Advanced

T PICS
n
C mpilers

NOELLEGym

Simone Campanoni
simone.campanoni@northwestern.edu




Outline

* Introduction
* Compile and optimize benchmarks
e Run benchmarks

* Inspect and modify the sources of a benchmark



NOELLEGym: introduction

* Infrastructure to test NOELLE-based optimizations
on benchmarks typically used in research venues
link

* Not particularly well designed
 Started as a quick “put-together” infrastructure to quickly collect results
* We are slowly improving its design

* Feel free to make changes and do pull-requests
(we’ll all appreciate it!)


https://github.com/arcana-lab/noelleGym

NOELLEGym: structure

benchmarkSuites
bin

docker

LICENSE

log
makefiles
README .md
results
scripts

What an user can run ”———————‘——————————'

Results (e.q., speedups, IR)
obtained

Scripts that will be invoked by

clean

compile
compileAndRun
optimizeBenchmark
rmBenchmark

run

runBaseline
runCondor
runTechnique
setup
statistics
status
uninstall




Software dependences

Your environment needs to have the following installation:
* GO (we tested with 1.13.7 as well as 1.17.13)

* L[LVM 9.0.0

* Bash

* Python 3



Software dependences on hanlon and alike

* export PATH=/home/software/go1.17.13/bin/:SPATH

« export PATH=/home/software/llvm-9.0.0/bin/:SPATH



Software dependences on Zythos

* source /project/go/go 1.13.7/enable
* source /project/extra/llvm/9.0.0/enable

 source /project/gllvm/enable



Compiling NOELLEGym

* NOELLEGym relies on software that needs to be compiled

e To do so, run:
(after your environment is set as described in previous slides)
/bin/setup



NOELLEGym: structure after setup

makefiles
output.txt
README .md

— The benchmarks to compile, optimize, and run

NOELLE and GINO downloaded, compiled, and installed

— Qutput generated by the commands executed by the user

The results obtained after the compilation, optimization,

and execution of the benchamrks



Outline

* Compile and optimize benchmarks
* Run benchmarks

* Inspect and modify the sources of a benchmark



Parallelize all benchmarks with GINO
./bin/clean

./bin/compile

] The first time this command executes, it performs the following:
all_benchmark_suites 1 he sinal file f ire b h K
behchmarkEintas . It generates the single IR file for an entire benchmark,
bin for all benchmarks, in all benchmark suites
docker 2. It runs the optimization/parallelization for all benchmarks,

external in all benchmark suites
LICENSE

log
makefiles
output.txt
README . md
results
scripts

Sub-sequent invocations of the same command will only perform 2.




Parallelize all benchmarks with GINO:
Checking the output

basicmath
bf_d

bf_e
bitcnts

cjpeg

crc

. djpeg
all_benchmark_suites £Ft

benchmarkSuites fft_inv

bin lame

lout . .
docker ngrt baseline_parallelized_DOALL.bc
external rowcaudio N Paseline_parallelized DOALL_noelle_output.txt
LICENSE : baseline_with_metadata.bc

rawdaudio . .
log search baseline_with_metadata_noelle_output.txt
makefiles benchmarks® sha NOELLE_input.bc
output.txt susan_c
README .md authors_machine MiBench susan_e : .
T current_machine i i cuean < Single IR for the entire program

scripts PARSEC3 toast generated by the compiler front-end
PolyBench untoast




Parallelize all benchmarks with GINO:
Checking the output

basicmath
bf_d

bf_e
bitcnts
cjpeg
crc

. djpeg
all_benchmark_suites £Ft

benchmarkSuites fft_inv
bin lame

docker 1:g:t baseline_parallelized_DOALL.b<

external q di baseline_parallelized_DOALLZnoelle_output.txt
LICENSE :g:;gszS baseline_with_metadata.bc

log baseline_with_metadata_noelle_output.txt

search .
makefiles benchmarks® sha NOELLE_input.bc

output.txt susan_c

README .md authors_machine MiBench susan_e . .
results current_machine NAS susan. s Cumulative debugglng output

scripts PARSEC3 toast of all enablers

IR generated by parallelism enablers
(this is still sequential)

PolyBench untoast



Parallelize all benchmarks with GINO:
Checking the output

basicmath

bf_d
Eifints Parallel IR generated by
cjpeg NOELLE-enabled

crc . e .
_ dipeg parallelizing compiler when
all_benchmark_suites

fft -
benchmarkSuites et i configured to use only DOALL

bin lame
docker lout
external gsort

LICENSE raw;aug}o baseline_with_metadata.bc
log rawdaudio

search baseline_with_metadata_noelie_output.txt
MAKEGELES benchmarksf® sha NOELLE_input.bc

output.txt susan_c

README . md authors_machine MiBench susan_e .
results current_machine NAS susan. s Debugglng output of the

scripts PARSEC3 toast parallelizing compiler

baseline_parailelized_DOALL.bc
baseline_parallelized_DOALL_noelle_output.txt

PolyBench untoast



Check the status

./bin/status

It checks the status of results/current_machine of:

1. IR generated

2. Statistics about dependences in IR, parallelization performed
3. Execution times of the different IRs

It prints what is missing

[$ ./bin/status
Next we list the results/code that are currently missing in "results/current_machine"

IR

suite
suite
suite
suite
suite
suite
suite
suite
suite
suite
suite
suite
suite

"MiBench"
"MiBench"
"MiBench"
"MiBench"
"MiBench"
"NAS" has
"NAS" has
"NAS" has
"PARSEC3"
"PARSEC3"
"PARSEC3"
"PARSEC3"
"PARSEC3"

Dependences

suite
suite
suite
suite

"MiBench"
"MiBench"
"PARSEC3"
"PARSEC3"

Parallelization

suite
suite
suite
suite
suite
suite
suite
suite
suite
suite
suite
suite

"MiBench"
"MiBench"
"MiBench"
"MiBench"
"NAS" has
"NAS" has
"NAS" has
"NAS" has
"PARSEC3"
"PARSEC3"
"PARSEC3"
"PARSEC3"

Execution time

suite
suite
suite
suite
suite
suite
suite
suite
suite
suite
suite
suite

"MiBench"
"MiBench"
"MiBench"
"MiBench"
"MiBench"
"NAS" has
"NAS" has
"NAS" has
"PARSEC3"
"PARSEC3"
"PARSEC3"
"PARSEC3"

has only
has only
has only
has only
has only

19 (over 21) baselines

19 (over 21) benchmarks parallelized with NONE benchmarks
19 (over 21) benchmarks parallelized with DOALL benchmarks
19 (over 21) benchmarks parallelized with HELIX benchmarks
19 (over 21) benchmarks parallelized with DSWP benchmarks

only 7 (over 8) benchmarks parallelized with DOALL benchmarks
only 7 (over 8) benchmarks parallelized with HELIX benchmarks
only 6 (over 8) benchmarks parallelized with DSWP benchmarks

has only
has only
has only
has only
has only

has only
has only
has only
has only

has only
has only
has only
has only

5 (over 8) baselines

5 (over 8) benchmarks parallelized with NONE benchmarks
5 (over 8) benchmarks parallelized with DOALL benchmarks
5 (over 8) benchmarks parallelized with HELIX benchmarks
4 (over 8) benchmarks parallelized with DSWP benchmarks

19 (over 21) benchmarks with LLWM dependence information
19 (over 21) benchmarks with NOELLE dependence information
5 (over 8) benchmarks with LLVM dependence information

5 (over 8) benchmarks with NOELLE dependence information

19 (over 21) benchmarks with parallelization statistics for
19 (over 21) benchmarks with parallelization statistics for
19 (over 21) benchmarks with parallelization statistics for
19 (over 21) benchmarks with parallelization statistics for

only 7 (over 8) benchmarks with parallelization statistics for DOALL
only 6 (over 8) benchmarks with parallelization statistics for DSWP
only 7 (over 8) benchmarks with parallelization statistics for HELIX
only 7 (over 8) benchmarks with parallelization statistics for NONE

has only
has only
has only
has only

has only
has only
has only
has only
has only

5 (over 8) benchmarks with parallelization statistics for DOALL
4 (over 8) benchmarks with parallelization statistics for DSWP
5 (over 8) benchmarks with parallelization statistics for HELIX
5 (over 8) benchmarks with parallelization statistics for NONE

10 (over 21) baselines with execution times

19 (over 21) benchmarks parallelized with NONE with execution times
19 (over 21) benchmarks parallelized with DOALL with execution times
19 (over 21) benchmarks parallelized with HELIX with execution times
19 (over 21) benchmarks parallelized with DSWP with execution times

only 7 (over 8) benchmarks parallelized with DOALL with execution times
only 7 (over 8) benchmarks parallelized with HELIX with execution times
only 6 (over 8) benchmarks parallelized with DSWP with execution times

has only
has only
has only
has only

5 (over 8) benchmarks parallelized with NONE with execution times
5 (over 8) benchmarks parallelized with DOALL with execution times
5 (over 8) benchmarks parallelized with HELIX with execution times
4 (over 8) benchmarks parallelized with DSWP with execution times




Parallelize a benchmark with NOELLE
./bin/clean

./bin/optimizeBenchmark MiBench/search DOALL

] The first time this command executes, it performs the following:
all_benchmark_suites 1 he sinal file f ire b h K
behchmarkEintas . It generates the single IR file for an entire benchmark,
bin for all benchmarks, in all benchmark suites
docker 2. It runs the optimization/parallelization for only the benchmark

external specified as input
LICENSE

log
makefiles
output.txt
README . md
results

scripts Output generated by the commands executed by the user

Sub-sequent invocations of the same command will only perform 2.




Outline

e Run benchmarks

* Inspect and modify the sources of a benchmark



Run benchmarks
./bin/clean

/bin/run

It performs the following for every benchmark that has an IR:
1. If the baseline time of benchmark X is not available in results/current_machine/time,
then X is optimized using clang —O3 —march=native w/o using NOELLE, and
the so-generated binary runs Y times

2. If the IR of an optimization (DOALL) is available and its execution time isn’t available in
results/current_machine/time, then it generates the binary from the optimized IR
(e.g., baseline_parallelized DOALL.bc), and it runs that binary Y times



Checking the times

all_benchmark_suites
benchmarkSuites
bin

docker

baseline
external DOALL

LICENSE DOALL . txt search.txt
log DSWP

makefiles DSWP. txt

output.txt HELIX

README . md authors_machine HELIX.txt

. NOELLE. txt
current_machine
results MiBench NONE

scripts NAS NONE . txt

PARSEC3
PolyBench



Checking the speedups

mmm NOELLE

Program speedup
o N » o [e:]

all_benchmark_suites
benchmarkSuites

bin

docker

external

LICENSE

log MiBench_NOELLE.pdf

makefiles plots = MiBench.pdf
output.txt NAS_NOELLE.pdf

README . md authors_machine NAS.pdf

current_machine PARSEC3_NOELLE. pdf

: PARSEC3. pdf

scripts PolyBench_NOELLE.pdf
PolyBench.pdf

results



Checking the speedups

s NOELLE HELIX
s NONE DsSwp

Program speedup
o N » o [e:]

all_benchmark_suites
benchmarkSuites S ‘
bin C / & e
docker

external

LICENSE

log MiBench_NOELLF. pdf

makefiles plots = MiBench.pdf
output.txt NAS_NOELLE.pdf
README . md authors_machine NAS. pdf
Curpent_machine PARSEC3_NOELLE.de
FESULES PARSEC3. pdf

scripts PolyBench_NOELLE . pdf

PolyBench.pdf



Outline

* Inspect and modify the sources of a benchmark



Checking the sources of a benchmark

all_benchmark_suites
benchmarkSuites

bin

docker

external

LICENSE

log
makefiles
output. txt
README .md
results
scripts

build
ENV
install
Makefile
README
scripts
tools

MiBench
NAS
PARSEC3
PolyBench
SPEC2017
splay

benchmarks

condor
error_bitcode_generation.txt
error_compiling.txt

Makefile

makefiles

MiBench

patches

plot

scripts

automotive
consumer
network
office
README .md
security
telecomm




Changing the sources of a benchmark

all_benchmark_suites build MiBench

: ENV NAS
E?:ChmarkSU1tes install PARSEC3

Makefile PolyBench
docker README SPEC2017
external scripts splay
LICENSE tools

log
makefiles
output. txt
README .md
results
scripts

benchmarks

condor

error_bitcode_generation.txt

error_compiling.txt

Makefile

makefiles

MiBench

patches MiBench immma automotive

plot consumer

scripts network

’ office

security
telecomm

After it, you need to delete results/current_machine
and re-run your optimization



Always have faith in your ability

Success will come your way eventually

Best of luck!



