
Loop
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• Loops in LLVM (from)

• A loop in NOELLE

• Abstractions for a single loop in NOELLE

2

• Target optimization:
we need to identify loops

• There is no IR instruction for “loop”
• How to identify an IR loop? 3

Loops in IR

• Loop identification control flow analysis:
• Input: Control-Flow-Graph
• Output: loops in CFG
• Not sensitive to input syntax: a uniform treatment for all loops

• Define a loop in graph terms (natural loop)
• Properties of a natural loop
• Single entry point
• Edges must form at least a cycle in CFG

4

Identify inner loops

• If two natural loops do not have the same header
• They are either disjoint, or
• One is entirely contained (nested within) the other
• Outer loop, inner loop
• Loop nesting relation: loop nesting tree

•What about if two loops share the same header?
while (a: i < 10){
 b: if (i == 5) continue;
 c: …
} 5

Loop nesting tree

• Loop-nest tree: each node represents the blocks of a loop,
and parent nodes are enclosing loops.
• The leaves of the tree are the inner-most loops.

1

2

3

4

2,3

1,2,3,4

6

Loop nesting forest

void myFunction (){
1: while (…){
2: while (…){ … }
 }
 …
3: for (…){
4: do {
5: while(…) {…}
 } while (…)
 }
}

2

1

4

3

5

Outermost
loops

Innermost
loops

7

Loops in LLVM

Function Natural loops Merged natural loops
(loops with the same header
 are merged)

8

First loop normalization: adding a pre-header

• Optimizations often require code to be executed
once before the loop
• Create a pre-header basic block for every loop

9

Common loop normalization

Pre-header

Body

Header

Header

Body

Pre-header

exit exit

10

Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:

• Latch: node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Header

Body

n1 n2 n3

exit

nX

11

Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: single node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Pre-header

Body

n1 n2 n3

Exit node

nX

Header
Latch

exit 12

Further normalizations in LLVM

• Loop representation can be further normalized:
• loop-simplify normalize the shape of the loop
• What about definitions in a loop?

• Problem: updating code in loop might require
to update code outside loops for keeping SSA
• Loop-closed SSA form: no var defined in loop is used outside of that loop
• lcssa insert phi instruction at loop boundaries

for variables defined in the body of a loop and used outside that loop

13

Loop pass example

while (){
 d = …
}
…
... = d op ...
... = d op ...
call f(d)

Lcssa
normalization

while (){
 d = …
}
d1 = phi(d…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

while (){
 d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
d1 = phi(d…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

while (){
 d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
d1 = phi(d3…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

Loop-closed
SSA-form14

Outline

• Loops in LLVM (from)

• A loop in NOELLE

• Abstractions for a single loop in NOELLE

15

NOELLE

• All loops in NOELLE are normalized as canonical
and in LCSSA form at all time

• Before invoking NOELLE to any IR file, you must normalize that IR
• noelle-norm:

normalizations required by NOELLE

• noelle-simplification:
normalizations required by NOELLE +
fast optimizations that are needed most of the time
(e.g., dead code elimination)

16

Get all program loops with NOELLE

Container of objects (one per loop) that describe loops.
Each one is an instance of arcana::noelle::LoopStructure

17

Freeing memory

• As for all other abstractions NOELLE provides,
it is the caller of the NOELLE’s API that generates LoopStructure
that is responsible to free their memory
whenever they are no longer needed

• To free memory of an instance myLoop of LoopStructure
(or any other abstraction provided by NOELLE): delete myLoop

• NOELLE provides no support to check (and update)
the validity of LoopStructure after changing the IR
(since the creation of LoopStructure)

18

Re-computing LoopStructure

Imagine the following situation:
1. You asked NOELLE to create LoopStructure and
2. You modified the IR after having computed LoopStructure and
3. You still need to invoke the API of LoopStructure and
4. You don’t know whether LoopStructure is valid or not, then

 recompute LoopStructure (e.g., with noelle-fixedpoint)

19

Outline

• Loops in LLVM (from)

• A loop in NOELLE

• Abstractions for a single loop in NOELLE

20

Loop abstractions in NOELLE

• We saw one abstraction so far: LoopStructure
• LoopStructure describes structural aspects of a loop
• Entry instruction
• Exit basic blocks, exit edges
• Latches
• Pre-header
• Successor of the Header within the loop
• Set of basic blocks that compose the loop
• Nesting level
• An ID

• LoopStructure is a little more than LLVM’s Loop

Pre-header

Body

p0 p1

Exit BB
Header

Latch

21

Loop abstractions in NOELLE

When you study an important loop (e.g., a hot loop),
we often need more information about it going beyond
its structure. For example:
• What are the induction variables of a loop?
• What are the invariants of a loop?
• What is the dependence graph of this loop?

(i.e., loop dependence graph --- LDG)
• What is the SCCDAG of the loop dependence graph of this loop?

To capture all information of a loop: arcana::noelle::LoopContent
22

LoopStructure

LoopContent

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

MemoryCloningAnalysis LoopIterationAnalysis

Loop abstractions in NOELLE

23

LoopContent
• In NOELLE:

LoopStructure is the simplest abstraction that describes a loop

• In NOELLE:
LoopContent is the abstraction that describes a loop
with the highest amount of information available in NOELLE

Significantly more expensive than

You should get all loop structures
of a program (relatively low complexity)
and only fetch LoopContent for loops you
decide to target

24

From LoopStructure to LoopContent

Whatever filter you want to implement
to skip loops you don’t care

It creates a new LoopStructure
to include in lc

25

From LoopContent to LoopStructure

26

Abstractions related to loops in NOELLE

LoopStructure

LoopContent

Loop Dependence Graph

27

Information about dependences
between instructions within the loop

• Loop dependence Graph

From LoopContent
to Loop Dependence Graph

Instance of the class arcana::noelle::PDG

28

Abstractions related to loops in NOELLE

LoopStructure

LoopContent

SCCManager

Loop Dependence Graph

Information about SCCs
and the SCCDAG of the loop dependence graph

29

From LoopContent
to SCCManager

Instance of the class arcana::noelle::SCCDAG

30

(For more information about arcana::noelle::SCCDAGAttrs,
 please check out the tutorial dedicated to it)

Instance of the class arcana::noelle::SCCDAGAttrs

Abstractions related to loops in NOELLE

LoopStructure

LoopContent

SCCManager

Loop Dependence Graph

LoopEnvironment

• Information about the definitions
of variables of code outside the loop and
used by some instructions within that loop

• Information about instructions outside
the loop that use variables defined
by instructions within that loop

31

From LoopContent
to LoopEnvironment

Pre-header

%v1 = %v0 …

%v0 = …

… = %v1
Header

Latch

Instance of the class arcana::noelle::LoopEnvironment

32

(For more information about arcana::noelle::LoopEnvironment,
 please check out the tutorial dedicated to it)

Abstractions related to loops in NOELLE

LoopStructure

LoopContent

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

33

• InvariantManager

• InductionVariableManager

From LoopContent
to the invariant and IV managers

34

Instance of the class arcana::noelle::InvariantManager

(For more information about
arcana::noelle::InvariantManager,
 please check out the tutorial dedicated to it)

Instance of the class arcana::noelle::InductionVariableManager

(For more information about
arcana::noelle::InductionVariableManager,
 please check out the tutorial dedicated to it)

Abstractions related to loops in NOELLE

LoopStructure

LoopContent

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

MemoryCloningAnalysis LoopIterationAnalysis

35

• auto mca = loop->getMemoryCloningAnalysis();

• auto ita = loop->getLoopIterationSpaceAnalysis();

From LoopContent
to the loop-specific analyses

36

Abstractions related to loops in NOELLE

LoopStructure

LoopContent

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

MemoryCloningAnalysis LoopIterationAnalysis

37

LoopTransformationsManager

LoopTransformationsManager *ltm = loop->getLoopTransformationsManager();

uint32_t c = ltm->getMaximumNumberOfCores();

ltm->isTransformationEnabled(Transformation::LOOP_DISTRIBUTION_ID);

From LoopContent
to LoopTransformationsManager

38

noelle/core/Transformations.hpp

Abstractions related to loops in NOELLE

LoopStructure

LoopContent

InvariantManager InductionVariableManager

SCCManager

Loop Dependence Graph

LoopEnvironment

MemoryCloningAnalysis LoopIterationAnalysis

39

Various miscellaneous APIs, for example
• bool doesHaveCompileTimeKnownTripCount(void) const
• uint64_t getCompileTimeTripCount(void) const;

LoopTransformationsManager

Always have faith in your ability

Success will come your way eventually

Best of luck!

40

