
LLVM
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• Summary of 323: LLVM

• Summary of 323: LLVM IR

• Summary of 323: Dependences

2

LLVM
• LLVM is a great, hackable compiler for C/C++ languages
• C, C++, Objective-C

• But it’s also
• A dynamic compiler
• A compiler for bytecode languages (e.g., Java, CIL bytecode)

• LLVM IR: bitcode
• LLVM is modular and well documented
• Started from UIUC, it’s now the research tool of choice
• It’s an industrial-strength compiler

Apple, AMD, Intel, NVIDIA
3

http://awards.acm.org/award_winners/lattner_5074762.cfm

LLVM tools
• clang: compile C/C++ code as well as OpenMP code
• clang-format: to format C/C++ code
• clang-tidy: to detect and fix bug-prone patterns, performance, portability and maintainability issues
• clangd: to make editors (e.g., vim) smart
• clang-rename: to refactor C/C++ code
• SAFECode: memory checker
• lldb: debugger
• lld: linker
• polly: parallelizing compiler
• libclc: OpenCL standard library
• dragonegg: integrate GCC parsers
• vmkit: bytecode virtual machines
• … and many more

4

LLVM common use at 10000 feet

clang

Source files

Binary 5

LLVM common use at 10000 feet

clang

Source files

Binary 6

LLVM common use at 10000 feet

clang

Source files

Binary

Lib/tool 2

Lib/tool 4Lib/tool…Lib/tool 3

Lib/tool 1
Lib/tool…

Lib/tool…
Lib/tool…

Lib/tool…

Lib/tool…
LLVM They all talk bitcode

7

LLVM internals

• A component is composed of pipelines
• Each stage: reads something as input and

 generates something as output
• To develop a stage: specify how to transform the input

 to generate the output

• Some complexity lies in linking stages

8

LLVM and other compilers

• LLVM is designed around it’s IR
• Multiple forms (human readable, bitcode on-disk, in memory)

Front-end (Clang)
IR

Middle-end

IR

Back-end
Machine code

IR

Pass

Pass

IR

IR
…

Pass
manager

9

Pass manager

• The pass manager orchestrates passes

• It builds the pipeline of passes in the middle-end

• The pipeline is created by respecting the dependences
declared by each pass

Pass X depends on Y
Y will be invoked before X

10

Pass types

Use the “smallest” one for your project
• CallGraphSCCPass
•ModulePass
• FunctionPass
• LoopPass
• BasicBlockPass

int bar (void){
 return foo(2);
}
int foo (int p){
 return p+1;
}

11

Adding a pass

• Internally

• Externally
• More convenient to develop (compile-debug loop is much faster!)

https://github.com/scampanoni/LLVM_middleend_template

clang vmkit …

clang vmkit …

12

https://github.com/scampanoni/LLVM_middleend_template

CatPass.cpp

13

Outline

• Summary of 323: LLVM

• Summary of 323: LLVM IR

• Summary of 323: Dependences

14

Passes

• A compilation pass reads and (sometime) modifies
the bitcode (LLVM IR)

• If you want to understand code properties:
you need to understand the bitcode

• If you want to modify the bitcode:
you need to understand the bitcode first

15

LLVM IR (a.k.a. bitcode)

• RISC-based
• Instructions operate on variables
• Load and store to access memory

• Include high level instructions
• Function calls (call, invoke)
• Pointer arithmetics (getelementptr)

16

LLVM IR (2)

• Strongly typed
• No assignments of variables with different types
• You need to explicitly cast variables
• Load and store to access memory

• Variables
• Global (@myVar)
• Local to a function (%myVar)
• Function parameter (define i32 @myF (i32 %myPar))

17

LLVM IR (3)

• 3 different (but 100% equivalent) formats
• Assembly: human-readable format (FILENAME.ll)
• Bitcode: machine binary on-disk (FILENAME.bc)
• In memory: in memory binary

• Generating IR
• Clang for C-like languages (similar options w.r.t. GCC)
• Different front-ends available

18

LLVM IR (4)

It’s a Static Single Assignment (SSA) representation
• A variable is set only by one instruction in the function body
%myVar = …
• A static assignment can be executed more than once

19

SSA and not SSA example
float myF (float par1, float par2, float par3){
 return (par1 * par2) + par3; }

define float @myF(float %par1, float %par2, float %par3) {
 %1 = fmul float %par1, %par2
 %2 = fadd float %1, %par3
 ret float %2 }

define float @myF(float %par1, float %par2, float %par3) {
 %1 = fmul float %par1, %par2
 %1 = fadd float %1, %par3
 ret float %1 } NOT SSA

SSA 20

SSA and not SSA

• Passes applied to SSA-based code are faster!
• Old compilers aren’t SSA-based
• Transforming IR in its SSA-form takes time

•When designing your pass, think carefully about SSA
• Take advantage of its properties

21

LLVM tools to read/generate IR

• clang to compile/optimize/generate LLVM IR code
• To generate binaries from source code or IR code

• lli to execute (interpret/JIT) LLVM IR code
lli FILE.bc

• llc to generate assembly from LLVM IR code
llc FILE.bc

22

LLVM tools to read/generate IR

• opt to analyze/transform LLVM IR code
• Read LLVM IR file
• Load external passes
• Run specified passes
• Respect pass order you specify as input

• opt -pass1 -pass2 FILE.ll

• Optionally generate transformed IR
• Useful passes

• opt -view-cfg FILE.ll
• opt -view-dom FILE.ll

• opt -help

23

Running LLVM passes

opt –load MYPASS.so –CAT A.bc –o B.bc

24

Outline

• Summary of 323: LLVM

• Summary of 323: LLVM IR

• Summary of 323: Dependences

25

Dependences: the big picture

• Code transformations are designed
to preserve the “semantics” of the code given as input
• What is the “semantics” of a program?

• A dependence A -> B is satisfied if
A will always execute before B
• If we satisfy all dependences in the code,

then we will preserve I => O

1: varX = par1 + 1
2: varY = par2 + par1
3: varZ = varY + varX
4: print(varZ)

4: print(varZ)
1: varX = par1 + 1
2: varY = par2 + par1
3: varZ = varX + varY

2: varY = par2 + par1
1: varX = par1 + 1
3: varZ = varX + varY
4: print(varZ)

A: varX = 1;
B: if (par1 > 5)
C: varX = par1 + 1
D: print(varX) 26

Control dependence intuition

• Dependence: C will be executed depending on B

• How to identify C?
(automatically)
• We need a

Control Flow Analysis

A: varX = 1;
B: if (par1 > 5)
C: varX = par1 + 1
D: print(varX)

B

C

D

CFG

27

Post-dominators

B

C

D

D

C2 B

CFG
Immediate
post-dominator tree

B: if (par1 > 5)
C: varX = par1 + 1
C2: …
D: print(varX)

C2 C

Assumption: Single exit node in CFG
Definition: Node d post-dominates node n in a graph
if every path from n to the exit node goes through d

28

Control dependences
A node Y control-depends on another node Y if and only if
1. There is a path from X to Y such that

every node in that path other than X and Y is post-dominated by Y
2. X is not strictly post-dominated by Y

B

C

D

D

C2

B

CFG
Immediate
post-dominator tree

B: while (par1 > 5)
C: varX = par1 + 1
C2: …
D: print(varX)

C2
C

29

Data dependences

• Gives constraints on parallelism that must be satisfied

• Must be satisfied to have correct program
• How can we satisfy data dependences?

• Any order that does not violate these dependences is correct!

30

Loop-carried data dependences

while(…){
 j: *p = x + 1;
 i: x = …;
 …
}

i

j

while(…){
 i: x = …;
 j: *p = x + 1;
 …
}

i

j
LC

31

Loop-carried data dependences
while(…){
 j: *p = x + 1;
 i: x = …;
 …
}

i

j
LC

while(…){
 j: *p = A[i-2] + 1;
 i: A[i] = …;
 k: i++;
}

i

j
LC

Distance =1

Distance =2

32

Program dependence graph (PDG)

• Program Dependence Graph = Control Dependence Graph +
 Data Dependences

• Facilitates performing most traditional optimizations
• Constant folding, scalar propagation, common subexpression elimination,

code motion, strength reduction, code parallelization, code vectorization,
etc…

• Requires only single walk over PDG

33

i0: while (i <= N)
i1: X = Y + 1
i2: K = Z * 5
i3: Y = X * 42
i4: Z = K + 2
i5: i = i + 1

Strongly Connected Component (SCC)

Often you need to partition instructions in groups
• Where each group is composed of instructions that depend on each other

Different colors <-> different cycles in the PDG => different cores

i1: X = Y + 1
i3: Y = X * 42

i2: K = Z * 5
i4: Z = K + 2

Core 0 Core 0 Core 1

34

Strongly Connected Component (SCC)

• A directed graph is strongly connected if
there is a path between all pairs of vertices

• A strongly connected component (SCC) of a directed graph is a
maximal strongly connected subgraph

A

B C

A

B C
D E

35

SCCDAG

• From the PDG

• To the SCC identifications

A

B C

D

E

36

SCCDAG

• From the PDG

• To the SCC identifications

• To the SCCDAG

A

B C

D

E

SCC 0

SCC 1

i0: while (i <= N)
i1: X = Y + 1
i2: K = Z * 5
i3: Y = X * 42
i4: Z = K + 2
i5: i = i + 1 37

Always have faith in your ability

Success will come your way eventually

Best of luck!

38

