
NOELLEGym
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• Introduction

• Compile and optimize benchmarks

• Run benchmarks

• Inspect and modify the sources of a benchmark

2

NOELLEGym: introduction

• Infrastructure to test NOELLE-based optimizations
on benchmarks typically used in research venues
link

• Not particularly well designed
• Started as a quick “put-together” infrastructure to quickly collect results
• We are slowly improving its design
• Feel free to make changes and do pull-requests

(we’ll all appreciate it!)

3

https://github.com/arcana-lab/noelleGym

NOELLEGym: structure

What an user can run

Scripts that will be invoked by

Results (e.g., speedups, IR)
obtained

4

Software dependences

Your environment needs to have the following installation:
• GO (we tested with 1.13.7 as well as 1.17.13)
• LLVM 9.0.0
• Bash
• Python 3

5

Software dependences on hanlon and alike

• export PATH=/home/software/go1.17.13/bin/:$PATH

• export PATH=/home/software/llvm-9.0.0/bin/:$PATH

6

Software dependences on Zythos

• source /project/go/go_1.13.7/enable

• source /project/extra/llvm/9.0.0/enable

• source /project/gllvm/enable

7

Compiling NOELLEGym

• NOELLEGym relies on software that needs to be compiled
• To do so, run:

(after your environment is set as described in previous slides)
./bin/setup

8

NOELLEGym: structure after setup

NOELLE and GINO downloaded, compiled, and installed

The benchmarks to compile, optimize, and run

The results obtained after the compilation, optimization,
and execution of the benchamrks

Output generated by the commands executed by the user

9

Outline

• Introduction

• Compile and optimize benchmarks

• Run benchmarks

• Inspect and modify the sources of a benchmark

10

Parallelize all benchmarks with GINO

./bin/clean

./bin/compile
The first time this command executes, it performs the following:
1. It generates the single IR file for an entire benchmark,

for all benchmarks, in all benchmark suites
2. It runs the optimization/parallelization for all benchmarks,

in all benchmark suites

Sub-sequent invocations of the same command will only perform 2.

11

Parallelize all benchmarks with GINO:
Checking the output

Single IR for the entire program
generated by the compiler front-end

12

Parallelize all benchmarks with GINO:
Checking the output

IR generated by parallelism enablers
(this is still sequential)

Cumulative debugging output
of all enablers

13

Parallelize all benchmarks with GINO:
Checking the output

Parallel IR generated by
NOELLE-enabled
parallelizing compiler when
configured to use only DOALL
from

Debugging output of the
parallelizing compiler

14

Check the status

./bin/status
It checks the status of results/current_machine of:
1. IR generated
2. Statistics about dependences in IR, parallelization performed
3. Execution times of the different IRs

It prints what is missing

15

Parallelize a benchmark with NOELLE

./bin/clean

./bin/optimizeBenchmark MiBench/search DOALL

Output generated by the commands executed by the user

The first time this command executes, it performs the following:
1. It generates the single IR file for an entire benchmark,

for all benchmarks, in all benchmark suites
2. It runs the optimization/parallelization for only the benchmark

specified as input

Sub-sequent invocations of the same command will only perform 2.

16

Outline

• Introduction

• Compile and optimize benchmarks

• Run benchmarks

• Inspect and modify the sources of a benchmark

17

Run benchmarks

./bin/clean

./bin/run

It performs the following for every benchmark that has an IR:
1. If the baseline time of benchmark X is not available in results/current_machine/time,

then X is optimized using clang –O3 –march=native w/o using NOELLE, and
 the so-generated binary runs Y times

2. If the IR of an optimization (DOALL) is available and its execution time isn’t available in
results/current_machine/time, then it generates the binary from the optimized IR
(e.g., baseline_parallelized_DOALL.bc), and it runs that binary Y times

18

Checking the times

19

Checking the speedups

EIB
G

EIB
H

IIW
BLQ
Y IIW

ELW
FQ
WV

VX
VD
QB
F

VX
VD
QB
V

VX
VD
QB
H

VK
D

VH
DUF
K

ED
VLF
PD
WK

GMS
HJ

TV
RUW

FMS
HJ

UDZ
GD
XG
LR

WRD
VW

XQ
WRD
VW FUF

UDZ
FD
XG
LR

�

�

�

�

�

3U
RJ
UD
P
�V
SH
HG
XS 12(//(

20

Checking the speedups

ED
VLF
PD
WK

EIB
G

EIB
H

ELW
FQ
WV

FMS
HJ FUF

GMS
HJ

IIW
BLQ
Y IIW

TV
RUW

UDZ
FD
XG
LR

UDZ
GD
XG
LR

VH
DUF
K

VK
D

VX
VD
QB
F

VX
VD
QB
H

VX
VD
QB
V

WRD
VW

XQ
WRD
VW

�

�

�

�

�

3U
RJ
UD
P
�V
SH
HG
XS 12(//(

121(
'2$//

+(/,;
'6:3

21

Outline

• Introduction

• Compile and optimize benchmarks

• Run benchmarks

• Inspect and modify the sources of a benchmark

22

Checking the sources of a benchmark

23

Changing the sources of a benchmark

After it, you need to delete results/current_machine
and re-run your optimization

24

Always have faith in your ability

Success will come your way eventually

Best of luck!

25

