
Gino
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• Introducing Gino

• Gino’s compilation pipeline

• Debugging Gino
2

Gino

• Gino is a parallelizing compiler for LLVM IR

• Standalone codebase
https://github.com/arcana-lab/gino

• To compile it
1. Compile and install NOELLE
2. Source NOELLE/enable
3. Go to Gino’s codebase and compile Gino

cd gino ; make

3

https://github.com/arcana-lab/gino

A typical parallelizing compiler

4

Source
code

Parallelizing compiler

Parallelizer
Front-end

IR

Middle-end

Back-end

Parallel
IR

A typical parallelizing compiler

5

Source
code

Parallelizing compiler

Identify
potential
parallelism

Mapping
parallelism
onto
the target
architecture

Optimizing
parallel code

Front-end
IR

Middle-end

Back-end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

Gino

NOELLE

Gino: the parallelizing compiler upon NOELLE

6

Source
code

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

Gino

NOELLE

Gino: the parallelizing compiler upon NOELLE

7

Source
code

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

Outline

• Introducing Gino

• Gino’s compilation pipeline

• Debugging Gino
8

Compilation pipeline

• Let’s assume test.cpp is the whole program
 (otherwise, if multiple source files exist, then
 use gclang if you run commands manually
 or use NOELLEGym to automate everything)

9

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

Gino

NOELLE

Gino: the parallelizing compiler upon NOELLE

10

Source
code

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

Alias analysis
frameworks
(SCAF, SVF, LLVM)

Gino

NOELLE

Gino: the parallelizing compiler upon NOELLE

11

Identify potential parallelism
IR

Parallelism
enablers

Memory
alias analysis

PDG generator
and SCC analysis

IR

Profilers
Abs

Compilation pipeline

1. Let’s assume test.cpp is the whole program

2. Now we need to profile the code to identify hot code

3. Now we need to make the IR more amenable for parallelization
12

Alias analysis
frameworks
(SCAF, SVF, LLVM)

Gino

NOELLE

Gino: the parallelizing compiler upon NOELLE

13

Identify potential parallelism
IR

Parallelism
enablers

Memory
alias analysis

PDG generator
and SCC analysis

IR

Profilers
Abs

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

Gino

NOELLE

Gino: the parallelizing compiler upon NOELLE

14

Source
code

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

Gino

NOELLE

Gino: the parallelizing compiler upon NOELLE

15

Mapping parallelism onto
the target architecture

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

Compilation pipeline

4. We need to profile the code

5. Now we need to compute the PDG and embed it into the IR

6. Now we can parallelize the IR

7. Now we can generate the parallelized binary
16

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

Gino

NOELLE

Gino: the parallelizing compiler upon NOELLE

17

Mapping parallelism onto
the target architecture

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

Gino

NOELLE

Gino: the parallelizing compiler upon NOELLE

18

Source
code

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

Outline

• Introducing Gino

• Gino’s compilation pipeline

• Debugging Gino
19

Developing and testing

• Let’s say you are working to improve Gino or NOELLE
(e.g., induction variable detection algorithm)

• You need to test the correctness and impact of your work.
• Gino can help you to do it

20

…

Testing

Regression tests

Performance (of the generated binary)
tests

• NOELLE includes tests for its code transformations
(e.g., code parallelization, loop-invariant code motion, etc…)

21

Testing

• NOELLE includes tests for its code transformations
(e.g., code parallelization, loop-invariant code motion, etc…)

cd tests ;
If you don’t have
condor installed
in your platform

make
It runs the transformations
only using their default configurations
(e.g., unroll-factor set to be the default one)

make condor

If you have condor installed
in your platform

It generates condor files to run
in parallel all transformations
with many different configurations
(generating more than 30,000 tests
 that all run in parallel)

22

Testing with condor

cd tests ; make condor

…

…

copy of the original regression dir
one directory per configuration for
the code transformations

.

.

. All these tests
(~30,000 at the moment)
run in parallel!

23

Testing with condor

cd tests ; make condor

…

…

cd tests ; make condor_check

24

Testing with condor

cd tests ; make condor

…

…

cd tests ; make condor_check

• Tests that completed successfully
get automatically deleted

• Directory of a test that failed is kept
(so you can debug it; check compiler_output.txt)
and a script to reproduce the fail
is automatically generated

• To reproduce the fail:
• Go to the directory of the test

(e.g., cd regression_4/Simple)
• Run ./run_me.sh

25

Re-run the tests using condor

cd tests ;

1. Make sure no tests are still running
condor_q `whoami`

2. Clean the tests directory
make clean

3. Run the tests
make condor

26

Running a single test without condor

cd tests ; make download 1. Go to the test directory
(e.g., cd regression/Simple)

2. Clean the directory
make clean

3. Enable NOELLE and Gino binaries
in your environment
source ../../../enable
source WHERE_NOELLE_IS/enable

4. Run the test
make test_correctness

5. Check the output
(look at the makefile to understand the scripts)

27

Notes about improving Gino or NOELLE

28

Typical flow

1. The parallelizer in the master branch works,
but you want to improve the speedup obtained by it for a given benchmark
• Let’s assume you are using NOELLEGym

2. You extend/modify a code analysis/transformation in the
parallelizing pipeline described in these slides
• To do so, you modify something in NOELLEGym/NOELLE/src,

and then you recompile and install NOELLE

3. You re-run the parallelizer and the new parallel binary generated doesn’t work
(e.g., seg fault)

29
How should you debug it?

An approach to debug
a loop-based parallelizing compiler
Assumption: the bug fit the common case, which is about parallelizing a given loop
(independent on what other loops are parallelized)
1. Shrinking:

Identify a single loop that its parallelization
(when using the new changes) leads to the bug

2. Comparing:
Use master to parallelize that single loop.
Check the differences (compiler output and then the IR)
of the parallelization between master and the changes.

3. Correctness checking:
Deep analysis on the difference in parallelization that is incorrect
(by manually checking why that parallelization aspect that differ is incorrect) 30

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

31

Loops of the program
that satisfies the options
given as input to NOELLE

Loops selected
 by the planner

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

32

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

33

$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll

Loops selected
 by the planner

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

34

$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

35

$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

36

$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll

Remove looporder for a few at a times (e.g., binary search)

Then, compile and run a given version of code_to_parallelize.ll
that has a subset (or one) loop with the looporder metadata

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

37

Remove looporder for a few at a times

Then, compile and run a given version
of code_to_parallelize.ll
that has a subset (or one) loop
with the looporder metadata

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

38

Remove looporder for a few at a times

Then, compile and run a given version
of code_to_parallelize.ll
that has a subset (or one) loop
with the looporder metadata

code_to_parallelize.ll

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

39

Remove looporder for a few at a times

Then, compile and run a given version
of code_to_parallelize.ll
that has a subset (or one) loop
with the looporder metadata

code_to_parallelize.ll

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

As soon as you found the bad loop, go to step 2

40

An approach to debug
a loop-based parallelizing compiler
1. Shrinking:

Identify a single loop that its parallelization
(when using the new changes) leads to the bug

2. Comparing:
Use master to parallelize that single loop.
Check the differences (compiler output and then the IR)
of the parallelization between master and the changes.

41

An approach to debug
a loop-based parallelizing compiler
Assumption: the bug fit the common case, which is about parallelizing a given loop
(independent on what other loops are parallelized)
1. Shrinking:

Identify a single loop that its parallelization
(when using the new changes) leads to the bug

2. Comparing:
Use master to parallelize that single loop.
Check the differences (compiler output and then the IR)
of the parallelization between master and the changes.

3. Correctness checking:
Deep analysis on the difference in parallelization that is incorrect
(by manually checking why that parallelization aspect that differ is incorrect) 42

Always have faith in your ability

Success will come your way eventually

Best of luck!

43

