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Abstract

System-level design of WSNs includes the selection of 

the sensing nodes and their dissemination in the 

environment to be monitored. Many design choices 

have to be taken during this stage of the development 

of the application. The goal of this paper is to present a 

methodology to specify formally the desired behavior 

of the sensing application and to derive an optimal 

selection and placement of the network nodes. The 

approach is flexible and powerful, since it allows the 

designer to analyze the impact of clustering sensors 

onto a reduced set of boards (nodes) and to perform 

sensitivity analysis on parameters such as type of 

sensor, position of the nodes, observation time, 

presence of faults, etc. The paper introduces the 

concepts with some representative examples as well as 

by considering bigger use cases extracted from 

international projects. 

1. Introduction 
 

The technologies to realize wireless sensor networks 

(WSNs) are becoming so mature to enable a “LEGO-

like” approach to the deployment of applications. At 

the prices of consumer electronics, it is available the 

bare hardware and some middleware to simplify the 

building of applications [1] [2]. The attention of the 

designer can be moved towards system-level design 

issues, concerning the software side of the application 

and the organization of the sensors set. 

Despite of such simplifications, many other 

questions are still open or partially neglected, like 

optimization of overall costs (sensors, communication 

infrastructure, networks deployment, etc), feasibility 

analysis to understand suitability and effectiveness of 

the WSN against real application goals, lifetime 

(especially in the case of battery operating sensor 

nodes), robustness, etc [1]. The main need is an overall 

analysis and design framework, to enable a quantitative 

evaluation of the above properties, taking into account 

not only the networking-related issues or the 

distributed software system itself, but also the cross 

relations existing among the network topology, the 

nodes, the environment where the WSN is embedded 

and the events to be monitored, namely the real and 

comprehensive functional goal of the WSN. 

Since a few years, in literature appeared a number of 

proposals regarding simulation and deployment of 

WSNs. A not exhaustive list of the more mature and 

publicly available results is: TOSSIM, NS-2, Avrora, J-

Sim, SENSE, OMNeT++, VisualSense, SensorSim, 

EmStar, OPNET, ATEMU, Ptolemy, etc. Each of these 

proposals addresses with significant results some 

specific simulation or implementation aspects of WSN 

analysis, covering hardware, software and networking. 

However, from the best of our knowledge, none of 

them is addressing with a proper and formal extent the 

capability of the network to capture the events to be 

monitored. Their focus is frequently related to the 

optimization of the cost or to verify other properties 

like power consumption, robustness of the connection 

layer or the analysis of the models of computation 

(middleware). 

As far as the offline planning is concerned, which is 

the case this paper is focusing on, the proposals usually 

deal with only one single objective (e.g., coverage) or 

in some cases with lifetime in terms of power 

consumption. The sensing model is normally built 

around flat squares, and only few proposals cope with 

simple obstacles [3] [4]. From a more abstract 

standpoint, the problem of designing WSNs produced 

noticeable solutions identifying data-centric high level 

representations of the overall network behavior. For 

example, TinyDB [5] has been a pioneer effort 

enabling a SQL-based interface to the sensed data, 

while considering the need of achieving a power 

efficient processing and routing of query data. GSN [6] 

is another proposal based on XML and SQL as data 

specification and data manipulation languages, taking 

into account the problem of dynamic reconfiguration of 

the system. A declarative approach to the network 
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description has been considered in [7], where a dialect 

of Datalog is used for both data acquisition and 

transmission management. On top of such internal data 

representations, an engine to recognize events can be 

implemented. In [8], Symblic Aggregate 

approXimation (SAX) is used as an algorithm for 

detecting complex events by analyzing the patterns 

related to the sensed basic parameters. 

The scope of the work here presented is a wide class 

of applications where, in addition to the typical 

monitoring capabilities, it is also required a prompt 

highlight of the occurrence of particular events. Under 

these assumptions, our methodology to tackle the 

problem of designing a sensor network requires to: 

 specify the characteristics of the events of interest; 

 select a proper set of sensors tailored to catch such 

events; 

 embed the sensors in the environment so to ensure 

the capturing of the desired events while optimize 

some design goals, and 

 map the sensor set onto realistic WSN board 

architectures. 

 

First of all it is crucial to make sure a priori that it 

exists a feasible solution to the sensing problem with 

the accuracy required by the application. Then, by 

exploiting the capabilities of the SWORDFISH 

optimization engine [9], it is possible to derive the 

WSN by refining the architecture according to design 

constraints and user’s goals. Other important issues 

addressed in this paper are: 

 the possibility to forecast the impact of clustering 

many sensors onto the same board to keep under 

control the realization cost; 

 the availability of a toolset simplifying the 

sensitivity analysis of the WSN behavior, both 

disregarding or considering the need of grouping 

the sensors in boards. 

The paper is organized as follows. Section 2 

summarizes the overall architecture of SWORDFISH. 

Section 3 discusses the models of the events to be 

recognized and the design flow to create a WSN 

ensuring that all the events can be sensed. Some of the 

capabilities of SWORDFISH are discussed in Section 

IV, where it is shown how it is possible to explore the 

design space taking into account both abstract and 

functional requirements. Sections 5, 6 and 7 are more 

related to the physical constraints/optimizations of 

actual implementations. It is shown how the different 

sensors can be grouped in board to decrease costs 

while maintaining acceptable WSN performance 

degradation and the impact of design choices onto the 

capability of the WSN to tolerate temporary faults. 

Concluding remarks are drawn in Section 8. 

 

2. The design environment 
 

The architecture of SWORDFISH is conceived to 

support the users during the system-level design of the 

WSN-based application. The main problems addressed 

and an outlook of the toolset implementation are 

discussed in the following of this Section. 

 

2.1 Framework architecture and design flow 
 

The general architecture of SWORDFISH is 

depicted in Fig. 1. It is composed of a set of modules 

allowing the users to describe the main actors (sensors, 

network, events, and environment) and the design goals 

of the systems (properties of the network and 

optimization parameters). The coarse grain supported 

activities are: 

Verification. The goal is to determine the occurrence 

of a set of events (e.g., fire in a defined region, 

temperature and humidity over a certain threshold for a 

time window, etc.) by exploiting the potential of a 

given sensor network. 

Sensitivity Analysis. Evaluation of the impact of some 

variation of sensors, environment and network 

properties, onto the performance of a WSN. Examples 

are fault tolerance w.r.t. sensors and network errors, 

effect of sensor aging or moving of their location, 

influence of the observation time, etc. 

Design/Planning. Given a set of events and some 

constraints/goals, the task is to discover the optimal 

sensor network capable to identify the events while 

maximizing user-controlled goal functions. 
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Figure 1.  The modules composing SWORDFISH. 

The overall framework is encapsulated in a 

graphical user interface connecting all the different 

modules, whose main characteristics are outlined in the 

following (more details can be found in [9]). 

Environment Editor. This module allows defining a 

model of the environment where the WSN will be 

embodied, with graphical views of the associated 

physical parameters (e.g., temperature, humidity, 

3D-spatial representation, obstacles, etc) and the 
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possibility to specify constraints such as position and 

type of some sensors, if relevant for the users.  

Sensor Editor. It is the mean to obtain the analytic 

representation of the sensing nodes, which is a 

modeling of the relation existing between the sensed 

physical parameters and the signal produced. The 

model of the node includes additional information like 

cost, type of sensors, energy consumption, accuracy, 

speed, etc. 

Network Editor. In addition to the node features, a 

model of the available connection channels among 

nodes is specified. This model can cover both wired 

and wireless links, although current implementation 

focuses on wireless only. 

Predicate Editor. This editor allows the user to 

specify via logic formulas the properties to be verified 

in the case a given event occurs. This is of paramount 

importance to verify that a WSN is actually capable to 

argue if an event is recognized, or, dually, to select the 

proper set of sensors to recognize the events. Such a 

concept more abstract and powerful then a simple 

measurement-based analysis. 

Event Editor. The purpose of this editor is to 

support the description of the events to be captured in 

terms of variation of some physical parameters to be 

sensed, along with their timing characteristics. These 

models are flexibly implemented via software plugins. 

Simulation Kernel. It is the engine which, based on 

a simulation of the event occurring, modifies the 

configuration of the world model accordingly. This 

allows feeding the sensor node models with the real 

(location aware) data of the world, including their 

dynamics. Hence, both the physical parameters of the 

environment and the events to be monitored can be 

jointly modeled and verified by the Predicate Analyzer 

(Fig.1) 

Optimization Editor. It is an editor allowing the 

designer to specify and tune the goal functions and the 

formal model of the network properties/constraints. 

Planner. This is the main module for both 

verification and network design. It allows to formally 

verify that a given WSN is able to capture a set of 

events as well as to support the building and 

optimization of the overall network according to the 

selected policies and goals. 

The focus of this paper is on the sensitivity analysis 

and on some planning strategies enabled by 

SWORDFISH. Based on the application requirements, 

the first steps for the user are defining formally the 

events to be captured and possibly some optimization 

goals/constraints. Network properties and sensor 

behavior can be also specified, in the case of default 

settings are not considered suitable. According to the 

existing model of the environment, the events are then 

“fired” to get a profiling of the evolution of the 

physical parameters corresponding to the events. Such 

results are then used as a testbench to compare the 

performance of alternative WSNs in terms of sensing 

capabilities. Useful information for optimization can be 

gathered by analyzing the sensitivity of the network 

over the variation of parameters like observation time, 

clustering of sensors or temporary faults, as shown in 

the following sections. 

 

2.2 Software implementation 
 

The entire SWORDFISH software system has been 

developed in C under GNU/Linux (Debian 

distribution), using the following libraries: 

 XanLib library ver. 0.1.5: to manipulate data 

structures like hash tables, trees, pipes, etc. 

 Gtk library ver. 2.0: for the GUI development. 

 GNU C library ver. 2.3: to interface with the 

GNU system. 

 Flex: to make a lexical analysis of the user’s input 

describing the sensing goal. 

 Bison: to generate a parser for the grammar which 

describes the multi value logic used to express the 

sensing goal. 

 Libglut: for writing the world in a 3D vision. 

 Libgtkglext: to embed the openGL objects inside 

the GTK GUI of SWORDFISH. 

 Graphviz: to draw the direct graph representing 

the sensing goal written by the user and each of 

its derivatives.  

The software architecture is composed of five main 

modules (Simulator; Planner; Logic_manager; Sensors; 

Events) whose role is sketched below. 

Simulator has the goal to emulate the behavior of the 

supported physical events (e.g., a fire or an 

atmospheric phenomenon), while the Planner has the 

role to design the WSN by satisfying the input 

constraints.  

A crucial module is the Logic_manager, capable to 

manage the multi-value logic which is the base for 

writing the sensing goals and the constraints. Such a 

module is invoked by the Planner to calculate the truth 

of a predicate, as a result of certain spatial distribution 

of the sensors, as well as to calculate the derivative of 

the logic functions. 

Sensor is the manager of the sensor models 

implemented in SWORDFISH. It is realized via a 

standard interface based on dynamically loadable 

shared libraries (plugins). Thanks to this choice, it is 

allowed to manage efficiently a wide range of sensors 

with no impact on SWORDFISH code, since the only 

contact is through the functionality exposed by the 
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interface. Sensor models can be added incrementally as 

well as obtained interfacing other libraries, without 

changing SWORDFISH software. 

Events is in charge of managing the implemented 

available types of events. Its implementation is similar 

to Sensor, since it uses plugins to decouple the 

implementation of the events from the rest of the 

SWORDFISH software. 

The current version performs the design of WSNs 

with a dozen of predicates composing the SG and a 

similar amount of sensors with runtimes of less than a 

minute, running on a 1.8 MHz Centrino Laptop. Bigger 

WSNs (tens of predicates and sensors) requires 1-2 

minutes to produce the result. The execution time of 

SWORDFISH is considerably influenced by the time 

window (observation period) chosen by the user. 

 

3. Preliminary steps of the design 
 

The model of the environment is 3-D, so that each 

point is represented by using (x,y,z) coordinates 

belonging to a user-defined grid. Before starting the 

exploration of the WSN design space, there are three 

preliminary steps to be carried out: i) definition of the 

purpose of the network; ii) identification of the 

benchmark; iii) modeling of the hardness to recognize 

physical parameters corresponding to an event. 

The first activity turns to the definition of an overall 

Sensing Goal (SG) for the WSN, that is a multi-value 

logic formula composed of some predicates Pr 

(implemented via plugins), each corresponding to an 

event. For example Water(x, y, z, magn, trend) is a 

plug-in modeling the presence of water in the point 

(x,y,z), starting from a given magnitude and with a 

specified trend over the time. A predicate Pr is an 

instance of Water applied to a specific point. A catalog 

of plugins (e.g., Fire, Water, Humidity, …) is available, 

and its extension is straightforward. An example of 

sensing goal is (1). 

    SG = Water (3,2,1, 30, const) AND 

             Water (5,6,7, 20, const)   (1) 

Such SG means that the WSN has the goal to discover 

the concurrent presence of the events of having a 

certain amount (30 and 20) of water in two points 

(3,2,1), (5,6,7) of the environment.  

The second step is the characterization of the changing 

in the environment whenever the events occur, namely 

the identification of a testbench to evaluate the WSN 

performance. To this purpose, based on the (user 

defined) fp sampling rate of the environment simulator, 

a profiling stage is triggered by firing each one of the 

defined events, namely running the Pr-related plugins. 

At the end,  !(x,y,z), and  ! Pr of SG, all the data 

patterns are obtained. 

There are at least other two problems the designer has 

to face with during WSN system-level design. The first 

concerns the selection of the type of sensor, while the 

second is the sensors placement. In fact, the target is to 

discover a positioning of the sensors, maximizing the 

capability of the WSN to recognize the events, i.e. 

maximizing the SG. The former question impacts 

mainly on the feasibility of designing a WSN capable 

to recognize the events encompassed by the SG. The 

latter is related to the dissemination of sensors in order 

to enhance their possibility to satisfy the Pr composing 

the SG, i.e. improving the performance of the system. 

In the current implementation of SWORDFISH, we 

followed an approach producing results in the order of 

seconds, so as to actually enable sensitivity analysis. In 

Section 4 and Section 7, the main benefits of sensitivity 

analysis are addressed through some representative 

examples. 

Our first concern in the design flow is ensuring that a 

solution to the SG can exist, by using a proper set of 

sensors that is incrementally built up and significantly 

optimized by sharing sensors among the set of Pr 

(specified in the SG) to be verified. Then, this set of 

candidate sensors are placed in the environment taking 

into account the information coming from a 

configurable hardness function. In such a way, it is 

guaranteed to obtain a WSN formally satisfying the SG 

with a quasi-optimal cost, with runtimes in the order of 

a few seconds. 

As far the positioning of the sensors is concerned, we 

defined a hardness function Hard(x, y, z, Pr) modeling 

the difficulty in evaluating Pr in a given point (x,y,z).  

    Hard(x,y,z,Pr)= Hs(PPr,t)/ C{(PPr,t), Pr}  (2) 

Calling PPr the profiling output of Pr, i.e. the data 

pattern associated to Pr obtained during the initial 

profiling, Hs(PPr,t) depends on the type of sensor 

(corresponding model) and relates to the difficulty to 

recognize the event Pr within the time frame of a 

profiler sampling rate (1/fp). For example for a slow 

temperature sensor can be hard (or even impossible) 

recognizing T-ramps moving faster than its cutting 

frequency. The term C{(PPr(x,y,z), Pr} is the 

confidence to infer the truth of Pr based on the 

sequence of the physical variations defined via PPr. 

Of course, any positioning strategy for the sensors 

attempts to place the sensor where Hard is low, i.e. 

where it is easier and more reliable recognizing the Pr 

composing the SG. More formally, it is selected the Si 

to be assigned to the predicated Pj, such that 

| dSG/dPj |  ! Si available, is minimum. 
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The implemented algorithm actually starts considering 

only the models of the available types of sensors and 

the predicate Pr to be satisfied, with possibly additional 

constraints (e.g., cost figures) that can be provided by 

the users within the sensor plugins. Then, the minimum 

set of sensors capable to recognize physical parameters 

to satisfy all the Pr is discovered and initially allocated 

to the most relevant predicates (in the SG sense). Based 

on this initial allocation, that is a pre-condition to 

satisfy SG, the sharing of the sensor proceeds as 

described in the above example. The end of the process 

produces a solution employing the minimum set of 

sensors covering all the predicates, using a quick 

heuristic producing a configuration that in most of the 

cases it is also the absolute optimum.  

To represent how a given sensor is actually capable to 

capture its target events from a position (xp,yp,zp), a 

proper metric (3) has been defined, called confidence.  

Confidence = 1-(Hard (xp,yp,zp,Pr))/max Hard(x,y,z,Pr))  (3) 

Where Pr is the predicate corresponding to the event, 

Hard (xp,yp,zp,Pr) is the hardness calculated in the 

candidate point for the sensor positioning and max 

Hard (x,y,z,Pr) is the maximum hardness within the 

considered environment. Note that values of 

confidence closer to one means that the position of the 

sensor is approaching the best existing in the 

environment to satisfy Pr, while lower values 

corresponds to critical points; this latter case can 

trigger the search for a better positioning or the 

increasing of the sensor set cardinality. 

In summary, Fig.2 depicts the pseudo-code steps of the 

WSN planning implemented in SWORDFISH. 

 
1. Analysis of the inputs (sensing goal 

parsing and constraints processing) 

2. Storing of the initial condition for the 
environment simulation 

3. Profiling of the events composing the 
sensing goal (storing of the data for each 
physical parameters and point, given an 
observation window and a user defined 
sampling rate of the simulation) 

4. Computation of the hardness grid for each 
predicate composing the sensing goal 

5. for(numSensors=1; numSensors < maxSensors; 
numSensors++) { 

a) choice of the target predicate for the 
sensors (depending on numSensors and 
sensing goal) 

b) computation of the sensors positions 
(based on Hardness and numSensors) 

c) if (check_WSN()==OK) break} 

Figure 2.  Steps of the WSN planning strategy. 

4. Sensitivity analysis 
 

First of all this section shows some practical usages 

of SWORDFISH and demonstrates, by using simple 

examples, its flexibility and the value added even when 

the complexity of the application seems to be 

manageable. In this section we still consider abstract 

architectures with one sensor per node. Section 7 

figures out how similar analysis can be carried out also 

at board level, i.e. with architectures closer to real 

implementations. 

 

4.1 Sensor set and observation time 
 

This example shows the influence of the number of 

sensors and of the observation time onto the truth value 

of the sensing goal, namely the confidence on the 

capability of the WSN to correctly recognize the 

events. We considered a linear model for the sensor 

and the sensing goal (5) corresponding to the 

identification of three events. 

SG=Water(9,9,9) AND Water(0,0,0) AND Water(4,4,0)   (5) 

The analysis result is depicted in Fig.3, showing 

how vary the SG when changing the observation time 

(time windows) and the number of sensors. 

The obtained result reveals that using at least three 

sensors it is possible to realize a WSN capturing all of 

the three events disregarding the observation period. 

Conversely, using less than three sensors, the time 

window influences the performance. With two sensors 

the observation time must be grater than 3 seconds: 

such sensors (S0, S1) will be able to recognize more 

than one event with the following positioning: 

S0=(9,9,4), S1=(1,2,0). In such a case, S1 can capture 

most of the events Water(0,0,0) and Water(4,4,0), so 

that S0 and S1 can cover the entire SG. 
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Figure 3.  Influence of the numer of sensors and  time 
window on the Sensing Goal. 
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It is worth nothing that S0 is not positioned in 

(9,9,9), as in the case where more than three sensors 

are available. In fact, under this more severe 

“restrictions”, S0 contributes to the identification of the 

rest of the events, though its position denotes a major 

value added for Water(9,9,9). 

 

4.2 Impact of the sensor position 
 

To figure out the cross relation existing between the 

type of event and the position of a sensor, we 

considered two sensing goals (6) with a model of the 

sensor is still linear: 

 SG1 = Water(4,4,4);    SG2 = Fire(4,4,4);              (6) 

The value of SG1 has been computed considering 

the following space: X=[3..5], Y=[2..4] and Z=[0..3], 

with a time window of two seconds). The obtained data 

show that, to recognize a Water event, the sensor has to 

be located close to the point of interest.  

Conversely, for the Fire event, the positioning of 

the sensor seems to be less important w.r.t. the previous 

case. This result makes sense: it possible to recognize 

fire events even by positioning sensors far away from 

the critical area. Within the entire analyzed space for 

the positioning of the sensors (X=[4..8], Y=[4..7] and 

Z=[0..8]), SG2 has been always satisfied. 

 

4.3 Sharing of sensors 
 

This example addresses the search for a WSN 

capable to recognize an event with a scarce amount of 

resources (sensors). The user have to specify the max 

number of sensors, the min value of the SG considered 

acceptable and other data regarding the observation 

time window for the sensors. We have chosen the SG 

(7), corresponding to the presence of water on the 

ground in two positions: 

   SG = water(0,0,0) AND water(2,2,0), 

            with min SG=0.2                                           (7) 

Tab.1 reports the output of SWORDFISH (sensor 

position) along with the confidence for each 

predicated. In this simple case the SG is close to one, 

pretty over the 0.2 threshold. 

The truth value of the single predicates are similar 

and close to one (water(0,0,0)=water(2,2,0)=0.99999) 

so that the SG=0.998 is fairly acceptable. In summary, 

the system discovers an intermediate position for a 

single sensor (1,2,0) ensuring the meeting of the SG 

with sensor sharing. In the case our goal is modified (8) 

to recognize the presence of water in two points more 

distant as above and with an observation window of 5 

seconds, i.e.: 

   SG = water(0,0,0) AND water(9,9,9), 

            with min SG=0.2                                           (8) 

The system fails in using only one sensor and find 

out automatically a new WSN using two sensors, now 

satisfying the SG. Because of we have two sensors for 

two events, the suggested positioning of the sensors are 

obviously overlapped to the event locations (Tab.2). 

Note that Tab.2 highlights a (negligible in this case) 

contribution of S1 also to water(0,0,0) recognition. 

Such type of information can be useful to identify 

Achilles’ heel of more complicated WSNs, where the 

amount of sensors makes hard identifying their 

ordering of relevance in contributing to the overall SG.  

Table 1.  Positioning of the set of sensors. 

Sens Pos Confidence

  Water(0,0,0) Water(2,2,0) Total 

S0 (1,2,0) 0.999 0.999 0.998 

Table 2.  Solution with two sensors. 

Sens Pos Confidence  

  Water(0,0,0) Water(9,9,9) Total 

S0 (0,0,0) 0.9999 0.0 0.999 

S1 (9,9,0) 0.1 0.9999 0.999 

 

4.4 Influence of the type of sensor 
 

The WSN we are designing has the responsibility to 

report the presence of two different events (water and 

fire) having different sensing requirements. In 

particular, in our modeling environment sensing the 

water it is harder than recognizing the fire. The SG is: 

   SG = water(0,0,0) AND fire(5,5,0), 

            with min SG=0.4                                           (9) 

In this case, as shown in Tab.3, the positioning of 

the sensor is closer (0,3,0) to the water, because of the 

sensing of fire is considered easier than recognizing the 

water itself. In more complicated scenarios, but even in 

this simple case, the typical design approach to place 

the sensors in intermediate positions disregarding the 

type of events to be considered, does not allows to take 

full advantages from the WSN intrinsic capability. 

Table 3.  Influence of type of sensor on the  WSN 
placement.

Sens Pos Confidence 

  Water(0,0,0) Fire(5,5,0) Total 

S0 (0,3,0) 0.99 0.99 0.99 
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5. Modeling of nodes 
 

The output of the SWORDFISH-based feasibility 

analysis is a set of {sensor, position} tailored to 

optimize cost-effectiveness and performance (sensing 

goal) of the WSN. On the other hand, realistic design 

and deployment typically requires simplifying both the 

hardware and the architecture of the network, while 

maintaining effectiveness and performance.  

To cope with such problem, in the following section 

the PESCA (Pareto Efficient Solution Clustering 

Algorithm) approach is outlined. The goal of PESCA is 

to produce a quasi-optimal clustering of the sensors by 

identifying an optimal mapping of the sensor set onto 

boards, like those available on the market [2]. In 

general, each board hosting sensors includes the 

following sections: PCB/package; power supply and 

energy management; radio (RX/TX); 

control/processing Unit (CU); connectors/Interfaces; 

one or more sensors. Based on our experience in 

realizing PCB-level embedded systems and on market 

availability of sensing modules, we found reasonable 

adopting the model (10) for the cost of each board 

(node). 

 

"
#

$%$%#

sSensorType

j

jj NumSSCNKConstNodeCost
1

)()log(

 

 (10) 

 

Where, for each board, N is the overall number of 

sensors, NumSj is the number of sensors of a given type 

j, SensorTypes is the number of possible types of 

sensor, and SCj is a cost of a sensor of type j.  

In other words, there exist a variable cost which is 

related to the type and number of sensors in a linear 

manner and a processing cost that is logarithmic, due to 

the typical price trends of CPU and microcontrollers. 

Furthermore, the cost of PCB and packaging is less 

than linear against the number of sensors (close to a 

constant), while radio and power supply is fairly stable 

over a wide range of possible sensors cardinality.  

As far the cost function is concerned, to increase the 

generality over different suppliers, we partitioned the 

available sensors into classes, to capture their relative 

cost, instead of considering the absolute values. 

Concerning the cost of the network, we assume a 

constant value for wireless connections (typically 

built-in in commercial nodes).  

Actually, some influence of the network topology 

should be considered in the case of some gateway 

nodes, mastering hierarchies of sensors patches, were 

identified. In such a case there is an additional cost 

related to the wired connection or the use of other long-

range radio communication standards/modules (e.g., 

GPRS), but this analysis is not included due to the lack 

of space. 

 

6. Board-level design 
 

The clustering of the set of sensors identified by the 

SWORDFISH framework is a multi-stage process, 

including the following topmost activities: 

compatibility analysis between all the possible pairs of 

sensors; identification of the boundaries of the 

clustering problem (worst and best case); generation 

and evaluation of the candidate solutions. 

 

6.1 Compatibility graph 
At the beginning, the user (e.g., by accepting default 

settings) is required to specify constraints on the 

possible clustering of different sensors onto the same 

board. Based on these information, an Interference 

Graph G=<N,E> is built, where nodes n are sensors 

and an edge e among the nodes represents a possible 

sensor interference to be avoided. Note that the 

interference is not only related to the nature of the 

sensors, as specified by the user. In fact, two sensors 

can have no shared position where both sensors are still 

able to discover the associated set of events. This latter 

case can be discovered by using the Hard function; in 

fact, the Hardness of a point to discover two events e1, 

e2 is the sum of the Hardness of both sensors computed 

in that point. 

Once the interference graph is completed, it is possible 

to identify the compatibility graph G’, which is its 

complementary graph G’=<N,E’>, gathering all the 

feasible solutions. Note that any possible clustering of 

sensors, cannot but be a clique of the compatibility 

graph. In fact, all the sensors hosted by the same board 

must be cross-compatible. The next step is the 

computation of all the maximal cliques of the 

compatibility graph G’. Since this type of activity is 

recognized to be a NP-hard problem [10] we adopted 

some heuristics to speedup the computation. 

 

6.2 Coverage of the sensor graph 
 

To better understand the optimality of placing a certain 

group of sensors onto a board, we focused at the 

beginning on the boundaries solutions, considering the 

cardinality of the cliques (not their cost). At the lowest 

level, each sensor corresponds to a board. As far the 

best case is concerned, the biggest clique has been 

computed, and then the same action has been 

performed on the remaining graph, and so on. At the 

end we obtain a partitioning of the compatibility graph, 
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where its cliques are those clustering the maximum 

number of compatible nodes.  

The design space spanning between the two boundaries 

cases so identified, contains a number of possible 

solutions that is exponential with the sensor cardinality. 

We attacked the analysis of a so wide solution space 

through an heuristic structured into a pair of 

consecutive steps. 

1. Starting from the best case above described, 

solutions are generated by creating a new list of 

cliques where one sensor has been extracted from 

the biggest clique, to create a new single-sensor 

board. The same activity is then repeated, 

considering the biggest cliques at any iteration. At 

the end of such a process, a wide set of possible 

solutions is generated, ordered for relevance i.e., in 

terms of cardinality of the biggest clique. 

2. All the possible pairs of the above solutions are 

taken into account for possible merging, while 

verifying the compatibility (taboos) of the new 

sensor set. 

At the end of the second steps, the recombining of 

cliques not maximal in terms of cardinality, allows the 

optimizer to consider solutions more orthogonal, 

possibly characterized by a lower board-level cost.  

 

6.3 Selection of solutions 
 

This step takes into account the candidate WSNs under 

the Pareto standpoint. The task of the PESCA 

algorithm is to find out a solution to the multi-objective 

clustering problem, considering two metrics: the cost of 

the solution and the functional quality, i.e. its 

performance. The cost of a solution (set of boards) is 

evaluated through the cost model (10) described in 

Section 5, which is depending on the number and type 

of sensors associated with each partition. Concerning 

the performance, the badness of a solution is computed 

by exploiting the Hardness functions Hij(x,y,z) of the 

event i covered by the sensor j belonging to the same 

board. Thus, the hardness of the entire WSN is: 

    
"" &&

#
Ji ijWSNj

zyxHzyxH ),,(),,(
              (11) 

The badness of the WSN is evaluated, and its minimum 

corresponds to a point where the positioning of the 

board is optimal. This new location, which is shared by 

all the sensors on the same node, is the best to ensure 

that all the events associated with the sensors can still 

be captured after clustering. Note that the solution so 

discovered is a Pareto efficient solution. In fact, all the 

solutions “dominated” within the <cost, performance> 

optimization space of the WSN are discarded during 

the population of the design space. 

7. Experiments 
 

The PESCA approach and some capabilities to analyze 

the degradation of performance in the case of 

temporary faults have been considered. 

 

7.1 Mapping on boards 
 

Some validation scenarios extracted from multi-partner 

projects [11] [12] have been considered. Figure 4. 

reports the analysis of a complex WSN: SG of 16 basic 

predicates producing an optimal network with 18 ideal 

sensors. The plot reports the Pareto solutions and 

figures out the influence of the fixed costs (linked to 

the volume/standardization of boards) against the 

overall cost and performance (1/Hardness) of the 

clustered WSN. It is possible to observe the impact on 

performance and cost associated with the spreading vs 

clustering of sensors. By following such a quantitative 

analysis, the design driver may be not only the cost, but 

also the capability of the WSN to fulfill the initial 

application requirements. 

 

Figure 4.  Pareto frontier of the cost-performance 
tradeoff (varying the fixed cost of the board). 

7.2 Impact of temporary faults 
 

The analysis framework allows also to quantitatively 

put in evidence the impact of some design parameters 

onto the fault tolerance of the WSN. Let us consider 

the two examples reported in Tab.4 and Tab.5.  

Table 4.  Fault tolerance  vs sensor sampling rate. 

Fp\Sf  10 12 14 16 20 

0% 0.814 0.814 0.814 0.814 0.814 

10% 0.081 0.629 0.698 0.752 0.814 

20 % 0 0.316 0.358 0.391 0.65 

30% 0 0.14 0.165 0.184 0.44 

40% 0 0 0.065 0.075 0.211 

50% 0 0 0 0 0.089 

>50% 0 0 0 0 0 
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Both depict how the SG changes in the case of the 

probability Fp of temporary fault of one sensor, whose 

duration produces the loss of a single sample, varies 

from 0% to 100%. Gray regions correspond to SG 

greater than 0.5, but of course the choice of such 

threshold is up to the user. In both cases the time 

windows (Tw) to recognize the events is fixed to 2. 

Considering the minimum number of samples to 

correctly recognize the events (Smin) equal to 10, 

Tab.4 figures out the impact of varying the sampling 

rate Sf from 10 to 20 for a WSN with a SG composed 

of 6 predicates, each assigned to a separate sensor. It is 

manifest the capability of the network to tolerate 

increasing error probabilities as the sampling rate rises 

up. Tab.5 addresses a different analysis, where the 

number of predicates is still 6, but the number of 

sensors (#sens) ranges from 6 to the double of the 

predicates (12). As it can be seen, such redundancy 

(#sens>6) allows the WSN to tolerate significant fault 

probabilities, while maintaining high sensing goals. 

In summary, the framework significantly simplify a 

comparative (and quantitative) analysis of the solutions 

to enhance the fault tolerance of the WSN. 

Table 5.  Fault tolerance  vs # of sensors. 

Fp\#sens 5 6 8 10 12 

0% 0.814 1 1 1 1 

10% 0.081 0.533 1 1 1 

20% 0 0.131 1 1 1 

30% 0 0 1 1 1 

40% 0 0 0.74 1 1 

50% 0 0 0.45 1 1 

60% 0 0 0.26 1 1 

70% 0 0 0.13 0.888 1 

80% 0 0 0 0.609 1 

90% 0 0 0 0.403 0.51 

100% 0 0 0 0 0 

 

8. Conclusions 
 

The paper described the design methodology of 

SWORDFISH and on some aspects related to the 

sensitivity analysis. The presented approach is 

complementary to the typical simulation-based 

analysis, since its emphasis is on the system-level steps 

of the design, where a broad design space has to be 

extensively and efficiently explored, and on the formal 

modeling and verification of the WSN objectives. 

The obtained results are promising, and some of the 

verification and top-level analysis and design 

capabilities have been addressed by considering simple 

but representative examples and stressed with the use-

cases of [11] [12]. It has been shown how it is possible 

to optimize the WSN while ensuring that the original 

user’ goal has been fulfilled. The examples reveal that 

many side-effects of changing the behavior of the 

WSNs and sensor positioning (or clustering) produces 

significant changing in the sensing goal that are hard to 

be managed by a human designer without the support 

of a proper methodology and a toolsuite. At the same 

time, it becomes affordable the effort to quantitatively 

compare alternative solutions in terms of fault 

tolerance capability of the WSN. 
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