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Outline

• The parallelizing compiler built upon NOELLE

• Compilation pipeline

• Debugging
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A typical parallelizing compiler
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Compilation pipeline

• Let’s assume test.cpp is the whole program 
   (otherwise, if multiple source files exist, then 
                        use gclang if you run commands manually 
                        or use NOELLEGym to automate everything)
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Compilation pipeline

• Let’s assume test.cpp is the whole program

• Now we need to profile the code to identify hot code

• Now we need to make the IR more amenable for parallelization
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Compilation pipeline

• We need to profile the code

• Now we need to compute the PDG and embed it into the IR

• Now we need to compile utilities written in C/C++ that the parallelizer 
will use to parallelize the code (e.g., synchronization data structures)
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Compilation pipeline

• Now we need to compile utilities written in C/C++ that the parallelizer 
will use to parallelize the code (e.g., synchronization data structures)

• Now we can parallelize the IR

• Now we can generate the parallelized binary
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Typical flow

1. The parallelizer in the master branch works, 
but you want to improve the speedup obtained by it for a given benchmark
• Let’s assume you are using NOELLEGym

2. You extend/modify a code analysis/transformation in the 
parallelizing pipeline described in these slides
• To do so, you modify something in NOELLEGym/NOELLE/src, 

and then you recompile and install NOELLE

3. You re-run the parallelizer and the new parallel binary generated doesn’t work 
(e.g., seg fault)

19
How should you debug it?



An approach to debug 
a loop-based parallelizing compiler
Assumption: the bug fit the common case, which is about parallelizing a given loop 
(independent on what other loops are parallelized)
1. Shrinking:

Identify a single loop that its parallelization 
(when using the new changes) leads to the bug

2. Comparing:
Use master to parallelize that single loop. 
Check the differences (compiler output and then the IR) 
of the parallelization between master and the changes.

3. Correctness checking:
Deep analysis on the difference in parallelization that is incorrect 
(by manually checking why that parallelization aspect that differ is incorrect) 20
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$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll
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Loops 
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$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll

Remove looporder for   a few at a times (e.g., binary search) 

Then, compile and run a given version of code_to_parallelize.ll 
that has a subset (or one) loop with the looporder metadata
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An approach to debug 
a loop-based parallelizing compiler
1. Shrinking

As soon as you found the bad loop, go to step 2
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Always have faith in your ability

Success will come your way eventually

Best of luck!
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