
Multi-Level Design and Optimization of Wireless 
Sensor Networks 

 

Simone Campanoni, William Fornaciari 
Dipartimento di Elettronica e Informazione 

Politecnico di Milano 
Via Ponzio 34/5, 20133 Milano, Italy 
{campanoni, fornacia}@elet.polimi.it 

 
 

Abstract—This paper proposes a methodology to off-line 
planning of WSNs (Wireless Sensor Networks) by addressing 
the problem in a multi-layer manner. At the sensor level a 
model is described to properly select and distribute the sensors 
in the environment. To optimize the cost and deployment of 
realistic WSNs, further design activities are proposed at an 
intermediate level, targeting board-level clustering of sensors. 
Finally, it is presented a methodology to hierarchically organize 
the set of sensors in patches with an additional gateway-level 
communication layer, to take into account also possible scaling 
of the application complexity. Particular emphasis is put on the 
cost modeling and on ensuring the correct behavior of the WSN 
against variation of parameters like sensor position, protocol, 
cost, etc.  

Keywords: Wireless Sensor Networks, System-Level Design, 
Cost-Performance Tradeoffs, Cost-Model, Design Frameworks. 

I.  INTRODUCTION 
A design flow spanning from the abstract specification of 

the WSN down to the node/network architecture, requires 
considering a number of multi-level optimization strategies, 
whose individual effectiveness can vanish if all the various 
aspects (e.g., communication protocol, programming model) 
are not considered concurrently, within a comprehensive 
system-level design methodology [1]. The increasing size and 
heterogeneity of the applications, in recent years exacerbated 
the WSNs design problem and spurred the interest of the 
research community in network planning. The focus is 
typically on optimizing the location of the sensors to 
maximize their collective coverage of a given region. This 
challenge has been tackled using several approaches, such as 
integer programming [2] or greedy heuristics [3][4][5] to 
incrementally deploy the sensors. In addition, methods used 
for robotics have been adapted to the purpose of deployment 
[6]. Some authors paid particular attention to the connectivity 
problem from a more formal standpoint [7]. There exist 
adaptive techniques considering scenarios where multiple 
sensors are needed, accounting for a possible real-time 
deployment [5][3].  

As far offline planning is concerned, which is the focus of 
this paper, the proposals usually deal with only one single 
objective (e.g., coverage) or in some cases with lifetime in 
terms of power consumption. The sensing model is normally 
built around flat squares, and only few proposals cope with 
simple obstacles [3] [4]. From a more abstract standpoint, the 

problem of designing WSNs produced noticeable solutions 
identifying data-centric high level representations of the 
overall network behavior. For example TinyDB [8] has been 
a pioneer effort enabling a SQL-based interface to the sensed 
data, while considering the need of achieving a power 
efficient processing and routing of query data. GSN [8] is 
another proposal based on XML and SQL as data 
specification and data manipulation languages, taking into 
account the problem of dynamic reconfiguration of the 
system. A declarative approach to the network description has 
been considered in [10], where a dialect of Datalog is used for 
both data acquisition and transmission management. On top 
of such internal data representations, an engine to recognize 
events can be implemented. In [11] Symblic Aggregate 
approXimation (SAX) is used as an algorithm for detecting 
complex events by analyzing the patterns related to the sensed 
basic parameters. 

From a pragmatic standpoint, the availability of a design 
framework is of paramount importance to face the complexity 
of the design space. We counted about 40 proposals in 
literature, where the most mature projects, having also a web 
site for download of articles and tools, are (references are 
omitted for conciseness): Ns-2, SensorSim, EMStar, OPNET, 
OMNET++, Avrora, TOSSIM, VisualSense/Ptolemy, 
SENSE, J-Sim. These environments allow defining a network 
of sensing nodes along with the specification of a networking 
layer tailored to consider the peculiarity of wireless-oriented 
protocols. All of these environments provide hooks to add 
functionalities linking ad-hoc code. The majority of them 
provide some form of discrete event simulation and Ptolemy 
also allows mixing different domains of computation and 
aspects like mobility of nodes. However, to the best of our 
knowledge, none is addressing with a proper and formal 
extent the capability of the network to capture the events to be 
monitored. Their focus is frequently related to the 
optimization of the cost or to verify by simulation other 
properties like power consumption, robustness and congestion 
of the connection layer or the analysis of the models of 
computation (middleware). 

The focus of our investigation is a wide class of 
applications where, in addition to the typical monitoring 
capability, a prompt highlight of the occurrence of particular 
events is required. The requirements analysis of such 
scenarios is carried out within the context of two cooperative 
research projects (ARTDECO [12] and WASP [13]). The 
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planning of WSNs for such applications is a off-line activity 
and requires to: i) specify the characteristics of the events to 
be discovered; ii) select a proper set and type of sensors to 
enable the capturing of such events; iii) embed the sensors in 
the environment in a way to ensure the capturing of the 
desired events while optimizing some design goals. 

Our target is first of all to make sure a priori the existence 
of a feasible solution to the sensing problem, with the 
accuracy required by the application. Then, by exploiting the 
capabilities of the SWORDFISH (Sensor netWORks 
Development Framework Integrating Simulation and 
Hardware optimization [14]) optimization engine, the WSN is 
refined according to design constraints and user’s goals. In 
particular, the target of this paper is to show how it is possible 
to design a WSN taking into account realistic constraints, 
such as the necessity to simplify the realization and 
deployment via a proper aggregation of sensors onto a set of 
boards, while ensuring acceptable performance degradation. 

The paper is organized as follows. The next two sections 
summarize the design flow implemented in SWORDFISH, to 
show the steps necessary to define the optimal choice and 
localization of sensors. The rest of the paper is devoted to 
show new results concerning the strategy to cluster the set of 
sensors identified as optimal by SWORDFISH: Section IV 
presents the cost model for the network nodes, Section V the 
optimal clustering of sensor at board-level and Section VI 
discusses and compares four strategies to determine the 
positioning of gateways, in the case of the size of the network 
requires a hierarchical organization. Experimental results are 
reported in Section VII, while some conclusions are drawn in 
the last Section. 

II. MULTI-LEVEL DESIGN METHODOLOGY 
One of the objectives of the proposed design methodology 

is to create a design flow for WSN offline planning, which is 
scalable with the application complexity. To this purpose, the 
first step is to identify a proper set of sensor-position pairs, 
considered optimal to achieve the desired behavior of the 
WSN (see Tab.I).  

TABLE I.  DESIGN SPACE  EXPLORATION 

Level Activities Main Objectives 

Sensor Selection and positioning of 
sensors set; sensitivity analysis 

Optimize # sensors 
Satisfy sensing goal 

Board Aggregation of sensors onto some 
boards; sensitivity analysis 

Optimize realization 
cost and deployment 

Subnet Identification and positioning of 
gateways;  protocol selection 

Optimize overall cost 
and performance 

 
This initial solution is the baseline for any architectural 

design space exploration. The next optimization is related to 
the aggregation of the previously identified sensors set onto 
boards, while meeting effectiveness and acceptable 
degradation of the WSN behavior. The outermost layer 
accounts for complex sensor networks, where some of the 
nodes (boards) have to manage hierarchies of sensors/subnets.  

The focus of this paper is on board and subnet level 
design space exploration. Sensor-level design is only 
sketched to provide a complete perspective of the 
methodology (see [14] for details). The support to such 

system-level design seats on a modular framework, called 
SWORDFISH, whose structure is depicted in Fig.1. It is 
composed of a set of modules allowing the users to describe 
the actors (environment, sensors, network and events) and the 
design goals (desired behavior of the WSN and optimization 
parameters).  
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Figure 1.  The SWORDFISH Toolsuite. 

SWORDFISH is conceived to support the users during 
WSN planning, by addressing the following problems [14]. 

� Verification. The goal is to determine the occurrence of 
a set of events (e.g., fire in a defined region, presence of 
water, temperature and humidity over a certain 
threshold for a time window, etc.) by exploiting the 
potential of a given WSN. 

� Sensitivity Analysis. Evaluation of the impact of some 
variations of sensors, environment and network 
properties, onto the performance of a WSN. Examples 
are fault tolerance w.r.t. sensors and network errors, 
effect of sensor aging or displacement of their location, 
influence of the observation time, etc. 

� Design/Planning. Given a set of events and some 
constraints/goals, the task is to discover the optimal 
sensor network capable to identify the events while 
maximizing a user-controlled goal function. 

Based on the application requirements, the first step for 
the user is formally defining the events to be captured (see 
Section III) and possibly some optimization goals/constraints 
(Predicate, Event and Optimization editors). Network 
properties and sensor behavior can be also specified (Network 
and Sensor editors), if the default settings are not considered 
suitable. According to the model of the environment 
(specified using the Environment editor), the events are then 
“fired” to get a profiling of the evolution of the physical 
parameters corresponding to the events. Such results are then 
used as a testbench to compare the sensing capabilities of 
alternative WSNs. The Predicate analyzer and the selected 
optimization goals are extensively used by the Network 
Planner to explore the design space. Useful information for 
optimization can be gathered by analyzing the sensitivity of 
the network over the variation of parameters like observation 
time [14] or sensor accuracy. In this paper we will describe 
only the network planner module (gray box in Fig.1), whose 
goal is to cluster sensors and identify the gateways nodes, 
based on a previous definition of the optimal sensor set 
dissemination. 

III. SENSOR-LEVEL DESIGN 
The methodology we propose to identify a proper 

dissemination of the sensors within the environment specifies 
the purpose (behavior) of the network, analyzes the 
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benchmark against which the WSN have to be checked and, 
finally, quantifies the difficulty of sensing the physical 
parameters characterizing the events to be recognized. 

To model the complex event or condition the WSN is 
supposed to recognize [14], we refer to a Sensing Goal (SG), 
which is a multi-valued logic formula, where each basic event 
is represented by using a sub-predicate Pr (implemented via 
software plug ins) having the general structure Event(x,y,z, 
magnitude, trend). For example, (1) means that the goal of the 
WSN is to recognize the concurrent presence of Water in two 
points (1,2,0) and (3,3,5) of the environment, with a constant 
magnitude of 20 and 30, respectively. In practice, the overall 
SG of a WSN can includes tenths of basic events/predicates. 

 SG=Water(1,2,0,20,const) AND Water (3,3,5,30, const) (1) 

Once the SG is defined, the next step is the 
characterization of the changes in the environment whenever 
the events occur, i.e. the identification of a testbench to 
evaluate the WSN performance. To this purpose, based on the 
(user defined) fp sampling rate (simulation granularity) of the 
environment simulator (Section II), a profiling stage is 
triggered by firing each of the defined events, namely running 
the Pr-related plugins. At the end, ��(x,y,z), and �  Pr of SG, 
all the data patterns are obtained. 

The other two problems the designer has to face with 
during WSN design are: choice of the type of sensor, and 
optimal sensors placement. As described in [14], 
SWORDFISH produces a selection and the optimal 
placement of sensors to enhance their possibility to satisfy the 
Pr composing the SG, i.e. improving the performance of the 
WSN. To drive such process, we defined a hardness function 
Hard(x,y,z,Pr) modeling the difficulty to evaluate Pr in a 
given point (x,y,z). Calling PPr the “profiling output” of Pr, 
i.e. the data pattern associated to Pr obtained during the initial 
profiling, we define the Hard function (2). 

Hard(x,y,z,Pr)= Hs(PPr,t)/ C{(PPr,t), Pr} (2) 

Where Hs(PPr,t) depends on the type of sensor 
(corresponding model) and relates to the difficulty to 
recognize the event Pr within the time frame of the profiler 
sampling rate (1/fp), and C{(PPr(x,y,z), Pr} is the confidence 
to infer the truth of Pr based on the sequence of the physical 
variations defined via PPr. 

Of course, any positioning strategy for the sensors 
attempts to place the sensor where Hard is low, i.e. where it is 
easier and reliable recognizing the Pr composing SG. To 
represent how a given sensor is actually capable to capture its 
target events from a position (xp,yp,zp), a proper metric (3) 
has been defined, that we named confidence [14]: 

 Conf(event)=1-(Hard(xp,yp,zp,Pr))/max Hard(x,y,z,Pr)) (3) 

where Pr is the predicate corresponding to the event, 
Hard(xp,yp,zp,Pr) is the hardness calculated in the candidate 
point for the sensor positioning and max Hard(x,y,z,Pr) is the 
maximum hardness within the considered environment. Note 
that values of confidence closer to one means that the position 
of the sensor is approaching the best existing in the 
environment to satisfy Pr. On the contrary, lower values 
correspond to critical points; this latter case can trigger the 
search for a better positioning or the increasing of the sensor 

set cardinality. In the case a sensor is shared between a set of 
events corresponding to a group of predicates, the confidence 
is calculated by adding the hardness of all the predicates Pr 
the sensor have to cover. 

IV. COST MODEL OF THE NODE 
The sensor-level produces a set of {sensor, position} pairs 

tailored to optimize cost-effectiveness and capability to fulfill 
the sensing goal of the WSN. On the other hand, realistic 
design and deployment typically requires simplifying both the 
hardware and the architecture of the network, by exploiting 
boards hosting multiple sensors. This constraint necessarily 
modifies the optimal positioning of sensors, with the risk of 
side effects on the desired WSN behavior. 

To cope with such problems, the PESCA (Pareto Efficient 
Solution Clustering Algorithm) approach is here outlined. 
The goal is to produce a suitable clustering of the sensors by 
identifying an optimal mapping of the sensor set onto boards, 
like those available on the market [15][16] or emerging from 
research projects [12][13]. In general, each board hosting 
sensors includes at least the following sections: PCB/package; 
power supply and energy management; radio (RX/TX); 
control/processing Unit (CU); Connectors/Interfaces; one or 
more sensors. Furthermore, the cost of radio interface can 
vary, especially in the case the WSN architecture/complexity 
requires the presence of some gateways managing patches of 
sensors. Depending on the application, three different cases 
can be envisioned: 

� New ad-hoc boards are realized for the application. 

� Use of off-the-shelf boards already existing on the 
market. 

� Customization of boards, e.g. by adding daughter 
boards to create gateways or to add specific sensors. 

Based on our experience in realizing PCB-level embedded 
systems, on market availability of sensing modules and the 
results emerging from the application scenarios defined in 
[12][13], we founded reasonable to adopt a general model of 
monetary cost for each board (node). We observed that there 
exist a variable cost which is related to the type and number 
of sensors in a linear manner and a processing cost that is 
logarithmic, due to the typical price trends of CPU and 
microcontrollers. Furthermore, the cost of PCB and 
packaging is less than linear against the number of sensors 
(close to a constant), while radio and power supply is fairly 
stable over a wide range of possible sensors cardinality. In 
summary, the cost of a node is the sum of the following 
terms: 

� NRE/n. It is the quote of the initial design (Non 
Recurrent Engineering) cost spawned over n copies of 
the same board. 

� Const (1+(markup/n)). Accounts for the discount 
achievable when sourcing components with significant 
volumes. 

� K*log(N), takes into account the processing power; N is 
the number of sensors of the considered board. 
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� CMAC is the cost of implementing the level 2 of the 
ISO/OSI stack. 

� � �
�

sSensorType

j jj NumSSC
1

)(  is the cost of the sensing. 

NumSj is the number of sensors of a given type j, 
SensorTypes is the number of possible types of sensor, 
and SCj is a cost of a sensor of type j. 

� CGTW is a fixed cost in the case the node acts as a 
gateway. 

To consider different suppliers, we partitioned the 
available sensors into classes, to capture their relative cost, 
instead of considering the absolute values (see Tab.II). 
Concerning the cost of the network, we assume a constant 
value depending on the protocol (CMAC) for wireless 
connections (typically built-in in commercial nodes). 
Furthermore, some influence of the network topology should 
be considered in the case of some gateway nodes, managing 
hierarchies of sensors patches, were identified. In such a case, 
there is an additional cost related to the wired connection or 
the use of other long-range radio communication standards 
and modules (CGTW). In this paper only wireless connections 
have been considered for the gateways, whose additional cost 
is not strongly dependent on their positioning, but mainly on 
the adopted standard 

TABLE II.  RELATIVE COST OF SENSORS (EXAMPLES). 

Class Type of Sensor Relative Cost 
1 Temp, Humidity, Light,… 1 
2 Pressure, Presence, Resistance,  

Temperature (high accuracy), … 
2 

3 Gyroscope, Accelerometer … 3 
4 Pollution (gas, water), complex MEMS,... 5 
5 High-End 10 

V. BOARD-LEVEL DESIGN 
The clustering of the set of sensors identified by 

SWORDFISH is a multi-stage process, including the 
following topmost activities: compatibility analysis between 
all the possible pairs of sensors; identification of the 
boundaries of the clustering problem (worst and best case); 
generation and selection of the candidate solutions. 

A. Compatibility 
At the beginning, the user (e.g., by accepting default 

settings) is required to specify constraints (taboos) on the 
possible clustering of different sensors onto the same board. 
Based on these information, an Interference Graph G=<N,E> 
is built, where nodes n are sensors and an edge e between two 
nodes represents a possible sensor interference to be avoided. 
Note that the interference is not only depending on the nature 
of the sensors, as specified by the user via taboos. In fact, two 
sensors can have no shared position where both sensors are 
still capable to discover the associated set of events. This 
latter case can be discovered by using the Hard function; in 
fact, the Hardness of a point to discover two events e1, e2 is 
the sum of the Hardness of both sensors computed in that 
point. 

Once the interference graph is compiled, it is possible to 
identify the compatibility graph G’, which is its 

complementary graph G’=<N,E’>, gathering all feasible 
solutions. It worth noting, that any possible clustering of 
sensors cannot but be a clique of the compatibility graph. In 
fact, all the sensors hosted by the same board must be 
compatible with each other. The next step is the computation 
of all the maximal cliques of the compatibility graph G’. 
Since this type of activity is recognized to be a NP-hard 
problem [17] we adopted some heuristics. 

B. Coverage 
To better understand the optimality of placing a certain 

group of sensors onto a board, at the beginning we focused on 
the boundary solutions, considering the cardinality of the 
cliques (not their cost). At the lowest level, each sensor 
corresponds to a board. As far the best case is concerned, the 
biggest clique has been computed, and then the same action 
has been performed on the remaining graph, and so on. At the 
end we obtain a partitioning of the compatibility graph, where 
its cliques are those clustering the maximum number of 
compatible nodes. The design space spanning between the 
two boundaries cases so identified, contains a number of 
possible solutions that is exponential with the sensor 
cardinality. We attacked the analysis of a so wide solution 
space through a heuristic structured into a couple of steps. 

� Starting from the best case above described, new 
solutions are generated by creating a new list of cliques 
where one sensor has been extracted from the biggest 
clique, to create a new single-sensor board. The same 
activity is then repeated, considering the biggest cliques 
at any iteration. At the end of such a process, a wide set 
of possible solutions is generated, ordered for relevance 
i.e., in terms of cardinality of the biggest clique. 

� All the possible pairs of the above solutions are taken 
into account for possible merging, while verifying the 
compatibility (taboos) of the new sensor set. 

At the end of the second steps, the recombining of cliques 
not maximal in terms of cardinality, allows the optimizer to 
consider solutions less homogeneous, possibly characterized 
by a lower board-level cost 

C. Comparison of solutions 
This step takes into account the candidate WSNs under 

the Pareto standpoint. The task of the PESCA algorithm is to 
find out a solution to the multi-objective clustering problem, 
considering two metrics: the cost and the functional quality, 
namely its performance. 

The cost of a solution (set of boards) is evaluated through 
the cost model described in Section IV, which is depending 
on the number and type of sensors associated with each 
partition. Concerning the performance, the quality of a 
solution is computed by exploiting the Hardness functions 
Hij(x,y,z) of the event i covered by the sensor j belonging to 
the same board. Thus, the hardness of the entire WSN is (4): 

�� ��
�

Ji ijWSNj
zyxHzyxH ),,(),,(  (4) 

The hardness of the WSN is evaluated, and its minimum 
corresponds to a point where the positioning of the board is 
optimal. This new location, which is shared by all the sensors 
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on the same node, is the best to ensure that all the events 
associated with the sensors can still be captured after 
clustering. Note that the solution so discovered is a Pareto 
efficient solution. In fact, all the solutions “dominated” within 
the <cost, performance> optimization space of the WSN are 
discarded during the population of the design space. Some 
quantitative examples are discussed in Section VII. 

D. Use of existing boards 
The objective of mapping an ideal sensor network (where 

each sensor is a node) onto a realistic set of boards, can have 
different flavors. In the above section we argued how it is 
possible to derive a clustering in presence of some degree of 
customizability at board level. Our toolset implementation, 
even if it is not detailed in the paper due to space limitation, 
solves also the problem of mapping the sensors onto a catalog 
of standard boards. In such case the cost model is simplified 
and the strategy we follow resembles the solution to the 
problem of Instruction Selection of the compilers [18]. 

VI. SUBNET-LEVEL DESIGN 
For a number of the considered use cases, the coverage of 

the area cannot be performed through a single starry patch of 
sensors. Roughly speaking, considering an average of 3-7 
sensors per board, it is reasonable that for every group of at 
most 6-12 boards, one of them has to become also the 
gateway of a hierarchy of nodes (boards). In particular, for 
one of the scenarios [12], it is required to disseminate 
possibly over a hundred of boards. The problem afforded in 
this section is then twofold: computation of an optimal 
partitioning of the network and selection of the nodes which 
will operate also as gateways for the sets of boards 
composing the partition. Our strategy produces the optimal 
solution in the case of small-medium size WSN, while for 
large-size applications we propose heuristics producing near-
optimal network architectures, with runtime still in the order 
of tenths of minutes.  

The input of the problem is the set of boards along with 
their positions, as described in Section V. The output is a set 
of Pareto-efficient solutions, specifying: i) the board selected 
to become also gateways; ii) the partitioning of the boards set 
in subnets assigned to a single gateway; iii) the overall 
throughput of the WSN, measured as the mean or the 
minimum of that pertaining the identified subnets; iv) the new 
cost of the WSN. Note that each subnet is described not only 
by its set of nodes, but also by the level-2 protocol (e.g., 
802.11 rts/cts, 802.15.4, etc). To this latter purpose, we 
analyzed (Section VII) the worst case (saturation), using well 
assessed literature models and assumptions [19][20]. 

A. Gateway selection 
The target is to choose the boards to be promoted to 

gateway role, while maximizing the throughput of the 
network in the saturation operating condition. It is assumed 
that an ideal top-level channel among the gateways is present, 
so that the probability of packet loss from the gateways and 
the central station of the WSN (or for any other network 
organization at the gateway level) is negligible. The problem 
of selecting k boards among the available n, leads to the 
following search space. 

theorem) sNewton' for the(2
1� �

�
���

	



��
�


nk

k
n

k
n

 
That, being exponential, makes it hard discovering the 

optimal solution with realistic values of n. To overcome such 
obstacle, we propose four algorithms, whose range of 
applicability depends on the cardinality (size) of the WSN. 
Quantitative comparisons are reported in Section VII. 

1) Full Search 
In this case we enumerate all possible solutions, selecting 

only the subsets which are Pareto-efficient. This approach is 
affordable only for WSNs composed of few boards (less than 
10), namely with some tenths of sensors, and the optimal 
solution can be found. 

2) Exponential search 
Given the number of gateways k, we consider all the 

corresponding solutions that are Pareto-efficient. Since we do 
not consider all the possible cardinalities of gateways, the 
output can be sub-optimal. The algorithm, whose details are 
omitted due to the lack of space, considers a properly 
generated exponential ramp of the possible values of the k 
gateways. In our test cases (see Section VII), this strategy 
most of the times lead to the optimum. 

3) K-Clusters (modified) 
This strategy sits on top of the K-means clustering 

algorithm [21], as recalled below. To improve convergence 
towards near-optimal solutions, we introduced some 
constraints coming from the application environments. In 
particular it is assumed that the probability of incurring in an 
error when the nodes and the gateways are communicating is 
exponentially dependent on power (F1), as it is usual in fairly 
open environments. The signal power F1 received during a 
transmission is a function of the distance d between the 
boards: F1=1/d��, with � typically in the range [2..3]. As a 
consequence, the probability F2 that a packet is not correctly 
received it is function of the received power as F2=e-F1. 

By exploiting this model of the channel between gateways 
and boards, we assume that two boards are incompatible if 
their error probability F2 is above a certain threshold. Based 
on this definition, we compute an incompatibility matrix M, 
flagging all the pairs of nodes suspected to be critical, when 
belonging to the same subnet. 

The algorithm begins considering the starting set of 
gateways with cardinality k, computed calculating the 
incompatibility matrix M for a given threshold, then 
extracting the set of boards B from the set of all the pairs of 
incompatible boards from M and finally by selecting 
randomly a subset of the boards B, having cardinality k. In 
summary the strategy we propose, starting from the above 
defined set of gateways, iterates the following steps until the 
set of gateways changes: 

� compute the subnets of the set of gateways; 

� compute the centroid point of each subnet; 

� take as new k gateways the set of k boards closest to the 
set of k centroids (one board for each centroid); 

� if the set of gateways is changed, repeat the algorithm. 
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The distance between two boards is their communication 
error probability (F2). The information carried by M allows 
overcoming the possible criticalities of the K-means 
clustering. 

4) K-Clusters (random) 
This algorithm is the same as the one described above, 

with the difference that the starting point is randomly chosen, 
namely the initial k gateways are selected using a uniform 
probability distribution over the available boards. The sub-
optimal solutions so identified, in our experiments are nearly 
always worse than the improvement proposed before. 

5) Comparison 
As confirmed by the experiments, full search is an 

important reference, but it cannot scale-up. Exponential 
search can be a valuable improvement up to medium size 
applications (tenths of sensors and boards); in fact, both full 
search and exponential search have exponential complexity. 
The difference between the Random and Modified K-
Clustering is mainly in terms of the selection of the starting 
point, which in the former case is random while in the latter 
exploits the information of the Incompatibility Matrix. The 
complexity of both strategies is polynomial, but the goodness 
of the solutions discovered by the Modified Clustering, 
increases as the threshold get higher. Note that the threshold 
decreases when the density of the WSN become significant. 
The border case is when the boards are close to each other 
and constitute a single group; in such a case the 
communication error probability is very low for each pair of 
boards, and the choice of the gateway among the boards is 
almost random since, to this purpose, they are pretty 
equivalent. 

The matter is different for more realistic large size WSNs, 
where the density is still high, but (depending on the sensing 
goal) the set of boards is well spaced and clusterizable in 
groups, so that the error communication probability among 
the groups (based on their distance) it is no longer negligible. 
In such a case the Modified Clustering significantly 
overperforms the Random version. 

B. Identification of the Sub-Nets 
The baseline for partitioning the WSN into subnets is the 

channel model defined in Section VI.A.3. The rationale is that 
each board has to belong to the subnet (associated to the 
gateway) for which it is minimum the probability of having 
communication errors, as described in Figure 2.  
Input: Si: A solution already calculated, L 
Output: subnets 
foreach board Bx in L { 
 if (Bx not in Si) { 
  foreach board Gj in Si { 
   compute ErrorProb(Gj,Bx);} 
set Bx in the subnet y such that 
ErrorProb(Gy,Bx) is the min over the 
different gateways Gj in Si; 
} }; 

Figure 2.  Grouping of boards in sub-nets assigned to the gateways. 

VII. EXPERIMENTAL VALIDATION 
The methodology and the algorithms have been verified 

using both synthetic applications and some real use cases 
extracted from running research projects [12][13]. This 

section initially reports some results concerning the 
aggregation of sensors in boards. Then, it is shown how it is 
possible to scale-up for wider WSNs considering a 
hierarchical organization, even with subnets adopting 
different board-to-gateway communication protocols. 

A. Board-Level Optimization 
To highlight the importance of a quantitative tradeoff 

when moving toward realistic deployments, let us consider an 
application setup with the following sensing goal: 
SG = Pressure(0,0,0)  AND (Temperature(0,0,0) < 30)  
     AND Water(1,1,0) AND (Temperature(1,1,0) > 20)  
     AND Water(2,2,0) AND (Temperature(2,2,0) > 20) 

For the sake of clarity, the environment is open space, the 
sensor model is ideal, the time window is set to 1 second and 
there are no taboos specified. The other parameters of the cost 
are Const=12.5, K=0.5 and all the sensors have the same 
SCj=1, no matter their type. Markup and NRE are set to 0. 
The output of SWORDFISH is a set of 7 sensors (Tab.III).  

TABLE III.  OPTIMAL POSITION AND TYPE OF SENSORS. 

Sensor Position (x,y,z) Type 
S0 0,0,0 Pressure 
S1 0,1,0 Temperature 
S2 1,1,0 Water 
S3 2,1,0 Water 
S4 2,2,0 Temperature 
S5 1,0,0 Pressure 
S6 3,2,0 Water 

 
Starting from this configuration, PESCA computes the 

following two cliques with the max cardinality: {so, s1, s2, 
s3, s4, s5}, {s4, s6}. Then the covering of G’ is performed 
using the subgraphs: {s0,s1,s2,s3,s4,s5} and {s6}. Due to 
space limits, the entire set of solutions generated and 
evaluated is not reported. In this example there is only a 
single solution in the Pareto frontier, which is the following. 
Sol_1.  Board0={s0,s1,s2,s3,s5}, position=(1,1,0),  
        Board1={s4, s6}, position=(2,2,0),  
        Total cost=34.8, hardness=41 

In the case we consider a different technology with 
Const=2.0 instead of 12.5, the solutions populating the Pareto 
frontier become those depicted in Tab.IV. 

TABLE IV.  PARETO SOLUTIONS FOR CONST=2. 

 Sol_2 Sol_3 Sol_4 
Board0 {s0,s5} (0,0,0) {s1,s2,s3} (1,1,0) {s4,s6} (2,2,0) 
Board1 {s0,s5} (0,0,0) {s1,s2} (1,1,0) {s3,s4,s6} (2,2,0) 
Board2 {s0,s5} (0,0,0) {s1,s2} (1,1,0) {s4,s6} (2,2,0) 
Board3 -- -- {s3} (2,1,0) 

Tot. Cost 14.8 14.8 16.5 
Hardn. 78 78 61 
 
It worth nothing that these solutions require more boards 

w.r.t. the previous one, as a consequence of the reduction of 
the board model fixed cost. Concerning the “quality” in terms 
of performance, the hardness (badness) of all the solutions is 
better (lower) than Sol_1. This behavior is reasonable, since 
the more board are used, the closer to the optimal output of 
SWORDFISH are the sensors. 
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In Figure 3. it is reported the analysis carried out on a 
more complex WSN: SG of 16 basic predicates producing an 
optimal network with 18 sensors. The plot reports the Pareto 
solutions and figures out the influence of the fixed costs 
(linked to the volume/standardization of boards) against the 
overall cost and performance (1/Hardness) of the clustered 
WSN. It is possible to observe the impact on performance and 
cost of the spreading vs clustering of sensors: the proposed 
quantitative analysis produces a significant value added for 
the designer when the tradeoff is not so clear: the driver may 
be not only the cost, but also the capability of the WSN to 
fulfill the initial application requirements. 

 
Figure 3.  Pareto frontier of cost-performance analysis. 

B. Sub-Net Optimization 
In the following we reported some use cases derived from 

research projects [12][13], summarized in Tab.V. We also 
stressed the tools and methodology considering synthetic 
networks with sensing goals composed of over 16 predicates, 
tenths of boards and hundreds of sensors, confirming the 
results in terms of network organization and computation 
runtimes, such those of the third case of Tab.V 

TABLE V.  SOME OF THE CONSIDERED USE CASES. 

 # Pred. #Sensors #Boards Search Space (Full) 
1 5 20 8 255 
2 5 30 15 27 243 
3 5 45 33 1434 119 

 
Concerning the comparison among protocols, the key 

approximations adopted in the implementation of the MAC 
models of Section VI are those adopted in [12] and [13]. In 
addition, there is no interference among the sub-nets assigned 
to different gateways and the top level channel connecting the 
gateways is considered ideal. For the 802.11 protocol it is 
assumed a constant and independent collision probability of a 
packet transmission by each node, regardless the number of 
retransmission already suffered. To the purpose of throughput 
analysis, (conservative) saturation conditions are assumed, i.e. 
the transmission queue of each node is supposed to be always 
non empty. As far 802.15.4 is concerned, similar assumptions 
hold, with some tuning on the backoff counter value. More 
details about of the adopted protocol models can be found in 
[19][20]. 

The experimental data have been analyzed in order to 
compare the proposed strategies in terms of overall network 
organization, spanning of the search space and computational 
resource requirements. Tab.VI summarizes the results 

regarding the three use cases of Tab.V, considering also the 
impact of different communication protocols for each subnet 
assigned to a gateway. We highlight the search space, the 
solution discovered by each algorithm and which part of them 
is Pareto-efficient.  

TABLE VI.  POPULATION OF THE SOLUTIONS. 

 
First use case of Tab.VI points out that: 
� the Modified K-Cluster algorithm discovers a number 

of Pareto efficient solutions over its solutions found, 
that is close to 100%; 

� the percentage of Pareto efficient solutions over the 
number of solutions, found by the Random k-Cluster 
algorithm, is around 20%. 

The K-Cluster Modified algorithm behaves much better 
than the Random version thanks to the exploitation of 
domain-specific information (the incompatibility matrix). 

In the second use case, the solution is not ensured to be 
the optimal one, since a comparative full search requires too 
many resources to be computed: 27243 solutions should be 
considered. Gray entries in Tab.VI correspond to the cases 
whose complexity needs runtimes over tenths of minutes, 
with main memory requirements over the GByte. However, 
the solutions discovered using the other strategies are Pareto 
efficient over the solutions set considered by the heuristics. 

The results of the third analysis refer to a rather big WSN. 
Still in this case, any comparison of the heuristics with the 
full search (1434119 solutions) and the exponential algorithm 
is impossible. Our improvement to the K-Cluster algorithm 
always found better solutions w.r.t. the random choice. 

Finally, we observed that the selection of the protocol 
impacts on the throughput of the subnets. Since this is one of 
the optimization objectives, the adopted standard influences 
the belonging of a solution to the Pareto frontier. In our tests, 
the 802.11 base protocol produces architectures with more 
subnets (gateways) than the others, because of the throughput 
tends to decrease significantly, as the number of nodes of a 
subnet increases. Such behaviour is manifest more smoothly 
with the 802.15.4 standard. 

  Considered Found Pareto-eff. 

Alg. MAC 1 2 3 1 2 3 1 2 3 

Full S. 802.11 rts/cts 255 -- -- 62 -- -- 62 -- -- 

Full S. 802.11 base 255 -- -- 40 -- -- 40 -- -- 

Full S. 802.15.4 255 -- -- 36 -- -- 36 -- -- 

Exp S. 802.11 rts/cts 114 12 K -- 42 4 K -- 42 4 K -- 

Exp S. 802.11 base 114 25 K -- 22 2 K -- 22 2 K -- 

Exp S. 802.15.4 232 15 -- 56 6 K -- 32 6 K -- 

Modif. 802.11 rts/cts 8 16 33 7 14 28 6 14 28 

Modif. 802.11 base 8 15 33 7 14 28 6 14 28 

Modif. 802.15.4 8 15 33 6 14 27 5 14 27 

Rand. 802.11 rts/cts 8 15 33 6 14 16 1 3 4 

Rand. 802.11 base 8 15 32 5 12 12 1 3 4 

Rand. 802.15.4 8 15 32 2 8 13 0 1 2 
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We also compared more in detail the different protocols 
by varying the number of boards and the average throughput 
for a broader benchmark set, under the traffic assumption of 
Section VI, and also in the case of a fair allocation of the 
communication channel [22]. The plots, not reported here due 
to space limits, clearly identify the different behaviour of the 
two protocols for WSN applications. When the number of 
boards becomes significant (above the dozen), fair protocols 
such as 802.15.4 which uses CSMA/CCA [22] are better in 
performance. For smaller numbers of boards, not fair 
protocols like 802.11 are the best in performance. It is also 
evident the importance of a quantitative evaluation, when the 
hardware cost of the protocol implementation is different. For 
numbers of boards around the dozen the cost of the protocol 
chipset can influence the selection of the optimal protocol. 

VIII. CONCLUSIONS 
The paper outlined the design flow implemented in 

SWORDFISH, focusing mainly on the problem to tradeoff 
cost effectiveness and capability to recognize the events. The 
proposed approach allows the user to identify a placement 
and clustering of sensors into realistic boards, optimizing the 
realization and deployment costs. Acceptable performance 
degradation is also ensured quantitatively. The toolset is also 
capable to deal with more complex goals, such as: 

� Clustering of the optimal set of sensors using a pre-
defined set of sensor boards, to mimic the adoption of 
off-the-shelf solutions (not detailed in this paper); 

� Scaling of the WSN complexity, to cover also 
applications where it is mandatory to identify subnets 
assigned to gateways. 

� Comparison of alternative protocols for each subnet 
assigned to a gateway. 

Suitable exploration algorithms have been proposed, 
enabling the methodology to scale-up with the complexity of 
the problem, in acceptable analysis runtimes. 

Note that the presented approach is complementary to the 
typical simulation-based analysis frameworks, since its 
emphasis is more on the system-level steps of the design, 
where a broad design space has to be extensively and 
efficiently explored, and on the formal modeling and 
verification of the WSN objectives and cost optimization. 
Moreover, as outlined in [14], SWORDFISH enables also 
sensitivity analysis of the performance against modification 
of the sensors position, observation windows, sensor 
accuracy, etc. 

Work is in progress as part of large multi-partners projects 
[12][13]. Our methodology and toolset, which have been also 
stressed with more complicated synthetic use cases w.r.t. 
those of the projects, produces overall system organizations 
that are similar in structure (but better in performance and 
cost) to those adopted in practice: boards with 3-7 sensors and 
gateways every few boards (tenths of sensors). 

Current effort is on the semi-automatic generation of 
application code, considering also energy-related constraints 

and robustness of the overall WSN in the case of fault and 
graceful degradation (ageing) of sensor accuracy. 
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