
An Introduction to MEMOIR
Tommy McMichen
Advanced Topics in Compilers

2

Bird’s Eye View
Overview

MEMOIR is a

Compiler Intermediate Representation

for

Data Collections and Objects

in

SSA Form

3

Bird’s Eye View
Overview

MEMOIR is a

Compiler Intermediate Representation

for

Data Collections and Objects

in

SSA Form

4

Bird’s Eye View
Overview

MEMOIR is a

Compiler Intermediate Representation

for

Data Collections and Objects

in

SSA Form

5

Bird’s Eye View
Overview

MEMOIR is a

Compiler Intermediate Representation

for

Data Collections and Objects

in an

SSA Form

6

Outline
Overview

What is a Data Collection?

7

Outline
Overview

What is a Data Collection?

What is SSA?

8

Outline
Overview

What is a Data Collection?

What is SSA?

How can I analyze it?

9

Outline
Overview

What is a Data Collection?

What is SSA?

How can I analyze it?

How can I transform it?

10

A logical organization of data
Data Collection

11

Examples
Data Collections

List

12

Examples
Data Collections

List

Dense Array

Sparse Array

13

Examples
Data Collections

List

Set

Dense Array

Sparse Array

14

Examples
Data Collections

List

Set

Map

Dense Array

Sparse Array

15

Examples
Data Collections

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

16

Examples
Data Collections

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

Sequential Associative

17

Examples
Data Collections

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

Sequential Associative
id → [2 ✕ id]

id → { id }

18

id → [2 ✕ id]

id → { id }

Examples
Data Collections

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

Sequential Associative Composition

19

Representation
Data Collections

In
de

x
S

pa
ce

Index-Value Mapping

20

Operations on the Index-Value Mapping
Data Collections

In
de

x
S

pa
ce

Index-Value Mapping

write!

↦

21

Operations on the Index-Value Mapping
Data Collections

In
de

x
S

pa
ce

Index-Value Mapping

swap!

⇌

22

Operations on the Index Space
Data Collections

In
de

x
S

pa
ce

Index-Value Mapping

remove!

23

Operations on the Index Space
Data Collections

In
de

x
S

pa
ce

Index-Value Mapping

insert!

↦

24

A language constraint, where
each variable has a single

definition in the static program.

Static Single Assignment

25

↓
Referential Transparency

Why SSA?

26

Replacing a subexpression with
an equivalent one produces an

equivalent expression.

Referential Transparency

27

Referential Transparency

She lives in Chicago

≍

She lives in the largest city in Illinois

SSA

28

Referential Opacity

‘Chicago’ contains seven letters

≭
‘The largest city in Illinois’ contains seven letters

SSA

29

Benefits of Referential Transparency
SSA

A variable’s value is independent of its
position in the program

30

Benefits of Referential Transparency
SSA

A variable’s value is independent of its
position in the program

Information attached to the definition of a
variable is true for all uses of the variable

31

So, what about data collections?

write!(c, i, v)

Semantics: Following this operation, c[i] = v

SSA

32

So, what about data collections?

write!(c, i, v)

Semantics: Following this operation, c[i] = v

But, is read(c, i) ≍ v ?

Not necessarily! Depends on its position in the program.

SSA

33

So, what about data collections?

write!(c, i, v)

read(c, i)

Yep! The use of c is dominated by the write! and is not
dominated by any other write! to c

SSA

34

So, what about data collections?

write!(c, i, v)

write!(c, i, w)

read(c, i)

Nope! The use of c is dominated by the write!, but is
dominated by another write! to c

SSA

35

So, what about data collections?

read(c, i)

write!(c, i, v)

Nope! The use of c is not dominated by the write!

SSA

36

So, how do we fix this? SSA Construction.

c’ = write(c, i, v)

read(c’, i)

SSA

37

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, i, v) -> c’ = write(c, i, v)

SSA

38

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, i, v) -> c’ = write(c, i, v)

swap!(c, i, j) -> c’ = swap(c, i, j)

SSA

39

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, i, v) -> c’ = write(c, i, v)

swap!(c, i, j) -> c’ = swap(c, i, j)

remove!(c, i) -> c’ = remove(c, i)

insert!(c, i, v) -> c’ = insert(c, i, v)

SSA

40

So, what about MEMOIR?

Each operation on a collection produces a new collection
(except for read)

write!(c, i, v) -> c’ = write(c, i, v)

swap!(c, i, j) -> c’ = swap(c, i, j)

remove!(c, i) -> c’ = remove(c, i)

insert!(c, i, v) -> c’ = insert(c, i, v)

read(c, i) -> v = read(c, i)

SSA

41

So, what about MEMOIR?

Other, useful query operations can be easily performed:

n = size(c) |> # of elements in c

h = has(c, i) |> does c have index i?

ks = keys(c) |> sequence of keys in c

SSA

42

The MEMOIR Compiler
MEMOIR

MEMOIR

LLVM

N
O

ELLE
⇄

⇄

⇅

43

Step-by-step instructions are available
MEMOIR

Writing a pass:

mcmichen.cc/memoir-docs/user/writing_a_pass

Writing a program:

mcmichen.cc/memoir-docs/user/writing_a_program

http://mcmichen.cc/memoir-docs/user/writing_a_pass.html
http://mcmichen.cc/memoir-docs/user/writing_a_program.html

44

Additional Resources

Developer manual:

mcmichen.cc/memoir-docs

Doxygen:

mcmichen.cc/memoir-doxygen

The CGO’24 paper:

mcmichen.cc/files/MEMOIR_CGO_2024.pdf

Conclusion

http://mcmichen.cc/memoir-docs
https://mcmichen.cc/memoir-doxygen
https://mcmichen.cc/files/MEMOIR_CGO_2024.pdf

45

Live Coding Time
Yippee!

