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Outline
Overview

What is a Data Collection?

What is SSA?

How can I analyze it?

How can I transform it?
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A logical organization of data
Data Collection
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A language constraint, where 
each variable has a single 

definition in the static program.

Static Single Assignment
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↓
Referential Transparency

Why SSA?
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Replacing a subexpression with 
an equivalent one produces an 

equivalent expression.

Referential Transparency
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Referential Transparency

She lives in Chicago

≍

She lives in the largest city in Illinois

SSA
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Referential Opacity

‘Chicago’ contains seven letters

≭ 
‘The largest city in Illinois’ contains seven letters

SSA
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Benefits of Referential Transparency
SSA

A variable’s value is independent of its 
position in the program
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Benefits of Referential Transparency
SSA

A variable’s value is independent of its 
position in the program

Information attached to the definition of a 
variable is true for all uses of the variable
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write!(c, i, v)

Semantics: Following this operation, c[i] = v

SSA



32

So, what about data collections?

write!(c, i, v)

Semantics: Following this operation, c[i] = v

But, is  read(c, i) ≍ v ?

Not necessarily! Depends on its position in the program.

SSA
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Yep! The use of c is dominated by the write! and is not 
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So, what about data collections?

write!(c, i, v)

write!(c, i, w)

read(c, i)

Nope! The use of c is dominated by the write!, but is 
dominated by another write! to c
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So, what about data collections?

read(c, i)

write!(c, i, v)

Nope! The use of c is not dominated by the write!

SSA
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So, how do we fix this? SSA Construction.

c’ = write(c, i, v)

read(c’, i)

SSA
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So, what about MEMOIR?

Each operation on a collection produces a new collection 
(except for read)

write!(c, i, v)    -> c’ = write(c, i, v)

swap!(c, i, j)     -> c’ = swap(c, i, j)

remove!(c, i)      -> c’ = remove(c, i)

insert!(c, i, v)   -> c’ = insert(c, i, v)

read(c, i)         -> v  = read(c, i)

SSA
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So, what about MEMOIR?

Other, useful query operations can be easily performed:

n = size(c)    |> # of elements in c

h = has(c, i)  |> does c have index i?

ks = keys(c)   |> sequence of keys in c

SSA
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The MEMOIR Compiler
MEMOIR

MEMOIR

LLVM

N
O

ELLE
⇄

⇄

⇅
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Step-by-step instructions are available
MEMOIR

Writing a pass:

mcmichen.cc/memoir-docs/user/writing_a_pass

Writing a program:

mcmichen.cc/memoir-docs/user/writing_a_program

http://mcmichen.cc/memoir-docs/user/writing_a_pass.html
http://mcmichen.cc/memoir-docs/user/writing_a_program.html
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Additional Resources

Developer manual:

mcmichen.cc/memoir-docs

Doxygen:

mcmichen.cc/memoir-doxygen

The CGO’24 paper:

mcmichen.cc/files/MEMOIR_CGO_2024.pdf

Conclusion

http://mcmichen.cc/memoir-docs
https://mcmichen.cc/memoir-doxygen
https://mcmichen.cc/files/MEMOIR_CGO_2024.pdf
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Live Coding Time
Yippee!


