
DFA
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• DFA (summary from 323)

• Data Flow Engine in NOELLE

• Data Flow Analyses available in NOELLE

2

The need for DFAs
• We constantly need to improve programs

(e.g., speed, energy efficiency, memory requirements)
• We constantly need to identify opportunities
• After having found an opportunity (e.g., propagating constants),

you need to ask yourself:
• What do I need to know to take advantage of this opportunity?

(e.g., I need to know the possible values a given variable might have
 at a given point in the program)
• How can I automatically compute this information?

Often the solution relies on understanding
how data flows through the code.
This is often done by designing ad-hoc DFAs

3

New transformations and analyses

• New transformations (often) need to understand
specific and new code properties related to
how data might change through the code
• So we need to know how to design a new data flow analysis

that identifies these new code properties
• Generic recipe

Data flow analysis (DFA):
traverse the CFGs collecting information about
what may happen at run time (Conservative approximation)
Transformation:
Modify the code based on the result of data flow analysis
(Correctness guaranteed by the conservative approximation of DFA)

Data flow value

4

New transformations and analyses

• Generic recipe
Data flow analysis (DFA):
traverse the CFGs collecting information about
what may happen at run time (Conservative approximation)
Transformation:
Modify the code based on the result of data flow analysis
(Correctness guaranteed by the conservative approximation of DFA)

Data flow value

j: … = b

… …

i: b = 2

What are the possible values
b can have at run time?

5

Data-flow expressed in CFG

int x,y
x = 0
y = 0
If (a > b)

x = x +N

If (b > N)

return y

return x

Data-flow value:
set of all possible program states
that can be observed
at a given program point

e.g., all definitions in the program
that might have been executed
before that point

{ }
{ x=0 }IN= =OUT

Data-flow analysis
computes IN and OUT sets
by computing
the DFA-specific transfer functions 6

Transfer functions

• Let i be an instruction: IN[i] and OUT[i] are the set of data-flow values
before and after the instruction i of a program
• A transfer function fs relates the data-flow values

before and after an instruction i
• In a forward data-flow problem

OUT[i] = fs(IN[i])
• In a backward data-flow problem

IN[i] = fs(OUT[i])

fs is DFA-specific

int x,y
x = 0
y = 0
If (a > b)

{ }
{ x=0 }IN= =OUT

7

Transfer function internals: Y[i] = fs (X[i])
• It relies on information that reaches i

• It transforms such information to propagate the result
to the rest of the CFG

• To do so, it relies on information specific to i
• Encoded in GEN[i], KILL[i]
• fs uses GEN[i] and KILL[i] to compute its output

• GEN[i] and KILL[i] are DFA-specific and
(typically) data/control flow independent!

int x,y
x = 0
y = 0
If (a > b)

{ }
{ x=0 }IN= =OUT

GEN[i] = data flow value added by i
KILL[i] = data flow value removed because of i

8

DFA steps

1) Define the DFA-specific sets GEN[i] and KILL[i], for all i

2) Implement the DFA-specific transfer function fs

3) Compute all IN[i] and OUT[i]
OUT[i] = fs (IN[i])
IN[i] = fs (OUT[i])

following a DFA-generic algorithm

9

Outline

• DFA (summary from 323)

• Data Flow Engine in NOELLE

• Data Flow Analyses available in NOELLE

10

The need for a data flow engine

• Implementing a data flow analysis
that scales well with the number of instructions takes time and efforts
• The typical required optimizations (see 323) are DFA-agnostic
• A data-flow engine, therefore, can be built once

and used by many data-flow analyses
• LLVM does not provide a data-flow engine
• NOELLE provides a data-flow engine

to accelerate the development of data-flow analyses
accelerating therefore research

11

Let’s build our first DFA with NOELLE

12

Normalize the code

Code must be normalized before you use NOELLE
• noelle-norm MYIR.bc –o IR.bc

or
• noelle-simplification MYIR.bc –o IR.bc

13

Fetching the data flow engine

14

Using the data-flow engine

void (Instruction *, DataFlowResult *)

void (
 std::set<Value *>& IN,
 Instruction *inst,
 DataFlowResult *df
)

It includes
the final IN and OUT for all instructions

15

New DFA example

Goal: identify the load instructions that may execute after
 a given load instruction
 for all load instructions

Correct (and conservative) solution:
• Backward DFA
• GEN[i] = {i} if i is a load instruction, {} otherwise
• KILL[i] = {}

• OUT[i] = ∪s = successors(i) IN[s]
• IN[i] = GEN[i] ∪ OUT[i]

16

New DFA example

• GEN[i] = {i} if i is a load instruction, {} otherwise

17

New DFA example

• KILL[i] = {}

18

New DFA example

• OUT[i] = ∪s = successors(i) IN[s]

19

New DFA example

• IN[i] = GEN[i] ∪ OUT[i]

20

Computing DFA result

21

Using DFA result

22

Outline

• DFA (summary from 323)

• Data Flow Engine in NOELLE

• Data Flow Analyses available in NOELLE

23

Running available data flow analyses

24

Always have faith in your ability

Success will come your way eventually

Best of luck!

25

