
NOELLE
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• NOELLE’s code structure

• Building upon NOELLE

• Developing NOELLE

2

Software framework: NOELLE

• Git repo: https://github.com/scampanoni/noelle

• You need to use LLVM 9.0.0
• On hanlon.wot.eecs.northwestern.edu:

LLVM_HOME= /home/software/llvm-9.0.0
export PATH=$LLVM_HOME/bin:$PATH ;
export LD_LIBRARY_PATH=$LLVM_HOME/lib:$LD_LIBRARY_PATH

• On peroni.cs.northwestern.edu
source /project/extra/llvm/9.0.0/enable

• Try to compile the framework
$ git clone https://github.com/scampanoni/noelle
$ cd noelle
$ make

3

https://github.com/scampanoni/noelle
https://github.com/scampanoni/noelle

Software framework: NOELLE

• Problem:
• LLVM provides low-level and only code-centric APIs to middle-end passes
• This makes the design of advanced code analyses and transformations hard

• Solution:
• NOELLE complements LLVM by providing a dependence-centric (and more

expensive, unfortunately) APIs at different granularities to middle-end passes
• Even advanced code transformations (code parallelization, code vectorization,

loop transformations) can be now implemented in a few lines of code
(less than 1000!!!)
• NOELLE’s APIs are optional and you can combine them with LLVM’s APIs
• For most NOELLE’s APIs:
• You pay the cost of an API provided by NOELLE when you invoke that API

4

Current limitations of NOELLE

• You can analyze / transform a program, but not a library
• The existance of main is assumed
• The whole program is assumed

• The IR code being analyzed/transformed using NOELLE
is (at least) normalized using noelle-norm

• You keep track of which abstractions are not longer valid
due to changes you have made to the code
• Suggestion: use all abstractions you need to decide what to do,

 then do all changes at once
• Suggestion: you can invoke NOELLE multiple times

(learn how to use noelle-fixedpoint)
5

NOELLE structure

Examples of LLVM middle-end passes built upon NOELLE

NOELLE’s internals

NOELLE’s tests
• Unit tests
• Regression tests
• Performance tests

After you compile NOELLE,
NOELLE’s
• Binaries
• public APIs
• tools 6

NOELLE structure

Abstractions provided
by NOELLE
and their public APIs

Tools/analyses
built upon NOELLE

7

NOELLE structure

Simple examples of
LLVM passes that use
NOELLE’s abstractions/APIs

Simple C/C++ programs
that can be used to test
the simple LLVM passes
built using NOELLE

8

Outline

• NOELLE’s code structure

• Building upon NOELLE

• Developing NOELLE

9

CatPass.cpp

10

CatPass.cpp

Declare to LLVM that
your pass depends on NOELLE

Fetch NOELLE

Simple example
of using NOELLE

11

Running NOELLE based passes

• noelle-load rather than opt

• In 323:
• opt –load ~/CAT/lib/MYPASS.so –MYPASS A.bc –o B.bc

• Now:
• noelle-load –load ~/CAT/lib/MYPASS.so –MYPASS A.bc –o B.bc

12

It will print the invocation to opt with all arguments (in case it will debugging)
opt -load /nfs-scratch/simonec/parallelism/parallelization/NOELLEs/2/install/lib/CallGraph.so
 -load /nfs-scratch/simonec/parallelism/parallelization/NOELLEs/2/install/lib/libSvf.so
 …
 -load /home/simonec/CAT/lib/MYPASS.so -MYPASS A.bc -o B.bc

Let’s compile a simple example
of code transformation built upon NOELLE
• cd examples/passes

• make links ; cd simple

• ./scripts/run_me.sh
It will compile and install the pass to ~/CAT
(like in 323)

13

Let’s run a simple example
of code transformation built upon NOELLE
• cd examples/tests

• source ../../enable ;
• cd 0 ;
• make -f Makefile_no_profile

…

…You have to normalize the code
before invoking NOELLE 14

Outline

• NOELLE’s code structure

• Building upon NOELLE

• Developing NOELLE

15

Developing and testing

• Let’s say you are working to improve a NOELLE’s module
(e.g., induction variable detection algorithm)

• You need to test the correctness and impacts of your work.
• NOELLE can help you do that

16

…

Testing

Regression tests

Unit tests

Performance (of the generated binary)
tests

• NOELLE includes tests for its code transformations
(e.g., code parallelization, loop-invariant code motion, etc…)

17

Testing

• NOELLE includes tests for its code transformations
(e.g., code parallelization, loop-invariant code motion, etc…)

cd tests ;
If you don’t have
condor installed
in your platform

make
It runs the transformations
only using their default configurations
(e.g., unroll-factor set to be the default one)

make condor

If you have condor installed
in your platform

It generates condor files to run
in parallel all transformations
with many different configurations
(generating more than 20,000 tests
 that all run in parallel)

18

Testing with condor

cd tests ; make condor

…

…

copy of the original regression dir
one directory per configuration for
the code transformations

.

.

. All these tests
(~20,000 at the moment)
run in parallel!

19

Testing with condor

cd tests ; make condor

…

…

cd tests ; make condor_check

20

Testing with condor

cd tests ; make condor

…

…

cd tests ; make condor_check

• Tests that completed successfully
get automatically deleted

• Directory of a test that failed is kept
(so you can debug it; check compiler_output.txt)
and a script to reproduce the fail
is automatically generated

• To reproduce the fail:
• Go to the directory of the test

(e.g., cd regression_4/Simple)
• Run ./run_me.sh

21

Re-run the tests using condor

cd tests ;

1. Make sure no tests are still running
condor_q `whoami`

2. Clean the tests directory
make clean

3. Run the tests
make condor

22

Running a single test without condor

cd tests ; make download 1. Go to the test directory
(e.g., cd regression/Simple)

2. Clean the directory
make clean

3. Enable NOELLE binaries in your environment
source ../../../enable

4. Run the test
make test_correctness

5. Check the output
(look at the makefile to understand the scripts)

23

Always have faith in your ability

Success will come your way eventually

Best of luck!

24

