Advanced

T PICS
n
C mpilers

Loop

Simone Campanoni
simone.campanoni@northwestern.edu

Outline

de analysis

* Loops in LLVM (from g)
* Aloop in NOELLE

* Abstractions for a single loop in NOELLE

#include <stdio.h>

int main (){

%0:
%1 = alloca i32, align 4
%i = alloca i32, align 4

i * 0,
—)I store i32 0, i32* %i, align 4|

for (int[i=0}13 ++) {
printt(“Hello wor ld\n™);

}

return 0;

* Target optimization:
we need to identify loops

brlabel %Z

%?2:

%3 = load i32, i32* %i, align 4
%4 = icmp slti32 %3, 10
| br il %4, label %5, label %10

%5: \

br label %7

AN

. %6 = call i32 (i8%*, ...)\@printf(i8* getelementptr inbounds ([13 x i8], [13
.. X iI8]* @.str, i32 0,i320))

i i

%10:

reti32 0

* Thereis no IR instruction for “loop”
* How to identify an IR loop?

N

%7:

%8 = load i32, i32* %i, align 4
%9 = add nsw i32 %8, 1

store i32 %9, i132* %i, align 4

| 704

CFG for 'main' function

Loops In IR

* Loop identification control flow analysis:
* Input: Control-Flow-Graph
e Qutput: loops in CFG

* Not sensitive to input syntax: a uniform treatment for all loops

* Define a loop in graph terms (natural loop)

* Properties of a natural loop
 Single entry point
e Edges must form at least a cycle in CFG

%0:

%1 = alloca 32, align 4

%i = allocai32, align 4
store i32 0, i32* %1

store i32 0, i32* %i, align 4
br label %2

%2:

%3 = load i32, i32* %i, align 4
%4 = icmp slti32 %3, 10
br il %4, label %5, label %10

T

] F

o

%5:

%6 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([13 x i8], [13

... X i8]* @.str, i32 0, i32 0))
br label %7

N

%7:

%9 = add nsw i32 %8, 1
store i32 %9, i32* %i, align 4
br label %2

%8 = load i32, i32* %i, align 4

CFG for 'main' function

&

%10:

reti320

|[dentify inner loops

* If two natural loops do not have the same header
* They are either disjoint, or
* One is entirely contained (nested within) the other

e Quter loop, inner loop
* Loop nesting relation: loop nesting tree

 What about if two loops share the same header?

while (a: i < 10){ N
b:if (i == 5) continue; (/v *

C. ...

}

Loop nesting tree

* Loop-nest tree: each node represents the blocks of a loop,
and parent nodes are enclosing loops.

* The leaves of the tree are the inner-most loops.

«— 1,2,3,4

{

:‘| 2,3

Nl wlH N fe -

Loop nesting forest

void myFunction (){

1: while (){ > 1 N 3 IOutermost
2: while (...){...} oops
{ {

} \ 2 —| 4
3: for (...){ !
4: do{ S 5
5: while(...) {...} —

} while (...)
}

}

Loops in LLVM

Function

Natural loops

Merged natural loops
(loops with the same header
are merged)

First loop normalization: adding a pre-header

* Optimizations often require code to be executed
once before the loop

* Create a pre-header basic block for every loop

ST

header

{ rest of loop }

Common loop normalization

Pre-header

v

Header

exit

« — v

Pre-header

Header

Body

Body

exit

Loop normalization in LLVM

* The loop-simplify pass normalize natural loops
e Qutput of loop-simplify:

nl n2 n3

] ~L

Header
—)
ex| Body

Loop normalization in LLVM

* The loop-simplify pass normalize natural loops
e Qutput of loop-simplify:
* Pre-header: the only predecessor of the header

 Latch: single node executed just before starting a new loop iteration
* Exit node: ensures it is dominated by the header

nl n2 n3

nx Pre—ﬁeader

)/
Header

Exit node le—— Latch
exil BOdy I

Further normalizations in LLVM

* Loop representation can be further normalized:
* loop-simplify normalize the shape of the loop
* What about definitions in a loop?

* Problem: updating code in loop might require
to update code outside loops for keeping SSA

* Loop-closed SSA form: no var defined in loop is used outside of that loop

* |cssainsert phi instruction at loop boundaries
for variables defined in the body of a loop and used outside that loop

Loop pass example

while ()

}

..=dop...
..=dop...

call f(d)

Lcssa
normalization

while ()
d=..

}

d1 = phi(d...)

..=dlop...
..=dlop...
call f(d1)

while ()
d=..

(L
d2=...
}
d3=phi(d,d2)
}
d1 = phi(d...)

..=dlop...
..=dlop...
call f(d1)

while ()
d=..

(N
d2=...
}
d3=phi(d,d2)
}
d1 = phi(d3...

..=dlop...
..=dlop...

call f(d1)

Loop-closed
SSA-form

Outline

* Aloop in NOELLE

* Abstractions for a single loop in NOELLE

15

NOELLE

* All loops in NOELLE are normalized as canonical
and in LCSSA form at all time

* Before invoking NOELLE to any IR file, you must normalize that IR

* noelle-norm: Advanced
normalizations required by NOELLE _— : pics
g’.’:\‘ C mpilers E
* noelle-simplification: .ﬁ NOELLE 4=
normalizations required by NOELLE + | 46:12)

fast optimizations that are needed most of the time Introduction to NOELLE
(e.g., dead code elimination) compilation/optimization...

Get all program loops with NOELLE

/*
* Fetch the loops with only the loop structure abstraction.

4
auto loopStructures = noelle.getLoopStructures();

Container of objects (one per loop) that describe loops.
Each one is an instance of arcana::noelle::LoopStructure

/*
* Fetch the logps with only the loop structure abstraction.

b)
auto loopStructures = noelle.getLoopStructures(mainF);

Freeing memory

* As for all other abstractions NOELLE provides,
it is the caller of the NOELLE’s API that generates LoopStructure
that is responsible to free their memory
whenever they are no longer needed

* To free memory of an instance myLoop of LoopStructure
(or any other abstraction provided by NOELLE): delete myLoop

 NOELLE provides no support to check (and update)
the validity of LoopStructure after changing the IR
(since the creation of LoopStructure)

Re-computing LoopStructure

Imagine the following situation:
1. You asked NOELLE to create LoopStructure and
. You modified the IR after having computed LoopStructure and

2
3. You still need to invoke the APl of LoopStructure and
4. You don’t know whether LoopStructure is valid or not, then

recompute LoopStructure (e.g., with noelle-fixedpoint)

Outline

* Abstractions for a single loop in NOELLE

20

Loop abstractions in NOELLE

* We saw one abstraction so far: LoopStructure

e LoopStructure describes structural aspects of a loop

* Entry instruction
e Exit basic blocks,
e Latches

* Successor of the Header within the loop

Exit BB

* Nesting level

* AnID
* LoopStructure is a little more than LLVM’s Loop

21

Loop abstractions in NOELLE

When you study an important loop (e.g., a hot loop),
we often need more information about it going beyond
its structure. For example:

* What are the induction variables of a loop?
* What are the invariants of a loop?

* What is the dependence graph of this loop?
(i.e., loop dependence graph --- LDG)

* What is the SCCDAG of the loop dependence graph of this loop?

To capture all information of a loop: arcana::noelle::LoopContent

Loop abstractions in NOELLE

@)pContent \

[MemoryCloningAnalysis] [LooplterationAnalysis]

[InvariantManager] [InductionVariabIeI\/Ianager]
[SCCI\/Ianager] [LoopEnvironment]

[Loop Dependence Graph]

\[LoopStructu re] /

LoopContent

* In NOELLE:
LoopStructure is the simplest abstraction that describes a loop

/* You should get all loop structures
* Fetch the loops with only the loop structure abstraction.

iy of a program (relatively low complexity)
auto loopStructures = noelle.getLoopStructures(); and only fetch LoopContent for loops you
decide to target

In NOELLE:
LoopContent is the abstraction that describes a loop

with the highest amount of information available in NOELLE

Significantly more expensive than
/*
* Fetch LoopContent for all program loops.

*/
auto loops = noelle.getLoopContents();

From LoopStructure to LoopContent

/*
* Iterate over all loops,
* and compute the LoopContent only for those that we care.
*/
for Cauto 1 : *LloopStructures) {
if (l->getNestinglLevel() > 1) {
continue;

}

/*
* Get the LoopContent
*/
auto 1c = noelle.getLoopContent(l);
}

Whatever filter you want to implement It creates a new LoopStructure
to skip loops you don’t care to include in Ic

From LoopContent to LoopStructure

/*
* Print the first instruction the loop executes.
' 4

auto LS = loop->getLoopStructure();
auto entrylnst = LS->getEntrylnstruction();
errs() << "Loop " << *entrylInst << "\n";

Abstractions related to loops in NOELLE

@)pContent \

Information about dependences
between instructions within the loop

\[LoopStructu re] /

[Loop Dependence Graph]

From LoopContent
to Loop Dependence Graph

* Loop dependence Graph

/*
* Dependences.

*/
auto LDG = loop->getLoopDG();

Instance of the class arcana::noelle::PDG

Advanced
T pics

— .
. n

;‘ zL C mpilers

fu Dependences
vwestern. edu

Simane Campanon

B mes

Dependences with NOELLE

Abstractions related to loops in NOELLE

@)pContent \

Information about SCCs

[SCCI\/Ianager] and the SCCDAG of the loop dependence graph

[Loop Dependence Graph]

\[LoopStructu re] /

From LoopContent
to SCCManager

/*
Advanced
:/Dependences. . -
auto sccManager = loop->getSCCManager(); | g in E
v C mpilers
E . Dependences
Instance of the class arcana::noelle::SCCDAGALttrs smwomwn m
Instance of the class arcana::noelle::SCCDAG Dependences with NOELLE

(For more information about arcana::noelle::SCCDAGALttrs,
please check out the tutorial dedicated to it)

Abstractions related to loops in NOELLE

* Information about the definitions
LoopContent . .
of variables of code outside the loop and
used by some instructions within that loop
* Information about instructions outside

the loop that use variables defined
by instructions within that loop

[SCCI\/Ianager] [LoopEnvironment]

[Loop Dependence Graph]

\[LoopStructu re] /

From LoopContent

. %VvO0 = ...
to LoopEnvironment ¥
v
/*
* Fetch the loop environment Header
* / ¢
auto loopEnv = loop->getEnvironment();

%v1 = %vO0 ...

Instance of the class arcana::noelle::LoopEnvironment

/*
* Print the number of elements that compose the environment.

*/
-() << " Environment of the loop is composed by " << loopEnv->size() << " elements\n";

(For more information about arcana::noelle::LoopEnvironment,
please check out the tutorial dedicated to it)

Abstractions related to loops in NOELLE

@)pContent \

[InvariantManager] [InductionVariabIeI\/Ianager]
[SCCI\/Ianager] [LoopEnvironment]
[Loop Dependence Graph]

\[LoopStructu re] /

From LoopContent
to the invariant and IV managers

* |nvariantManager
/*

* Tnvariants. . .
%/ (For more information about

errs() << " Invariants\n"; arcana::noelle::InvariantManager,
s ML RO Y /case check out the tutorial dedicated to it)

Instance of the class arcana::noelle::InvariantManager

* InductionVariableManager
/* (For more information about
: Induction variables. arcana::noelle::InductionVariableManager,
4 please check out the tutorial dedicated to it)

errs() << " Induction variables\n";
auto IVM = loop->getInductionVariableManager();

Instance of the class arcana::noelle::InductionVariableManager

Abstractions related to loops in NOELLE

@)pContent \

[MemoryCloningAnalysis] [LooplterationAnalysis]
[InvariantManager] [InductionVariabIeI\/Ianager]
[SCCI\/Ianager] [LoopEnvironment]

Loop Dependence Graph]

\[LoopStructu re] /

From LoopContent
to the loop-specific analyses

* auto mca = loop->getMemoryCloningAnalysis();

* auto ita = loop->getLooplterationSpaceAnalysis();

Abstractions related to loops in NOELLE

@)pContent \

MemoryCloningAnalysis]

LooplterationAnalysis]

InvariantManager] InductionVariabIeI\/Ianager]

SCCI\/Ianager] LoopEnvironment]

[Loop Dependence Graph] [LoopTransformationsl\/lanager]

\[LoopStructu re] /

From LoopContent
to LoopTransformationsManager

LoopTransformationsManager *Itm = loop->getLoopTransformationsManager();

uint32_t ¢ = [tm->getMaximumNumberOfCores();

ltm->isTransformationEnabled(Transformation::LOOP_DISTRIBUTION ID);

|

noelle/core/Transformations.hpp

Abstractions related to loops in NOELLE

@)pContent \

[MemoryCloningAnalysis] [LooplterationAnalysis]

[InvariantManager] [InductionVariabIeI\/Ianager]
[SCCI\/Ianager] [LoopEnvironment]

[Loop Dependence Graph] [LoopTransformationsl\/lanager]

Various miscellaneous APls, for example

[LoopStructure] * bool doesHaveCompileTimeKnownTripCount(void) const
* uint64 t getCompileTimeTripCount(void) const;

Always have faith in your ability

Success will come your way eventually

Best of luck!

