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Outline

What is a Data Collection?

What is SSA?

How can | analyze it?

{ How can | transform it? J
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Data Collection

A logical organization of data
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Operations on the Index-Value Mapping
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Static Single Assignment

A language constraint, where
each variable has a single
definition in the static program.
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Referential Transparency




Referential Transparency

Replacing a subexpression with
an equivalent one produces an
equivalent expression.
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SSA
Referential Transparency

She lives in Chicago

SN—"
)

She lives in the largest city in Illinois
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SSA

Referential Opacity

‘Chicago’ contains seven letters

>+

‘The largest city in Illinois’ contains seven letters
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SSA

Benefits of Referential Transparency

a

A variable’s value is independent of its
position in the program
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SSA

Benefits of Referential Transparency

A variable’s value is independent of its
position in the program

-

Information attached to the definition of a
variable is true for all uses of the variable

4
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SSA
So, what about data collections?

write!(c, i, v)

Semantics: Following this operation, c[1i] = v
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SSA
So, what about data collections?

write!(c, i, v)
Semantics: Following this operation, c[1i] = v
But, is read(c, i)=v?

Not necessarily! Depends on its position in the program.
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SSA
So, what about data collections?

write!(c, i, v)

read(c, 1)

Yep! The use of ¢ is dominated by the write! and is not
dominated by any other write! to c
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SSA
So, what about data collections?

write!(c, i, v)
write!(c, i, w)

read(c, 1)

Nope! The use of c is dominated by the write!, but is
dominated by another write! toc
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SSA
So, what about data collections?

read(c, 1)

write!(c, i, v)

Nope! The use of c is not dominated by the write!

35



SSA
So, how do we fix this? SSA Construction.

?

c'_= write(c, i, v)

read(c’, i)
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SSA

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

?

write!(c, i, v) — ¢’ = write(c, i, v)
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SSA

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, i, v) — ¢’ = write(c, i, v)

swap!(c, i, j) - ¢’ = swap(c, i, j)
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SSA

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, 1, v) — ¢’ = write(c, i, v)
swap!(c, i, Jj) — ¢' = swap(c, i, Jj)
remove!(c, i) — ¢’ = remove(c, 1)
insert!(c, i, v) — ¢’ = insert(c, 1, v)
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SSA

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, 1, v) — ¢’ = write(c, i, v)
swap!(c, i, j) — ¢’ = swap(c, i, j)
remove!(c, i) — ¢’ = remove(c, 1)
insert!(c, i, v) — ¢’ = insert(c, 1, v)
read(c, i) — v = read(c, i)
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SSA

So, what about MEMOIR?

Other, useful query operations can be easily performed:

h

size(c) D # of elements in ¢

has(c, 1) D does c¢ have index i?

ks = keys(c) > sequence of keys in ¢
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MEMOIR

The MEMOIR Compiler

N

MEMOIR
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LLVM
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MEMOIR

Step-by-step instructions are available

Writing a pass:

mcmichen.cc/memoir-docs/user/writing_a_pass

Writing a program:

mcmichen.cc/memoir-docs/user/writing_a_program
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http://mcmichen.cc/memoir-docs/user/writing_a_program.html

Conclusion

Additional Resources

Developer manual:

mcmichen.cc/memoir-docs

Doxygen:

mcmichen.cc/memoir-doxygen

The CGO’24 paper:

mcmichen.cc/files/MEMOIR_CGO_2024.pdf
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https://mcmichen.cc/memoir-doxygen
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Yippee!
Live Coding Time




