An Introduction to MEMOIR

Tommy M‘Michen

Advanced Topics in Compilers

Northwestern) At
University ARCANA CONSTELLATION

nnn

RASTIAGILR:

Overview

Bird’s Eye View

MEMOIR is a

Overview

Bird’s Eye View

MEMOIR is a

[Compiler Intermediate Representation }

Overview

Bird’s Eye View

MEMOIR is a
Compiler Intermediate Representation
for

[Data Collections and Objects }

Overview

Bird’s Eye View

MEMOIR is a
Compiler Intermediate Representation
for
Data Collections and Objects
in an

[SSA Form }

Overview

Outline

{ What is a Data Collection? J

Overview

Outline

[What is a Data Collection?]

Overview

Outline

What is a Data Collection?

What is SSA?

[How can | analyze it?]

Overview

Outline

What is a Data Collection?

What is SSA?

How can | analyze it?

{ How can | transform it? J

9

Data Collection

A logical organization of data

Data Collections

Examples

List

Data Collections

Examples

List

Dense Array

Sparse Array

Data Collections

Examples

B S mpeo
)

List

\——’

Set

Dense Array

Sparse Array

Data Collections

Examples
e P
gt EEo

\———

Set

Dense Array

I

Sparse Array

Data Collections

Examples
e P
- mmo '/'\<
“Set

Tree

Dense Array

Graph

Sparse Array

Data Collections

Examples

e

List

.

Sequential

Dense Array

Sparse Array

~\

— O —

(III

\—_—

Set

‘ Associative |

—_———————-—~

(\
|
|
|

/

Tree

Graph

Data Collections

Examples

e

List

.

Sequential

Dense Array

Sparse Array

~\

g T

(III

\—_—

Set

‘ Associative |

—_———————-—~

(\
|
|
|

/

Tree
|id > [2xid] |

Graph

| id—{id} |

Data Collections

Examples

e

List

.

Sequential

Dense Array

Sparse Array

~\

— O —

(III

\——-—

Set

‘ Associative |

—_———————-—~

f \
|
|
|

/

Data Collections

Representation

Index-Value Mapping

Index Space

Lo

Data Collections

Operations on the Index-Value Mapping

[Index-Value Mapping]

Index Space

it

@
@

20

Data Collections

Operations on the Index-Value Mapping

[Index-Value Mapping}

Index Space

i

swap'!

Data Collections

Operations on the Index Space

Index-Value Mapping

{ Index Space }

remove'!

@

22

Data Collections

Operations on the Index Space

Index-Value Mapping

{ Index Space }

insert!

@

Static Single Assignment

A language constraint, where
each variable has a single
definition in the static program.

Why SSA?
!

Referential Transparency

Referential Transparency

Replacing a subexpression with
an equivalent one produces an
equivalent expression.

26

SSA
Referential Transparency

She lives in Chicago

SN—"
)

She lives in the largest city in Illinois

27

SSA

Referential Opacity

‘Chicago’ contains seven letters

>+

‘The largest city in Illinois’ contains seven letters

28

SSA

Benefits of Referential Transparency

a

A variable’s value is independent of its
position in the program

29

SSA

Benefits of Referential Transparency

A variable’s value is independent of its
position in the program

-

Information attached to the definition of a
variable is true for all uses of the variable

4

30

SSA
So, what about data collections?

write!(c, i, v)

Semantics: Following this operation, c[1i] = v

31

SSA
So, what about data collections?

write!(c, i, v)
Semantics: Following this operation, c[1i] = v
But, is read(c, i)=v?

Not necessarily! Depends on its position in the program.

32

SSA
So, what about data collections?

write!(c, i, v)

read(c, 1)

Yep! The use of ¢ is dominated by the write! and is not
dominated by any other write! to c

33

SSA
So, what about data collections?

write!(c, i, v)
write!(c, i, w)

read(c, 1)

Nope! The use of c is dominated by the write!, but is
dominated by another write! toc

34

SSA
So, what about data collections?

read(c, 1)

write!(c, i, v)

Nope! The use of c is not dominated by the write!

35

SSA
So, how do we fix this? SSA Construction.

?

c'_= write(c, i, v)

read(c’, i)

36

SSA

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

?

write!(c, i, v) — ¢’ = write(c, i, v)

37

SSA

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, i, v) — ¢’ = write(c, i, v)

swap!(c, i, j) - ¢’ = swap(c, i, j)

38

SSA

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, 1, v) — ¢’ = write(c, i, v)
swap!(c, i, Jj) — ¢' = swap(c, i, Jj)
remove!(c, i) — ¢’ = remove(c, 1)
insert!(c, i, v) — ¢’ = insert(c, 1, v)

39

SSA

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, 1, v) — ¢’ = write(c, i, v)
swap!(c, i, j) — ¢’ = swap(c, i, j)
remove!(c, i) — ¢’ = remove(c, 1)
insert!(c, i, v) — ¢’ = insert(c, 1, v)
read(c, i) — v = read(c, i)

40

SSA

So, what about MEMOIR?

Other, useful query operations can be easily performed:

h

size(c) D # of elements in ¢

has(c, 1) D does c¢ have index i?

ks = keys(c) > sequence of keys in ¢

4

MEMOIR

The MEMOIR Compiler

N

MEMOIR

N

31140N

N

LLVM

42

MEMOIR

Step-by-step instructions are available

Writing a pass:

mcmichen.cc/memoir-docs/user/writing_a_pass

Writing a program:

mcmichen.cc/memoir-docs/user/writing_a_program

43

http://mcmichen.cc/memoir-docs/user/writing_a_pass.html
http://mcmichen.cc/memoir-docs/user/writing_a_program.html

Conclusion

Additional Resources

Developer manual:

mcmichen.cc/memoir-docs

Doxygen:

mcmichen.cc/memoir-doxygen

The CGO’24 paper:

mcmichen.cc/files/MEMOIR_CGO_2024.pdf

44

http://mcmichen.cc/memoir-docs
https://mcmichen.cc/memoir-doxygen
https://mcmichen.cc/files/MEMOIR_CGO_2024.pdf

Yippee!
Live Coding Time

