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Abstract— A methodology for WSN planning should produce a 

suitable placement of sensors to simplify the acquisition of the 

data relevant for the application. The goal of this paper is to 

present a strategy to formally specify the system level 

characteristics of the events to be monitored and to identify a 

proper set of sensor-position pairs, tailored to provide the 

required sensing capabilities. In particular the focus is on the 

node level optimization, where the designer has to face with the 

problem of clustering sensors onto the same board based upon a 
cost-performance tradeoff.  

I. INTRODUCTION

Building a WSN become apparently as simple as 
composing COTS (Component Off The Shelf) [1] [2]. Since a 
few years, in literature appeared a number of proposals 
regarding simulation and deployment of WSNs. However, 
from the best of our knowledge, none is addressing with a 
proper and formal extent the capability of the network to 
capture the events to be monitored. Their focus is frequently 
related to the optimization of the cost or to verify other 
properties like networking exploitation, power consumption, 
robustness of the connection layer or the analysis of the models 
of computation (middleware). 

As far as the offline planning is concerned, which is the 
case this paper is focusing on, the proposals usually deal with 
only one single objective (e.g., coverage) or in some cases with 
lifetime in terms of energy consumption. The sensing model is 
normally built around flat squares, and only few proposals cope 
with simple obstacles [3] [4]. Noticeable solutions regards 
data-centric high level representations of the network behavior. 
TinyDB [5] has been a pioneer effort enabling a SQL-based 
interface to the sensed data. GSN [6] is another proposal based 
on XML and SQL, taking into account the problem of dynamic 
reconfiguration of the system. A declarative approach to the 
network description has been considered in [7], where a dialect 
of Datalog is used for both data acquisition and transmission 
management. On top of such internal data representations, an 
engine to recognize events can be implemented. In [8] Symblic 
Aggregate approXimation (SAX) is used as an algorithm for 
detecting complex events by analyzing the patterns related to 
the sensed basic parameters. 

The scope of the work here presented is a wide class of 
applications where, in addition to the typical monitoring 
capabilities, it is also required a prompt highlight of the 
occurrence of particular events. Our methodology requires to: 
specify the characteristics of the events of interest; select a 
proper set of sensors tailored to catch such events and to insert
the sensors in the environment ensuring the capturing of the 

desired events while optimize design goals/constraints. Such 
design stages are part of the SWORDFISH design framework 
[9], whose node level optimization strategy is here presented.  

The paper is organized as follows. Section II outlines the 
architecture of SWORDFISH. Section III discusses the model 
of the events to be recognized and the design flow to create the 
reference WSN. Sections IV, V and VI are more related to the 
physical constraints/optimizations of actual implementations. 
Concluding remarks are drawn in Section VII. 

II. THE WSN DESIGN ENVIRONMENT

SWORDFISH supports system-level design of WSN 
applications, by addressing the following problems. 

• Verification. The goal is to determine the occurrence of a set 
of events (e.g., fire in a defined region, temperature and 
humidity over a certain threshold for a time window, etc.) by 
exploiting the capabilities of a given sensor network. 

• Sensitivity Analysis. Evaluation of the impact of some 
variation of sensors, environment and network properties, 
onto the performance of a WSN. Examples are fault 
tolerance w.r.t. sensors and network errors, changing of 
sensor location, influence of the observation time, etc. 

• Design/Planning. The task is to discover the optimal sensor 
network capable to identify the events while maximizing a 
goal function and fulfilling possible constraints. 

The SWORDFISH architecture includes a set of modules 
outlined in the following, allowing the users to describe actors 
and design goals (see Tab.I) and to support system verification. 

TABLE I. MAIN EDITORS OF SWORDFISH. 

Editor Purpose 

Environment 

It allows defining a model of the environment with 

the possibility to specify constraints such as position 

and type of some sensors. 

Sensor

It is the mean to obtain the analytic representation of 

the sensing nodes. The model of the node includes 

also information such as cost, type of sensors, 

energy consumption, accuracy, speed, … 

Network
It provides a model of the available connection 

channels among nodes.  

Predicate
It allows the user to specify via logic formulas the 

properties to be verified when a given event occurs. 

Event

It supports the description of the events in terms of 

variation of some physical parameters to be sensed, 

along with their timing characteristics. 

Optimization

It allows the designer to specify and tune the goal 

functions and the formal model of the network 

properties/constraints. 
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The Simulation Kernel is the engine which, based on a 
simulation of the event occurring, modifies the configuration of 
the world model accordingly. This allows feeding the sensor 
node models with the real (location aware) data of the world, 
including their dynamics. Both the physical parameters of the 
environment and the events to be monitored can be jointly 
modeled and verified by a module called Predicate Analyzer.
The last module is named Planner. It is the main module for 
both verification and network design. It allows to formally 
verifying that a given WSN is able to capture a set of events as 
well as to support the building and optimization of the overall 
network according to the selected policies and goals. 

Based on the application requirements, the first steps for the 
user are formally defining the events to be captured and 
possibly some optimization goals/constraints. Network 
properties and sensor behavior can be also specified, in the case 
of default settings are not considered suitable. According to the 
existing model of the environment, the events are then “fired” 
to get a profiling of the evolution of the physical parameters 
corresponding to the events. Such results are then used as a 
testbench to compare the performance of alternative WSNs in 
terms of sensing capabilities. Useful information for 
optimization can be gathered by analyzing the sensitivity of the 
network over the variation of parameters like clustering of 
sensors, as shown in the following Sections. 

III. PRELIMINARY STEPS OF THE DESIGN

The model of the environment is 3-D where (x,y,z) 
coordinates belongs to a user-defined grid. Before starting the 
exploration of the WSN design space, there are three 
preliminary steps to be carried out: i) definition of the purpose
of the network; ii) identification of the benchmark; iii) 
modeling of the hardness to recognize physical parameters 
corresponding to an event. 

The first activity is the definition of an overall Sensing 
Goal (SG) for the WSN, that is a multi-value logic formula 
composed of some predicates Pr, each corresponding to an 
event. For example Water(x,y,z,magn,trend) is a plug-in 
modeling the presence of water in the point (x,y,z), starting 
from a given magnitude and with a specified trend over the 
time. A predicate Pr is an instance of Water applied to a 
specific point. An example of SG is (1). 

 SG=Temp(0,1,2,20,const) AND Humidity (3,4,5,70,const)    (1) 

Such SG means that the WSN has the goal to discover the 
concurrent presence of the events of having a certain 
Temperature (20) and Humidity (70) in two points (0,1,2), 
(3,4,5) of the environment.  

The second step is the characterization of the changing in 
the environment whenever the events occur, namely the 
identification of a testbench to evaluate the WSN performance. 
To this purpose, based on the (user defined) fp sampling rate of 
the environment simulator, a profiling stage is triggered by 
firing each of the defined events, namely running the Pr-related 

software plugins. At the end, ∀(x,y,z), and ∀ Pr of SG, all the 
data patterns are obtained. 

There are at least other two problems the designer has to 
face with during WSN design: selection of the type of sensor 
and sensors placement. In fact, the target is to discover a 
positioning of the sensors, maximizing the capability of the 
WSN to recognize the events, i.e. maximizing the SG. The 
former question impacts mainly on the feasibility of designing 
a WSN capable to recognize the events encompassed by the 
SG. The latter is related to the dissemination of sensors in order 
to enhance their possibility to satisfy the Pr composing the SG, 
i.e. improving the performance of the system. 

Our first concern in the design flow is ensuring that it exists 
a solution to the SG, using a proper set of sensors that is 
incrementally built up and significantly optimized by sharing 
sensors among the set of Pr (specified in the SG) to be verified. 
Then, this set of candidate sensors are placed in the 
environment taking into account the information coming from 
a configurable hardness function. In such a way it is 
guaranteed to obtain a WSN satisfying the SG with a 
quasi-optimal cost, with runtimes in the order of a few seconds. 

As far the positioning of the sensors is concerned, we 
defined a hardness function Hard(x,y,z,Pr) modeling the 
difficulty in evaluating Pr in a given point (x,y,z). 

           Hard(x,y,z,Pr)= Hs(PPr,t)/ C{(PPr,t), Pr}                 (2) 

Calling PPr the profiling output of Pr, i.e. the data pattern 
associated to Pr obtained during the initial profiling, Hs(PPr,t) 
depends on the type of sensor (corresponding model) and 
relates to the difficulty to recognize the event Pr within the 
time frame of a profiler sampling rate (1/fp). For example for a 
slow temperature sensor can be hard (or even impossible) 
recognizing T-ramps moving faster than its cutting frequency. 
The other term, C{(PPr(x,y,z), Pr}, is the confidence to infer 
the truth of Pr based on the sequence of the physical variations 
defined via PPr. 

Of course, any positioning strategy for the sensors attempts 
to place the sensor where Hard is low, i.e. where it is easier and 
reliable recognizing the Pr composing SG. More formally, it is 
selected the Si to be assigned to the predicated Pj, such that 

| dSG/dPj | ∀ Si available, is minimum. 

The implemented algorithm actually starts considering only 
the models of the available types of sensors and the predicate 
Pr to be satisfied, with possibly additional constraints (e.g., cost 
figures) that can be provided by the users within the sensor 
plugins. Then, the minimum set of sensors capable to recognize 
physical parameters to satisfy all the Pr is discovered and 
initially allocated to the most relevant predicates (in the SG 
sense). Based on this initial allocation, that is a pre-condition to 
satisfy the SG, the analysis of possible sensor sharing takes 
place. The end of the process produces a solution employing 
the minimum set of sensors covering all the predicates, using a 
quick heuristic producing a configuration that in most of the 
cases it is also the optimum.  

To represent how a given sensor is actually capable to 
capture its target events from a position (xp,yp,zp), a proper 
metric (3) has been defined, called confidence.
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      Conf = 1-(Hard(xp,yp,zp,Pr))/max Hard(x,y,z,Pr))         (3) 

Where Pr is the predicate corresponding to the event, Hard 
(xp,yp,zp,Pr) is the hardness calculated in the candidate point 
for the sensor positioning and max Hard(x,y,z,Pr) is the 
maximum hardness within the considered environment. Note 
that values of confidence closer to one means that the position 
of the sensor is approaching the best existing in the 
environment to satisfy Pr, while lower values corresponds to 
critical points; this latter case can trigger the search for a better 
positioning or the increasing of the sensor set cardinality. More 
details on the sensor level design activities can be found in [9]. 

IV. MODELING OF NODES

The output of the SWORDFISH-based feasibility analysis 
is a set of {sensor, position} pairs tailored to optimize cost-
effectiveness and performance (sensing goal) of the WSN. On 
the other hand, realistic design and deployment typically 
requires simplifying both the hardware and the architecture of 
the network, while maintaining effectiveness and performance.  

To cope with such problem, in the following section our 
PESCA (Pareto Efficient Solution Clustering Algorithm) 
approach is outlined. It produces a quasi-optimal clustering of 
the sensors by identifying a proper mapping of the sensor set 
onto boards, like those available on the market [2]. 

In general, each board hosting sensors includes the 
following sections: PCB/package; power supply and energy 
management; radio (RX/TX); control/processing Unit (CU); 
connectors/Interfaces; one or more sensors. Based on our 
experience in realizing PCB-level embedded systems and on 
market availability of sensing modules, we found reasonable 
adopting the model (9) for the cost of each board (node). 

=
×+×+=

sSensorType

j

jj NumSSCNKConstNodeCost
1

)()log(     (9) 

Where, for each board, N is the overall number of sensors, 
NumSj is the number of sensors of a given type j, SensorTypes
is the number of possible types of sensor, and SCj is a cost of a 
sensor of type j.

In other words, there exist a variable cost which is related 
to the type and number of sensors in a linear manner and a 
processing cost that is logarithmic, due to the typical price 
trends of CPUs and microcontrollers. Furthermore, the cost of 
PCB and packaging is less than linear against the number of 
sensors (close to a constant), while radio and power supply is 
fairly stable over a wide range of possible sensors cardinality. 

To increase the generality over different suppliers, we 
partitioned the available sensors into classes, to capture their 
relative cost, instead of considering the absolute values. 
Concerning the cost of the network, we assume a constant 
value for wireless connections (typically built-in in commercial 
nodes). Actually, some influence of the network topology 
should be considered in the case of some gateway nodes, 
mastering hierarchies of sensors patches, were identified. In 
such a case there is an additional cost related to the wired 
connection or the use of other long-range radio communication 
standards/modules (e.g., GPRS). 

V. BOARD-LEVEL DESIGN

The clustering of the set of sensors identified by the 
SWORDFISH framework is a multi-stage process, including 
the following topmost activities: compatibility analysis 
between all the possible pairs of sensors; identification of the 
boundaries of the clustering problem (worst and best case); 
generation and evaluation of the candidate solutions. 

A. Compatibility Graph 

At the beginning, the user (e.g., by accepting default 
settings) is required to specify constraints on the possible 
clustering of different sensors onto the same board. Based on 
these information, an Interference Graph G=<N,E> is built, 
where nodes n are sensors and an edge e among nodes 
represents a possible sensor interference to be avoided.  

Note that the interference is not only related to the nature of 
the sensors, as specified by the user. In fact, two sensors can 
have no shared position where both sensors are still able to 
discover the associated set of events. This latter case can be 
discovered by using the Hard function; in fact, the Hardness of 
a point to discover two events e1, e2 is the sum of the Hardness 
of both sensors computed in that point. 

Once the interference graph is completed, it is possible to 
identify the compatibility graph G’, which is its complementary 
graph G’=<N,E’>, gathering all the feasible solutions. Note 
that any possible clustering of sensors, cannot but be a clique of 
the compatibility graph. In fact, all the sensors hosted by the 
same board must be cross-compatible.  

The next step is the computation of all the maximal cliques 
of the compatibility graph G’. Since this type of activity is 
recognized to be a NP-hard problem [10] we adopted some 
heuristics to speedup the computation. 

B. Coverage of the Sensor Graph 

To better understand the optimality of placing a certain 
group of sensors onto a board, we focused at the beginning on 
the boundaries solutions, considering the cardinality of the 
cliques (not their cost). At the lowest level, each sensor 
corresponds to a board. As far the best case is concerned, the 
biggest clique has been computed, and then the same action has 
been performed on the remaining graph, and so on. At the end 
we obtain a partitioning of the compatibility graph, where its 
cliques are those clustering the maximum number of 
compatible nodes. The design space spanning between the two 
boundaries cases so identified, contains a number of possible 
solutions that is exponential with the sensor cardinality. We 
attacked the analysis of a so wide solution space through an 
heuristic structured into a couple of consecutive steps. 

1. Starting from the best case above described, solutions are 
generated by creating a new list of cliques where one sensor 
has been extracted from the biggest clique, to create a new 
single-sensor board. The same activity is then repeated, 
considering the biggest cliques at any iteration. At the end of 
such a process, a wide set of possible solutions is obtained, 
ordered for relevance i.e., in terms of cardinality of the 
biggest clique. 

978-1-4244-2108-4/08/$25.00  © 2008 IEEE 3
Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:23:27 UTC from IEEE Xplore.  Restrictions apply. 



2. All the possible pairs of the above solutions are taken into 
account for possible merging, while verifying the 
compatibility of the new sensor set. 

At the end of the second steps, the recombining of cliques 
not maximal in terms of cardinality, allows the optimizer to 
consider solutions more orthogonal, possibly characterized by 
a lower board-level cost.  

C. Selection of Solutions 

This step takes into account the candidate WSNs under the 
Pareto standpoint. The task of the PESCA algorithm is to find 
out a solution to the multi-objective clustering problem, 
considering two metrics: the cost of the solution and the 
functional quality, i.e. its performance.

The cost of a solution (set of boards) is evaluated through 
the cost model (9) described in Section IV, that is depending on 
the number and type of sensors associated with each partition. 
Concerning the performance, the badness of a solution is 
computed by exploiting the Hardness functions Hij(x,y,z) of the 
event i covered by the sensor j belonging to the same board.
Thus, the hardness of the entire WSN is: 

            
∈∈

=
Ji ijWSNj

zyxHzyxH ),,(),,(                   (10) 

The badness of the WSN is evaluated, and its minimum 
corresponds to a point where the positioning of the board is 
optimal. This new location, which is shared by all the sensors 
on the same node, is the best to ensure that all the events 
associated with the sensors can still be captured after 
clustering. Note that the solution so discovered is a Pareto 
efficient solution. In fact, all the solutions “dominated” within 
the <cost, performance> optimization space of the WSN are 
discarded during the population of the design space. 

VI. EXPERIMENTAL RESULTS

The PESCA approach to the clustering of sensors has been 
evaluated considering some validation scenarios extracted from 
the multi-partner projects supporting this work [11] [12]. 

In Fig.1 it is reported the analysis carried out on a complex 
WSN: SG of 16 basic predicates producing an optimal network 
with 18 ideal sensors. The plot reports the Pareto solutions and 
figures out the influence of the fixed costs (linked to the 
volume/standardization of boards) against the overall cost and 
performance (1/Hardness) of the clustered WSN, varying the 
fixed cost of the board. 

It is possible to observe the impact on performance and cost 
associated with the spreading vs clustering of sensors: the 
proposed quantitative analysis produces a significant value 
added for the designer when the tradeoff is not so evident. In 
such a way, the driver may be not only the cost, but also the 
capability of the WSN to fulfill the initial application 
requirements. 

Figure 1. Pareto frontier of the cost-performance tradeoff. 

VII. CONCLUSIONS

The paper presented the overall methodology of 
SWORDFISH to design WSN at system-level. Particular 
attention has been paid to the clustering of sensors onto a 
reduce set of boards with realistic architectures. The obtained 
results are promising, and some of the verification and top-
level analysis and design capabilities have been addressed by 
considering also representative use-cases [11] [12]. It has been 
shown how it is possible to optimize the WSN while ensuring 
that the original user’ goal has been fulfilled. The examples 
reveal that many side-effects of changing the behavior of the 
WSNs and sensor positioning (or clustering) produces 
significant changing in the sensing goal that are hard to be 
managed by a human designer, without the support of a 
methodology and a tool like SWORDFISH. 
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