

We define the Look Ahead Region as

LAR = {mi | γ(m,mi) ≤ Thr}

where Thr is an implementation-dependent threshold.

IR−>IR

IR−>IR

IR−>IR

IR−>IR

BC−>IR

BC−>IR

DLA

DLA

IR−>Bin EX

Ram

invoke

Fig. 4. Internal organization of a DLA compiler. BC is the source bytecode (CIL) and ovals are the internal threads of the compiler

Fig. 3. Look-Ahead-Region of DLA compilers

It is worth noting that the distance has to be weighted to take

into consideration the probability of executing each method.

The weight of the arc a = (mi,mj) is defined as f(1
λ
, δ)

where f is a monotonic function of its parameters, λ is the

likelihood of invocation of the method mj from mi, and δ is

the estimated time distance between the execution of the first

instructions of mi and of mj if the a arc is taken.

Methods in the LAR are added to the low priority queue

to be precompiled, in an order depending on their execution

probability. If during the execution of the program a not yet

compiled method is invoked, a trampoline is taken, that calls

an internal function of the compiler which will add the called

method to the high priority queue (together with methods

potentially invoked by it), in order to immediately compile

it and resume the execution of the program.

As it can be seen, in an ideal situation, the high priority

queue should never be used, and all the methods should

already be ready when needed, thus completely masking out

the delay introduced by JIT execution. However, it may happen

that a wrong prediction leads to the need to insert a method

in the high priority queue, or that compilation delay makes

necessary to move a method from the low priority queue to

the high priority one.

III. HANDLING STATIC MEMORY

Previous sections describe how the pipeline model can be

used within dynamic compilers in order to better schedule

compilation tasks on multiprocessor platforms. With or with-

out a pipeline model, handling static memories can bring

deadlock issues (see Section III-A).

In order to initialize static memories, bytecode systems like

the Common Language Infrastructure (CLI), which includes

the CIL bytecode [9], rely on special methods; those need to

be called by the runtime system (i.e., the dynamic compiler).

Hence, the dynamic compiler is in charge to execute these spe-

cial methods before the first use of their associated memories,

even if there is no explicit call to them within the bytecode

program.

The standard that describes the bytecode system provides

the rules to follow to identify these special methods. For

example, ECMA-335 [9] standard sets the names of these

methods equal to “cctor”. Hence, the method that is in charge

to initialize the static memory of a class A is A.cctor. This

paper assumes that for every method m, there is a set of

methods M (which can be empty) that have to be compiled

and executed in order to initialize the static memories that can

be read or written by m.

The solution proposed by this paper to the problem of

handling static memories is composed by two self-aware

components: a runtime ables to detect and avoid deadlocks

and a new algorithm that adapts the number of static threads

based on the runtime workload.

After the description of the deadlock problem (see Sec-

tion III-A) and its already proposed solution for single-

threaded compilers [9] (see Section III-B), this section intro-

duces our new approach, which targets multi-threaded com-

pilers (see Section III-C).

A. Deadlock issues

The following example highlights the deadlock problem

brought by handling static memories. Let s1 and s2 be two

static memories, and let they need each other. In bytecode sys-

tems, if there is a dependences cycle like the one considered,

Fig. 5. Algorithm used to initialize static memories without having
a compilation pipeline.

the language guarantees correctness by letting to the compiler

the freedom to choose the first memory to handle from this

cycle. In our example, the compiler can start initializing s1
or s2. For this reason, whenever the compiler is composed by

one thread, a simple algorithm is able to fix deadlock issues

by checking these dependences cycles (see Section III-B).

Let us consider the multi-threaded case when the pipeline

model is used. Consider a compiler thread t1 that is going to

initialize s1; t1 locks s1 and it requests the compilation of the

necessary methods, say M1. Eventually, this compilation leads

to the initialization of s2 (due to the dependence between s1
and s2), which is performed by another thread, say t2 (due

to the pipeline model). t2 requests the compilation of the

necessary methods, say M2; eventually, this compilation leads

to the initialization of s1 (due to the dependence between s2
and s1), which leads to a deadlock. Notice that t1 cannot mark

s1 as “initialized” when it requests the compilation of M1.

B. Single-threaded compilers

In this case, there is no compilation pipeline and the thread

that requests the compilation of a method m is the same one

that effectively performs the compilation, initializes the static

memories used bym and restarts the execution of the produced

code. Notice that even if the compiler is not composed by

different threads, the bytecode program can be; hence, a not

trivial algorithm to avoid deadlocks is necessary.

Figure 5 shows the solution proposed in [9] to initialize

static memories for single-threaded compilers, which is fol-

lowing described. In the case a static memory is not marked

as “initializing” (i.e., there is no other thread that is initializing

this memory), the current thread marks it before doing it

effectively. On the other hand, if this memory has been

marked, (i.e., someone is already initializing this memory),

an additional check is needed in order to detect a possible

deadlock (by checking if there is a dependences cycle, see

Section III-A). If there is no possibility of deadlocks, the

current thread waits the initialization of the memory performed

by the other one; otherwise, it returns to the execution of the

program.

C. Multi-threaded compilers

A new solution is necessary to handle static memories for

multi-threaded dynamic compilers that exploit the pipeline

model described in Section II. The pipeline model makes

the identification of deadlocks harder w.r.t. single-threaded

compilers.

This section starts by describing the algorithms imple-

mented within the compilation pipeline needed to ensure that

static memories are initialized before their first use. Finally,

this section provides information about how the compiler can

adapt the number of threads based on the current workload

(e.g. how to increase, decrease, the number of threads needed

to initialize static memories). Increasing and decreasing this

number is necessary in order to avoid deadlocks: every time

there is no free static threads in the pipeline, new ones have

to be created (see Section III-C2 for further details).

1) Algorithms: The compilation pipeline provides two

types of methods compilation: synchronous and asynchronous

compilation. Synchronous compilations return to the callee

as soon as the input method is compiled (i.e., ready to be

executed). On the other hand, the asynchronous version returns

to the callee as soon as the input method is inserted to the

compilation pipeline.

Both compilation types require new algorithms to handle

static memories. These algorithms are introduced both within

pipeline stages and within insertion routines (routines in

charge to insert methods to the compilation pipeline). These

algorithms exploit a directed graph called waiting graph W in

order to keep track of both which thread is waiting for which

method (edges from a thread t to a method m) and which

thread is in charge to execute which method (edges from a

method m to a thread t). The waiting graph W is used in

order to detect, and therefore avoid, deadlocks as following

described.

Synchronous insertion of methods. There are two types of

threads that can insert methods to the compilation pipelines:

the ones that are in charge to execute the code dynamically

produced and static threads (see Section II).

When a method m is inserted, the type of the thread of the

callee is checked as described in Figure 6: if this thread is not

static, the insertion of m is provided in the obvious way: m

is inserted and the thread yields the processor till both m is

available in machine code and the necessary static memories

have been initialized (i.e., m is ready to be executed). On

the other hand, if the callee is a static thread, then m is

checked if it is already within the pipeline or not. If m was

not already inserted, the information that the callee thread

needs m is inserted within the waiting graph W , m is inserted

to the pipeline, the number of threads available to initialize

static memories is decreased and the callee thread yields the

processor till m will be ready to be executed. As soon as m

becomes executable, the callee thread is waked up, it increases

the number of static threads and it removes the information

Fig. 6. Algorithm used to decide what actions should be performed
in order to satisfy a request to insert a method into the compilation
pipeline synchronously.

that it is waiting for the methodm fromW . On the other hand,

if m was already inserted to the pipeline, then it means that

some thread is translating it because m is not yet ready to be

executed (check performed at the beginning of the algorithm,

see Figure 6). For this reason, the callee thread cannot insert

m to the compilation pipeline; instead, it waits till m will be

ready to be executed.

Waiting m could lead to a deadlock in some situations

like the following one: a static thread ti is executing the

code to initialize the memory used by the method mi and

this execution is stopped to wait the compilation of another

method, say mj (which is therefore inserted synchronously to

the compilation pipeline). When mj reaches the last stage of

the pipeline (ti is still waiting for it), another static thread, say

tj , starts running the code to initialize the static memory used

by mj , which leads to the method mi. The static thread tj
tries to insert mi to the pipeline, which is still inside, and if it

would wait for it, there will be a deadlock (i.e., ti is waiting

for tj and vice versa).

For this possibility of deadlocks, a check is performed

within the graph W : if by inserting the edge (t,m) a cycle

is created, then the thread t cannot wait for m; instead, the

thread t waits only that m is available in machine code (i.e.,

it waits till m leaves the translation and optimization stages),

it makes m callable by replacing its trampolines [14] and it

Fig. 7. Algorithm used within the last pipeline stage.

leaves the pipeline.

On the other hand, if there is no risk of deadlocks, the

current thread adds (t,m) to the waiting graphW , it decreases

the number of static threads, it waits the compilation of m and

it increases back this number, and also it removes (t,m) from
W , before leaving the pipeline.

Asynchronous insertion of methods. In order to start the

compilation of some methods before the execution asks for it

(see Section II-A), an asynchronous version of the insertion

procedure is provided. Whenever a method m is inserted, the

routine checks if m is ready to be executed and, if this is the

case, it returns to the callee. On the other hand, if m needs to

be compiled, it is inserted to the compilation pipeline and the

control is returned back to the callee.

Translate and optimize the code. Translations from the

input bytecode (BC) to the intermediate representation (IR),

from IR to the machine code as well as code optimizations are

handled by getting the method m from the upstream pipeline

stage, by performing the specific operation and by inserting

m to the downstream pipeline stage.

Initialize static memories. The last stage of the pipeline is

handled in a different way w.r.t. the first three stages (as shown

in Figure 7). First the information that the method m is going

to be translated by the current static thread t is recorded by

adding the edge (m, t) to the waiting graph W .

Remember that for any method m there is a set of methods

M to be executed in order to initialize static memories used by

m (see Section II); hence, methods in M have to be compiled

and executed before letting m leaving the pipeline. The thread

t inserts synchronously to the pipeline every method m′ ∈
M . When methods in M are ready to be executed, t starts

executing them once per time.

When t has compiled and executed every method m′ ∈ M ,

it removes the edge (m, t) from the waiting graph W and it

sets m as ready to be executed before removing it from the

compilation pipeline.

2) Adapt the threads number: This section describes how

to adapt the number of static threads to both avoid deadlocks

and improve the performance.

Avoid deadlocks. The number of static threads needs to be

unbounded for the following described problem. By contradic-

tion, let nt be the bound of the number of static threads. Con-

sider the case of a set of static memories S = {C1, . . . , C|S|},
where |S| is greater than the number nt. Assume that for

all memories Ci ∈ {C1, . . . , C|S|−1}, Ci needs Ci+1 for its

initialization andmi is the method that needs to be executed to

initialize Ci. Then, if C1 is the first memory to be initialized,

thread T1 (assuming the whole compilation pipeline is empty

at the beginning of the operation) is in charge to compile

and execute m1 and therefore it inserts the method into the

pipeline waiting for its compilation. Consequently, each thread

Ti, i ∈ [0, nt) will be used to held the method mi needed by

the initialization of Ci, and the whole system will exhaust the

set of available threads, but the method mnt
for Cnt

will need

the compilation of the method mnt+1, since nt < |S|. In this

case, there is no more static threads and the whole system

goes into a deadlock.

Performance. The compiler can keep growing the number

of static threads by adding new ones whenever is necessary

(this case is referred as “baseline” in Section IV). The problem

of this approach is that whenever the total number of compiler

threads is bigger than the number of cores of the underlying

platform (which is likely to be the case), the threads scheduler

can play a critical role for the performance of the system.

More threads are within a system, more critical is the OS

thread scheduler. For this reason, the compiler should both

keep enough threads to handle static memories and remove

threads that are not necessary anymore.

This paper proposes a solution (referred as “policy” in

Section IV) where the number of new created threads grows

exponentially every time there is no available static threads.

Moreover, a new thread is introduced within the compiler,

which wakes up every time the compilation pipeline is empty

and it reduces the number of static threads to 2: one for the

high priority compilation queue and one for low priority one

(see Section II-A).

IV. EXPERIMENTAL EVALUATION

We evaluated the solution proposed in this paper on a

commercial Intel-based system by extending the dynamic

compiler available within ILDJIT [4] compilation framework.

This dynamic compiler generates machine code for applica-

tions written in CIL [9] bytecode. To translate benchmarks

from C to CIL, we used the static compiler GCC4CLI [7].

After describing the hardware platform (Section IV-A) and

the benchmarks (Section IV-B) used to evaluate the proposed

approach, Section IV-C provides the obtained results.

 0

 0.2

 0.4

 0.6

 0.8

 1

b
a
sicm

a
th

b
itco

u
n
t

q
so

rt

su
sa

n
 co

rn
e
rs

su
sa

n
 e

d
g
e
s

su
sa

n
 sm

o
o
th

in
g

b
lo

w
fish

 e
n
c.

b
lo

w
fish

 d
e
c.

strin
g
se

a
rch

fft

ifft

sh
a

T
im

e
 (

S
in

g
le

-c
o

re
 =

 1
)

Compilation time

0.69

0.76
0.80

0.90 0.90

0.74

0.94 0.96

0.72

0.84 0.83 0.82

Fig. 8. Compilation time spent by the compiler with the compilation
pipeline relative to the case where the compilation is performed by
a single thread (no pipeline is used in this case).

A. Hardware Platform

To run our experiments we used an Intel R© CoreTM i7 with

6 cores, each operating at 3.33 GHz. The processor has three

cache levels. The first two are private to each core and are

32KB and 256KB each. The last level is 12MB and is shared

between all cores [16]. In our evaluation, both Turbo Boost

and Hyper-Threading were disabled.

B. Benchmarks

To evaluate our scheme we used applications from

the CBench benchmark suite [11], which is based on

MiBench [13]. While we attempted to consider the full spread

of workloads from the suite, we had to discard those that

failed to compile correctly under GCC4CLI [7]. We selected

the largest input available for each application to exercise the

benchmarks fully.

C. Evaluation

We evaluate the proposed approach by comparing the

compilation time spent with and without the pipeline model

implemented as described in [5] with the solution proposed

in this paper. Moreover, we provide the information about the

number of static threads allocated with and without the policy

described in Section III-C2.

Compilation time. Here we provide the time spent by the

dynamic compiler on blocking the execution of the program

given as input in order to compile the code (also called

perceived compilation time). We compare this time in two

cases: when the compilation pipeline is used and when the

compilation is performed by a single thread. We focus the

attention to the compilation time because it does not depend on

input data (as opposite for the time spent running the produced

code).

Figure 8 shows the compilation time reduced by introducing

the pipeline model to the dynamic compiler ILDJIT when it

runs on top of the 6-cores machines described in Section IV-A.

As expected, for almost every benchmark, the compilation

time is reduced thanks to the compilation pipeline and the

solution proposed in this paper, which avoid deadlocks and

reduces the proliferation of unuseful threads (next described).

On the other hand, for susan corners, susan edges, blowfish

enc. and blowfish dec. the compilation time is reduced only

by 10%, or even less. This is due to the code analysis

performed by the compilation pipeline (see [5] for further

details), which predicts wrongly where the execution is going

to go and therefore the order of methods compiled does not

match the execution order, which reduces the utility of having

a compilation pipeline.

Static threads. Here we provide the results achieved by the

policy described in Section III-C2, which changes the number

of static threads during the execution of the program. Figure 9

proves the importance of having a manager for these threads

by showing the difference on having or not the mentioned

policy. In this case, we consider the overall execution of the

dynamic compiler (i.e., time spent to both compile and execute

the code).

We can notice that most of the benchmarks need static

threads only during the first 6% of the overall execution. The

only exceptions are blowfish enc. and blowfish dec., which

require compilation efforts till the first 32% of the program

execution. This suggest that is not a good design choice to keep

every static thread alive for the entire life time of the program

execution. For this reason, the policy suggested in this paper

(see Section III-C2) minimizes the number of static threads

every time the compilation pipeline is empty. This approach

gives the ability to the dynamic compiler to remove static

threads when compilation tasks are not necessary anymore

(after the first part of the program execution), or when they

are not currently needed (within the first part of the program

execution).

Considering the behavior described in both Figure 9(a) and

Figure 9(c), we can notice that when there is a burst of usage

of static threads, our solution adapts the runtime, by growing

the number of static threads, faster than the baseline producing

therefore a better reactive system. This faster adaptation is due

to the policy used, which increases the number of new created

threads exponentially (see Section III-C2).

V. CONCLUSION

Dynamic compilation is often used for object-code virtu-

alization. The increasing availability of multiple processors

on hardware platforms suggests their exploitation to compile

code in parallel with the execution. The pipeline model is used

for this target within DLA compilers. This model can bring

deadlock issues when static memories are exploited by the

running program. This paper proposes a solution that makes

the compiler a self-aware system ables to detect and avoid

deadlocks. Moreover, results achieved show that this approach

reduces significantly the unnecessary compiler threads used to

handle static memories.

ACKNOWLEDGMENTS

Authors would like to thank Prof. Stefano Crespi Reghizzi

for his non-stop supporting to the whole ILDJIT team, Dr.

Aaron Smith and Prof. Marco D. Santambrogio for their

support to the ILDJIT project. Additionally, authors thank

the anonymous reviewers for their insightful comments. This

material is based upon work supported by both Microsoft and

HiPEAC. Any opinions, findings, and conclusions expressed

in this material are those of the authors and do not necessarily

reflect the views of Microsoft.

REFERENCES

[1] J. Aycock. A brief history of just-in-time. ACM Comput. Surv., 35:97–
113, June 2003.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In PLDI ’00: Proceedings of the ACM

SIGPLAN 2000 conference on Programming language design and im-

plementation, pages 1–12, New York, NY, USA, 2000. ACM.
[3] J. R. Bell. Threaded code. Commun. ACM, 16:370–372, June 1973.
[4] S. Campanoni, G. Agosta, S. Crespi-Reghizzi, and A. D. Biagio. A

highly flexible, parallel virtual machine: design and experience of
ILDJIT. Softw., Pract. Exper., 40(2):177–207, 2010.

[5] S. Campanoni, M. Sykora, G. Agosta, and S. Crespi-Reghizzi. Dy-
namic Look Ahead Compilation: A Technique to Hide JIT Compilation
Latencies in Multicore Environment. In CC, pages 220–235, 2009.

[6] K. Casey, M. A. Ertl, and D. Gregg. Optimizing indirect branch pre-
diction accuracy in virtual machine interpreters. ACM Trans. Program.

Lang. Syst., 29, October 2007.
[7] R. Costa, A. Ornstein, and E. Rohou. http://gcc.gnu.org/projects/cli.html.

GCC4CLI.
[8] V. C. de Verdiere, S. Cros, C. Fabre, R. Guider, and S. Yovine. Speedup

prediction for selective compilation of embedded java programs. In In

Proc. of EMSOFT, 2002.
[9] ECMA. ECMA-335: Common Language Infrastructure (CLI). Fourth

edition, June 2006.
[10] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. Vmgen: a generator of

efficient virtual machine interpreters. Softw. Pract. Exper., 32:265–294,
March 2002.

[11] G. Fursin. Collective Tuning Initiative: automating and accelerating
development and optimization of computing systems. In Proceedings of

the GCC Developers’ Summit, June 2009.
[12] E. Gagnon. A portable research framework for the execution of

java bytecode. PhD thesis, Montreal, Que., Canada, Canada, 2003.
AAINQ88471.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. In WWC ’01: Proceedings of the Workload

Characterization, 2001. WWC-4. 2001 IEEE International Workshop,
pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society.

[14] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the overhead
of dynamic compilation. Softw., Pract. Exper., 31(8):717–738, 2001.

[15] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,
S. Wallace, V. J. Reddi, and K. M. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In PLDI, pages
190–200, 2005.

[16] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. Memory perfor-
mance and cache coherency effects on an intel nehalem multiprocessor
system. In PACT, 2009.

[17] K. Shudo. Performance comparison of java/.net runtimes.
http://www.shudo.net/jit/perf, 2005.

[18] J. Whaley. Partial method compilation using dynamic profile informa-
tion. In Proceedings of the 16th ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, OOPSLA
’01, pages 166–179, New York, NY, USA, 2001. ACM.

[19] B.-S. Yang, J. Lee, S. Lee, S. Park, Y. C. Chung, S. Kim, K. Ebcioglu,
E. Altman, and S.-M. Moon. Efficient register mapping and allocation
in latte, an open-source java just-in-time compiler. IEEE Trans. Parallel

Distrib. Syst., 18:57–69, January 2007.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

basicmath

With policy
Baseline

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

bitcount

With policy
Baseline

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

qsort

With policy
Baseline

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

susan corners

With policy
Baseline

(d)

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

susan edges

With policy
Baseline

(e)

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

susan smoothing

With policy
Baseline

(f)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

blowfish enc.

With policy
Baseline

(g)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

blowfish dec.

With policy
Baseline

(h)

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

stringsearch

With policy
Baseline

(i)

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

fft

With policy
Baseline

(j)

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

ifft

With policy
Baseline

(k)

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6

T
h

re
a

d
s
 n

u
m

b
e

r

Percentage of time

sha

With policy
Baseline

(l)

Fig. 9. Static threads used with and without the policy described in Section III-C2.

