Advanced
T

N

C

pICS

mpilers

Profiling

Simone Campanoni
simone.campanoni@northwestern.edu




Call graph in NOELLE

* Sources:
src/core/hotprofiler

 Main headers:
install/noelle/core/Hot.hpp

* Examples of passes using the abstraction:
examples/passes/profile



Outline

* How to profile with NOELLE

* Accessing profile information

* Loops and profiles



Profiles available

* Number of instructions of a given code region
that has been executed

* Cumulative between all invocations of a code region

bar main

foo




Normalize the code

Code must be normalized before you use NOELLE

e noelle-norm MYIR.bc —o IR.bc
or

* noelle-simplification MYIR.bc —o IR.bc



Generate, run, embed

* Step 0: Generate a binary that will be run to collect the profile
noelle-prof-coverage IR.bc standalone_binary —Im —Istdc++

The IR you want to profile



Generate, run, embed

* Step 0: Generate a binary that will be run to collect the profile
noelle-prof-coverage IR.bc standalone_binary —Im —Istdc++

The name of the binary
that will be generated with instrumentation code



Generate, run, embed

* Step 0: Generate a binary that will be run to collect the profile
noelle-prof-coverage IR.bc standalone_binary —Im —Istdc++

Compilation options to use
to translate the input IR into binary
(e.q., libraries to link)



Generate, run, embed

* Step 0: Generate a binary that will be run to collect the profile
noelle-prof-coverage IR.bc standalone_binary —Im —Istdc++

e Step 1: Run the program with the inputs you want
The execution will generate default.profraw
./standalone_binary mylnput

J/standalone_binary 10 20 30

Jstandalone_ binary input_to process.txt



Generate, run, embed

* Step 0: Generate a binary that will be run to collect the profile
noelle-prof-coverage IR.bc standalone_binary —Im —Istdc++

e Step 1: Run the program witk the inputs you want
The execution will genecate default.profraw
./standalone_binary mylnput

e Step 2: Embed the profile into the IR
so that NOELLE can load it in memory automatically
every time you need it

noelle-meta-prof-embed default.profraw IR.bc —o IR_with_profile.bc



Accessing the profile from your pass

* Every time you load NOELLE, the profile will be available
and accessible via NOELLE’s APls
noelle-load —load ~/CAT/lib/CAT.so —CAT IR_with_profile.bc

—disable-output



Outline

* Accessing profile information

* Loops and profiles



Fetching the profiles

/*
* Fetch NOELLE
o 4
auto& noelle = getAnalysis<Noelle>();

auto hot = noelle.getProfiles();

if (lhot->isAvailable()){ noelle/core/Hot.hpp
return false;

}

errs() << "The profiler is available\n";




Profiles

* Queries you can do:

* Has X executed?
(X = instruction, loop, function, basic block, SCC)

* The number of times X is executed
 Number of static instructions that compose X

e How often a branch is taken



Self, total, static

e Static = number of static instructions that compose X

 Self = number of dynamic instructions executed within X for the
whole program execution
without counting instructions executed by callees

* Total = number of dynamic instructions executed within X for the
whole program execution
counting instructions executed by callees



APls for all X

auto executed = hot->hasBeenExecuted(&F);

hot->getSelfInstructions(&F) Any pointer to any X
hot->getTotalInstructions(&F)

hot->getStaticInstructions(&F)

hot->getDynamicTotalInstructionCoverage(&F)




APls for all X but SCC

hot->getInvocations(&F)

Any pointer to any X



Each X has extra X-specific APIs

hot->getAveragelLoopIlterationsPerInvocation(LS)




Outline

* Loops and profiles



APIs

* NOELLE provides API to sort loops by their profile

noelle.sortByHotness(*1loops);

auto loop = (*loops)[@];

Hottest loop of a program



Always have faith in your ability

Success will come your way eventually

Best of luck!



