Advanced

T pICS
n
C mpilers

DFA

Simone Campanoni
simone.campanoni@northwestern.edu

Outline

* DFA (summary from 323)

* Data Flow Engine in NOELLE

* Data Flow Analyses available in NOELLE

The need for DFAs

* We constantly need to improve programs
(e.g., speed, energy efficiency, memory requirements)

* We constantly need to identify opportunities

» After having found an opportunity (e.g., propagating constants),
you need to ask yourself:

* What do | need to know to take advantage of this opportunity?
(e.g., | need to know the possible values a given variable might have
at a given point in the program)

* How can | automatically compute this information?
Often the solution relies on understanding
how data flows through the code.
This is often done by designing ad-hoc DFAs

New transformations and analyses

* New transformations (often) need to understand
specific and new code properties related to
how data might change through the code

* So we need to know how to design a new data flow analysis
that identifies these new code properties

* Generic recipe ‘Data flow value

Data flow analysis (DFA):
traverse the CFGs collecting information about
what may happen at run time (Conservative approximation)

Transformation:
Modify the code based on the result of data flow analysis
(Correctness guaranteed by the conservative approximation of DFA)

New transformations and analyses

What are the possible values
b can have at run time?

* Generic recipe ‘Data flow value

Data flow analysis (DFA):

traverse the CFGs collecting information about

what may happen at run time (Conservative approximation)
Transformation:

Modify the code based on the result of data flow analysis
(Correctness guaranteed by the conservative approximation of DFA)

Data-flow expressed in CFG

Data-flow value:

- - - ' ouT set of all possible program states
that can be observed

at a given program point

e.g., all definitions in the program
that might have been executed
before that point

Data-flow analysis

computes IN and OUT sets

by computing

the DFA-specific transfer functions

return x

Transfer functions

e Let i be an instruction: IN[i] and OUT][i] are the set of data-flow values
before and after the instruction i of a program

A transfer function fs relates the data-flow values
before and after an instruction i

* In a forward data-flow problem IN={ }

OUT[i14fs{ IN[i]) i

* In a backward data-flow problem

IN[7] OUT[i])
fs is DFA-specific

Transfer function internals: Y[i]=fs (X[/i])

* It relies on information that reaches i

* It transforms such information to propagate the result

to the rest of the CFG , ,
GENJi] = data flow value added by i

KILL[i] = data flow value removed because of i
* To do so, it relies on information specific to i N={)

» Encoded in GENI[i], KILL[i] A Kl
 fs uses GEN[i] and KILL[i] to compute its output

* GEN[i] and KILL[i] are DFA-specific and
(typically) data/control flow independent!

DFA steps

1) Define the DFA-specific sets GENJi] and KILL[i], for all i
2) Implement the DFA-specific transfer function fs
3) Compute all IN[i] and OUT[i] following a DFA-generic algorithm

OUTIi] = fs (IN[i])
IN[i] = s (OUT[i])

Outline

* Data Flow Engine in NOELLE

* Data Flow Analyses available in NOELLE

The need for a data flow engine

* Implementing a data flow analysis
that scales well with the number of instructions takes time and efforts

* The typical required optimizations (see 323) are DFA-agnostic

* A data-flow engine, therefore, can be built once
and used by many data-flow analyses

* LLVM does not provide a data-flow engine

* NOELLE provides a data-flow engine

to accelerate the development of data-flow analyses
accelerating therefore research

Let’s build our first DFA with NOELLE

Normalize the code

Code must be normalized before you use NOELLE

e noelle-norm MYIR.bc —o IR.bc
or

* noelle-simplification MYIR.bc —o IR.bc

Fetching the data flow engine

/*
* Fetch NOELLE
o 4
auto& noelle = getAnalysis<Noelle>();

/*
* Fetch the data flow engine.
i 4
auto dfe = noelle.getDataFlowEngine();

arcana::noelle::DataFlowEngine *

Using the data-flow engine

/*

* Fetch the entry point.

*/
auto fm = noelle.getFunctionsManager(Q);
auto mainF = fm->getEntryFunction();

It includes
the final IN and OUT for all instructions

oV i o M alV [ool 1D} S s s - We sTo 1 RY,:Tole ' eIgle (@@ _— \Oid (Instruction *, DataFlowResult *)
mainF,
computeGEN, void (
computeKILL, std::set<Value *>& IN,
computelN, Instruction *inst,
computeQUT DataFlowResult *df

b)

New DFA example

Goal: identify the load instructions that may execute after
a given load instruction

for all load instructions

Correct (and conservative) solution:

e Backward DFA

 GEN[i] ={i} ifiis aload instruction, {} otherwise
e KILL[i] = {}

» OUTI[i] = U, _ successors(iy IN[S]

e IN[i] = GEN[i] U OUT[i]

New DFA example

« GEN[i] ={i}ifiis aload instruction, {} otherwise

auto computeGEN = [J(Instruction *i, DataFlowResult *df) {
1f (!isa<LoadInst>(1)){
return ;

}

auto& gen = df->GEN(1);
gen.insert(i);
return ;

i 3

New DFA example

* KILL[i] = {}

auto computeKILL = [J(Instruction *, DataFlowResult *) {
return ;

|

New DFA example

° OUT[i] = Us=successors(i) lN[S]

auto computeOUT = [J(Instruction *inst,
Instruction *successor,
std: :set<Value *> &O0UT,
DataFlowResult *df) {

auto &1nS = df->IN(successor);
OUT.1insert(inS.begin(), inS.end());
return,;

}s

New DFA example

* IN[i] = GEN[i] U OUT(i]

auto computelN =
[J(Instruction *inst, std::set<Value *> &IN, DataFlowResult *df) {
auto &genl = df->GEN(inst);
auto &outl = df->0UT(inst);

IN.insert(outI.begin(), outI.end());
IN.1insert(genl.begin(), genI.end());
return;

}s

Computing DFA result

auto customDfr = dfe.applyBackward(
mainF,
computeGEN,
computeKILL,

computelN,
computeQUT

b}

Using DFA result

for (auto inst : instructions(mainF)){
1f (!isa<LoadInst>(inst)){
continue ;

}

auto insts = customDfr->0UT(inst);
errs() << " Next are the " << insts.size() <<

" "

instructions ";
<< *inst << "\n";

I

errs() << "that could read the value loaded by '
for (auto possibleInst : insts){

" "

errs() <<

}

<< *possiblelnst << "\n";

}

Outline

* Data Flow Analyses available in NOELLE

Running available data flow analyses

/*
* Fetch NOELLE
o 4
auto& noelle = getAnalysis<Noelle>();

auto dfa = noelle.getDataFlowAnalyses();

/*

* Fetch the entry point.

*/
auto fm = noelle.getFunctionsManager();
auto mainF = fm->getEntryFunction();

auto dfr = dfa.runReachableAnalysis(mainF);

Always have faith in your ability

Success will come your way eventually

Best of luck!

