
Parallelizer
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• The parallelizing compiler built upon NOELLE

• Compilation pipeline

• Debugging
2

A typical parallelizing compiler

3

Source
code

Parallelizing compiler

Identify
potential
parallelism

Mapping
parallelism
onto
the target
architecture

Optimizing
parallel code

Front-end
IR

Middle-end

Back-end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

NOELLE/tools

NOELLE/core

The parallelizing compiler built upon NOELLE

4

Source
code

Parallelizing compiler

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

NOELLE/tools

NOELLE/core

The parallelizing compiler built upon NOELLE

5

Source
code

Parallelizing compiler

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

Outline

• The parallelizing compiler built upon NOELLE

• Compilation pipeline

• Debugging
6

Compilation pipeline

• Let’s assume test.cpp is the whole program
 (otherwise, if multiple source files exist, then
 use gclang if you run commands manually
 or use NOELLEGym to automate everything)

7

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

NOELLE/tools

NOELLE/core

The parallelizing compiler built upon NOELLE

8

Source
code

Parallelizing compiler

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

Alias analysis
frameworks
(SCAF, SVF, LLVM)

NOELLE/tools

NOELLE/core

The parallelizing compiler built upon NOELLE

9

Identify potential parallelism
IR

Parallelism
enablers

Memory
alias analysis

PDG generator
and SCC analysis

IR

Profilers
Abs

Compilation pipeline

• Let’s assume test.cpp is the whole program

• Now we need to profile the code to identify hot code

• Now we need to make the IR more amenable for parallelization

10

Alias analysis
frameworks
(SCAF, SVF, LLVM)

NOELLE/tools

NOELLE/core

The parallelizing compiler built upon NOELLE

11

Identify potential parallelism
IR

Parallelism
enablers

Memory
alias analysis

PDG generator
and SCC analysis

IR

Profilers
Abs

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

NOELLE/tools

NOELLE/core

The parallelizing compiler built upon NOELLE

12

Source
code

Parallelizing compiler

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

NOELLE/tools

NOELLE/core

The parallelizing compiler built upon NOELLE

13

Mapping parallelism onto
the target architecture

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

Compilation pipeline

• We need to profile the code

• Now we need to compute the PDG and embed it into the IR

• Now we need to compile utilities written in C/C++ that the parallelizer
will use to parallelize the code (e.g., synchronization data structures)

14

Compilation pipeline

• Now we need to compile utilities written in C/C++ that the parallelizer
will use to parallelize the code (e.g., synchronization data structures)

• Now we can parallelize the IR

• Now we can generate the parallelized binary

15

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

NOELLE/tools

NOELLE/core

The parallelizing compiler built upon NOELLE

16

Mapping parallelism onto
the target architecture

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

VIRGIL

Alias analysis
frameworks
(SCAF, SVF, LLVM)

NOELLE/tools

NOELLE/core

The parallelizing compiler built upon NOELLE

17

Source
code

Parallelizing compiler

Identify
potential
parallelism

Mapping parallelism
onto
the target architecture

Optimizing
parallel code

Front
-end

IR

Middle-end

Back-
end

Parallel
IR

Parallelism
enablers

Memory
alias analysis

Parallelizer

Parallelization
technique

PDG generator
and SCC analysis

IR

Parallelization
planner

Profilers
Utils

Task
engine

Synchronizing
data structures

Abs

Outline

• The parallelizing compiler built upon NOELLE

• Compilation pipeline

• Debugging
18

Typical flow

1. The parallelizer in the master branch works,
but you want to improve the speedup obtained by it for a given benchmark
• Let’s assume you are using NOELLEGym

2. You extend/modify a code analysis/transformation in the
parallelizing pipeline described in these slides
• To do so, you modify something in NOELLEGym/NOELLE/src,

and then you recompile and install NOELLE

3. You re-run the parallelizer and the new parallel binary generated doesn’t work
(e.g., seg fault)

19
How should you debug it?

An approach to debug
a loop-based parallelizing compiler
Assumption: the bug fit the common case, which is about parallelizing a given loop
(independent on what other loops are parallelized)
1. Shrinking:

Identify a single loop that its parallelization
(when using the new changes) leads to the bug

2. Comparing:
Use master to parallelize that single loop.
Check the differences (compiler output and then the IR)
of the parallelization between master and the changes.

3. Correctness checking:
Deep analysis on the difference in parallelization that is incorrect
(by manually checking why that parallelization aspect that differ is incorrect) 20

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

21

Loops of the program
that satisfy the options
given as input

Loops selected
 by the planner

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

22

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

23

$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll

Loops selected
 by the planner

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

24

$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

25

$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll

Loops
parallelized

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

26

$ llvm-dis code_to_parallelize.bc
$ vim code_to_parallelize.ll

Remove looporder for a few at a times (e.g., binary search)

Then, compile and run a given version of code_to_parallelize.ll
that has a subset (or one) loop with the looporder metadata

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

27

Remove looporder for a few at a times

Then, compile and run a given version
of code_to_parallelize.ll
that has a subset (or one) loop
with the looporder metadata

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

28

Remove looporder for a few at a times

Then, compile and run a given version
of code_to_parallelize.ll
that has a subset (or one) loop
with the looporder metadata

code_to_parallelize.ll

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

29

Remove looporder for a few at a times

Then, compile and run a given version
of code_to_parallelize.ll
that has a subset (or one) loop
with the looporder metadata

code_to_parallelize.ll

An approach to debug
a loop-based parallelizing compiler
1. Shrinking

As soon as you found the bad loop, go to step 2

30

An approach to debug
a loop-based parallelizing compiler
1. Shrinking:

Identify a single loop that its parallelization
(when using the new changes) leads to the bug

2. Comparing:
Use master to parallelize that single loop.
Check the differences (compiler output and then the IR)
of the parallelization between master and the changes.

31

An approach to debug
a loop-based parallelizing compiler
Assumption: the bug fit the common case, which is about parallelizing a given loop
(independent on what other loops are parallelized)
1. Shrinking:

Identify a single loop that its parallelization
(when using the new changes) leads to the bug

2. Comparing:
Use master to parallelize that single loop.
Check the differences (compiler output and then the IR)
of the parallelization between master and the changes.

3. Correctness checking:
Deep analysis on the difference in parallelization that is incorrect
(by manually checking why that parallelization aspect that differ is incorrect) 32

Always have faith in your ability

Success will come your way eventually

Best of luck!

33

