
Loop
Simone Campanoni
simone.campanoni@northwestern.edu



Outline

• Loops in LLVM (from                    ) 

• A loop in NOELLE

• Abstractions for a single loop in NOELLE

2



• Target optimization: 
we need to identify loops

• There is no IR instruction for “loop”
• How to identify an IR loop? 3



Loops in IR

• Loop identification control flow analysis:
• Input: Control-Flow-Graph
• Output: loops in CFG
• Not sensitive to input syntax: a uniform treatment for all loops

• Define a loop in graph terms (natural loop)
• Properties of a natural loop
• Single entry point
• Edges must form at least a cycle in CFG

4



Identify inner loops

• If two natural loops do not have the same header
• They are either disjoint, or
• One is entirely contained (nested within) the other
• Outer loop, inner loop
• Loop nesting relation: loop nesting tree

•What about if two loops share the same header?
while (a: i < 10){
    b: if (i == 5) continue;
    c: …
} 5



Loop nesting tree

• Loop-nest tree: each node represents the blocks of a loop, 
and parent nodes are enclosing loops.
• The leaves of the tree are the inner-most loops.

1

2

3

4

2,3

1,2,3,4

6



Loop nesting forest

void myFunction (){
1: while (…){
2:    while (…){ … }
    }
    …
3: for (…){
4:    do {
5: while(…) {…} 
        } while (…)
    } 
}

2

1

4

3

5

Outermost
loops

Innermost
loops

7



Loops in LLVM

Function Natural loops Merged natural loops
(loops with the same header 
 are merged)

8



First loop normalization: adding a pre-header

• Optimizations often require code to be executed
once before the loop
• Create a pre-header basic block for every loop

9



Common loop normalization

Pre-header

Body

Header

Header

Body

Pre-header

exit exit

10



Common loop normalization

Pre-header

Body

Header

Header

Body

Pre-header

exit

exit
11



Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Header

Body

n1 n2 n3

exit

nX

12



Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Pre-header

Body

n1 n2 n3

exit

nX
Header

13



Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: single node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Pre-header

Body

n1 n2 n3

exit

nX
Header

Latch
14



Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: single node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Pre-header

Body

n1 n2 n3

Exit node

nX

Header
Latch

exit 15



Further normalizations in LLVM

• Loop representation can be further normalized:
• loop-simplify normalize the shape of the loop
• What about definitions in a loop?

• Problem: updating code in loop might require
to update code outside loops for keeping SSA
• Loop-closed SSA form: no var defined in loop is used outside of that loop
• lcssa insert phi instruction at loop boundaries

for variables defined in the body of a loop and used outside that loop

16



Loop pass example

while (){
   d = …
}
…
... = d op ...
... = d op ...
call f(d)

Lcssa 
normalization

while (){
   d = …
}
d1 = phi(d…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

while (){
   d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
d1 = phi(d…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

while (){
   d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
d1 = phi(d3…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

Loop-closed
SSA-form17



Outline

• Loops in LLVM (from                    ) 

• A loop in NOELLE

• Abstractions for a single loop in NOELLE

18



NOELLE

• All loops in NOELLE are normalized as canonical 
and in LCSSA form at all time

• Before invoking NOELLE to any IR file, you must normalize that IR
• noelle-norm: 

normalizations required by NOELLE

• noelle-simplification: 
normalizations required by NOELLE + 
fast optimizations that are needed most of the time 
(e.g., dead code elimination)

19



Get all program loops with NOELLE

Container of objects (one per loop) that describe loops. 
Each one is an instance of llvm::noelle::LoopStructure

20



Freeing memory

• As for all other abstractions NOELLE provides, 
it is the caller of the NOELLE’s API that generates LoopStructure
that is responsible to free their memory 
whenever they are no longer needed

• To free memory of an instance myLoop of LoopStructure 
(or any other abstraction provided by NOELLE): delete myLoop

• NOELLE provides no support to check (and update) 
the validity of LoopStructure after changing the IR 
(since the creation of LoopStructure)

21



Re-computing LoopStructure

Imagine the following situation:
1. You asked NOELLE to create LoopStructure and
2. You modified the IR after having computed LoopStructure and
3. You still need to invoke the API of LoopStructure and
4. You don’t know whether LoopStructure is valid or not, then
 
   recompute LoopStructure (e.g., with noelle-fixedpoint)

22



Outline

• Loops in LLVM (from                    ) 

• A loop in NOELLE

• Abstractions for a single loop in NOELLE

23



Loop abstractions in NOELLE

• We saw one abstraction so far: LoopStructure
• LoopStructure describes structural aspects of a loop
• Entry instruction
• Exit basic blocks, exit edges
• Latches
• Pre-header
• Successor of the Header within the loop
• Set of basic blocks that compose the loop
• Nesting level
• An ID

• LoopStructure is a little more than LLVM’s Loop

Pre-header

Body

p0 p1

Exit BB
Header

Latch

24



Loop abstractions in NOELLE

When you study an important loop (e.g., a hot loop), 
we often need more information about such loop going beyond 
its structure. For example:
• What are the induction variables of a loop?
• What are the invariants of a loop?
• What is the dependence graph of this loop?

(i.e., loop dependence graph)
• What is the SCCDAG of the dependence graph of this loop?

To capture all information of a loop: llvm::noelle::LoopDependenceInfo
25



LoopStructure

LoopDependenceInfo

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

MemoryCloningAnalysis LoopIterationAnalysis

Loop abstractions in NOELLE

26



LoopDependenceInfo
• In NOELLE: 

LoopStructure is the simplest abstraction that describes a loop

• In NOELLE:
LoopDependenceInfo is the abstraction that describes a loop
with the highest amount of information available in NOELLE

Significantly more expensive than

You should get all loop structures
of a program (relatively low complexity)
and only fetch LoopDependenceInfo for 
loops you decide to target

27



From LoopStructure to LoopDependenceInfo

Whatever filter you want to implement 
to skip loops you don’t care

It creates a new LoopStructure 
to include in ldi

28



From LoopDependenceInfo to LoopStructure

29



Abstractions related to loops in NOELLE

LoopStructure

LoopDependenceInfo

Loop Dependence Graph

30

Information about dependences
between instructions within the loop



• Loop dependence Graph

From LoopDependenceInfo 
to Loop Dependence Graph

Instance of the class llvm::noelle::PDG

31



Abstractions related to loops in NOELLE

LoopStructure

LoopDependenceInfo

SCCManager

Loop Dependence Graph

Information about SCCs 
and the SCCDAG of the loop dependence graph

32



From LoopDependenceInfo
to SCCManager

Instance of the class llvm::noelle::SCCDAG

33

(For more information about llvm::noelle::SCCDAGAttrs, 
 please check out the tutorial dedicated to it)

Instance of the class llvm::noelle::SCCDAGAttrs



Abstractions related to loops in NOELLE

LoopStructure

LoopDependenceInfo

SCCManager

Loop Dependence Graph

LoopEnvironment

• Information about the definitions
of variables of code outside the loop and
used by some instructions within that loop

• Information about instructions outside
the loop that use variables defined 
by instructions within that loop

34



From LoopDependenceInfo 
to LoopEnvironment

Pre-header

%v1 = %v0 …

%v0 = …

… = %v1
Header

Latch

Instance of the class llvm::noelle::LoopEnvironment

35

(For more information about llvm::noelle::LoopEnvironment, 
 please check out the tutorial dedicated to it)



Abstractions related to loops in NOELLE

LoopStructure

LoopDependenceInfo

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

36



• InvariantManager

• InductionVariableManager

From LoopDependenceInfo 
to the invariant and IV managers

37

Instance of the class llvm::noelle::InvariantManager

(For more information about 
llvm::noelle::InvariantManager, 
 please check out the tutorial dedicated to it)

Instance of the class llvm::noelle::InductionVariableManager

(For more information about 
llvm::noelle::InductionVariableManager, 
 please check out the tutorial dedicated to it)



Abstractions related to loops in NOELLE

LoopStructure

LoopDependenceInfo

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

MemoryCloningAnalysis LoopIterationAnalysis

38



• auto mca = loop->getMemoryCloningAnalysis();

• auto ita = loop->getLoopIterationSpaceAnalysis();

From LoopDependenceInfo 
to the loop-specific analyses

39



Abstractions related to loops in NOELLE

LoopStructure

LoopDependenceInfo

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

MemoryCloningAnalysis LoopIterationAnalysis

40

LoopTransformationsManager



LoopTransformationsManager *ltm = loop->getLoopTransformationsManager();

uint32_t c = ltm->getMaximumNumberOfCores();

ltm->isTransformationEnabled(Transformation::LOOP_DISTRIBUTION_ID);

From LoopDependenceInfo 
to LoopTransformationsManager

41

noelle/core/Transformations.hpp



Abstractions related to loops in NOELLE

LoopStructure

LoopDependenceInfo

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

MemoryCloningAnalysis LoopIterationAnalysis

42

Various miscellaneous APIs, for example
• bool doesHaveCompileTimeKnownTripCount(void) const
• uint64_t getCompileTimeTripCount(void) const;

LoopTransformationsManager



Always have faith in your ability

Success will come your way eventually

Best of luck!

43


