Advanced

T pICS
n
C mpilers

Welcome!

Simone Campanoni
simone.campanoni@northwestern.edu

Prerequisites

Source coole (e.g., C++) i[n[t| [m[ali|n

Front-end | EECS 322: Compiler Construction
R e
\/

Middle-end] EECS 323: Code analysis and transformation

‘ myVarY =42
R
\/

Back-end] EECS 322: Compiler Construction
\

MaChine COde 010101110101010101

Goal and mindset of ATC

* The goal is to expose you to compiler research
* An example of how we identify problems that require novelty
 How we create novelty
* How we implement solutions
 And how we test it

* |t requires a lot of independence on your end

* You don’t know something?
Check the makefiles, sources, documentation (when it exists)

* |Is something not working?
Understand why, debug it, fix it, send pull requests

Outline

e Structure of the course

* This year’s topics

ATC

* You learned the internals of modern production-quality compilers
e E.g., Data-flow analysis, constant propagation, (CS 323)
* E.g., Instruction selection, register allocation (CS 322)
* Research labs include advanced techniques not yet included
in production-quality compilers
* They are not (yet) as robust as production-quality compilers need to be

* ATC:
* You will learn some of these advanced techniques
* They are organized into topics
* Each year we look at techniques of only some topics
e Each year ATC is different

ATC on Canvas

2023 Spring
Home
Announcements
Assignments @&
Grades

People

Files

Syllabus

CTEC

NameCoach
Worldwide

Learning Apps

Discussions @
Pages @
Rubrics B
Outcomes @
Quizzes &
Modules &
Collaborations &

ATC 2023 2 Edit
Syllabus.pdf Advanced

Lectures and files T PICS
Tutorials / in

Piazza: signup 5, login &> i mpilers

Zoom =

The compiler is the programmer's primary tool. Understanding the compiler is therefore critical for programmers, even if
they never build one. Furthermore, many design techniques that emerged in the context of compilers are useful for a
range of other application areas. This course introduces students to the essential elements of building a compiler:
parsing, context-sensitive property checking, code linearization, register allocation, etc. To take this course, students are
expected to already understand how programming languages behave, to a fairly detailed degree. The material in the
course builds on that knowledge via a series of semantics preserving transformations that start with a fairly high-level
programming language and culminate in machine code. Production compilers often do not include the latest
compilation techniques proposed by the research community. This is because the latest techniques are often not yet as
robust as they need to be to be included in a production compiler. My other compiler classes (COMP_SCI

322 and COMP_SCI 323) teach well-established compilation techniques included in production compilers (e.g., register
allocation, instruction selection). This class, instead, focuses on the advanced compilation techniques the research
community has proposed that are not yet included in production compilers. This class covers the large number of
compilation techniques proposed by the research community across several years. Specifically, we organize these
compilation techniques in topics. Every year we will focus only on up to two topics (e.g., automatic parallelizing
compilers, autotuning) to allow a deep dive study.

ATC on Canvas

2023515
Home
Announcements
Assignments
Grades

People

Files

Syllabus

CTEC
NameCoach

N Worldwide
Learning Apps.
Discussions
Pages

Rubrics
Outcomes
Quizzes

Modules

Collaborations.

e

a8 8 @ 8w

)

ATC 2023 X Edit
Syllabus.pdf & Advanced

Lectures and files T pics
Tutorials in

Piazza: signup &, login = C mpilers

Zoom =

The compiler is the programmer's primary tool. Understanding the compiler is therefore critical for programmers, even if
they never build one. Furthermore, many design techniques that emerged in the context of compilers are useful for a
range of other application areas. This course introduces students to the essential elements of building a compiler:
parsing, context-sensitive property checking, code linearization, register allocation, etc. To take this course, students are
expected to already understand how programming languages behave, to a fairly detailed degree. The material in the
course builds on that knowledge via a series of semantics preserving transformations that start with a fairly high-level
programming language and culminate in machine code. Production compilers often do not include the latest
compilation techniques proposed by the research community. This is because the latest techniques are often not yet as
robust as they need to be to be included in a production compiler. My other compiler classes (COMP_SCI

322 and COMP SCI 323) teach well-established compilation techniques included in production compilers (e.g., register
allocation, instruction selection). This class, instead, focuses on the advanced compilation techniques the research
community has proposed that are not yet included in production compilers. This class covers the large number of
compilation techniques proposed by the research community across several years. Specifically, we organize these
compilation techniques in topics. Every year we will focus only on up to two topics (e.g, automatic parallelizing
compilers, autotuning) to allow a deep dive study.

Tutorials

Next are tutorials that show how to use common developing tools you (as well as every developer and system researcher) should be aware of.
Please consider these tutorials to be examples. Feel free to find on the web more (and perhaps better) ones.
Finally, please consider the links below to be the starting point (so follow the links included in them).

Perf

e Tutorial 0 &
e Tutorial 1 &
o Tutorial 2 &

Valgrind and tools built in it

o Tutorial 0 &=
e Tutorial 1 &
e Tutorial 2 &=
e Tutorial 3 &
e Tutorial4 &
o Tutorial 5 5
e Tutorial 6 &

Gdb

e Tutorial 0 &
e Tutorial 1 &
e Tutorial 2 =
o Tutorial 3 &=

Git

e Tutorial 0 &
e Tutorial 1 &
e Book &

Makefile

o Tutorial 0 &

ATC on Canvas

2023 Spring
Home
Announcements
Assignments @&
Grades

People

Files

Syllabus

CTEC

NameCoach
Worldwide

Learning Apps

Discussions @
Pages @
Rubrics B
Outcomes @
Quizzes &
Modules &
Collaborations &

ATC 2023 2 Edit
Syllabus.pdf Advanced

Lectures and files / T PICS
Tutorials in

Piazza: signup 5, login &> i mpilers

Zoom =

The compiler is the programmer's primary tool. Understanding the compiler is therefore critical for programmers, even if
they never build one. Furthermore, many design techniques that emerged in the context of compilers are useful for a
range of other application areas. This course introduces students to the essential elements of building a compiler:
parsing, context-sensitive property checking, code linearization, register allocation, etc. To take this course, students are
expected to already understand how programming languages behave, to a fairly detailed degree. The material in the
course builds on that knowledge via a series of semantics preserving transformations that start with a fairly high-level
programming language and culminate in machine code. Production compilers often do not include the latest
compilation techniques proposed by the research community. This is because the latest techniques are often not yet as
robust as they need to be to be included in a production compiler. My other compiler classes (COMP_SCI

322 and COMP_SCI 323) teach well-established compilation techniques included in production compilers (e.g., register
allocation, instruction selection). This class, instead, focuses on the advanced compilation techniques the research
community has proposed that are not yet included in production compilers. This class covers the large number of
compilation techniques proposed by the research community across several years. Specifically, we organize these
compilation techniques in topics. Every year we will focus only on up to two topics (e.g., automatic parallelizing
compilers, autotuning) to allow a deep dive study.

ATC on Canvas

L ectures

Next are the lectures of this class with the link to the related videos.

Week 0:

o ATC 2023 NE e Welcome, structure of the class, and projects (slides)
lome
Announcements Syllabus,pdf L, Advanced
i © Lectures and files / T piCS
Grades .
Tutorials n Week 1:
People
Files Piazza: signup &, login & c mpilers
Syllabus Zoome - TOpiCS Oand 1

e e Topics 1 and 2
NameCoach The compiler is the programmer's primary tool. Understanding the compiler is therefore critical for programmers, even if
they never build one. Furthermore, many design techniques that emerged in the context of compilers are useful for a

Worldwide range of other application areas. This course introduces students to the essential elements of building a compiler:
parsing, context-sensitive property checking, code linearization, register allocation, etc. To take this course, students are

N Learning Apps
N Lig 4 expected to already understand how programming languages behave, to a fairly detailed degree. The material in the

Discussions & course builds on that knowledge via a series of semantics preserving transformations that start with a fairly high-level Week 2.
programming language and culminate in machine code. Production compilers often do not include the latest i
Pages e compilation techniques proposed by the research community. This is because the latest techniques are often not yet as
Rubrics @ robust as they need to be to be included in a production compiler. My other compiler classes (COMP_SCI .
322 and COMP_SCI 323) teach well-established compilation techniques included in production compilers (e.g., register) TOpIC 3
Outcomes 4 allocation, instruction selection). This class, instead, focuses on the advanced compilation techniques the research .
Quizzes @ community has proposed that are not yet included in production compilers. This class covers the large number of L4 N O E LLE (SI Ides)
compilation techniques proposed by the research community across several years. Specifically, we organize these
Modules P compilation techniques in topics. Every year we will focus only on up to two topics fe.g, automatic parallelizing
Collaborations & compilers, autotuning) to allow a deep dive study.

Week 3:

e MemOIR (slides)
e More about NOELLE and MemOIR

Week 4:

e Leading discussions

The ATC structure

Before the end of the day of the first lecture of this week,
you need to choose the topic to focus on

Intro to topics Intfo to software Discussion with leaders Project presentation

7 I I 2 | — | O —

You develop your project

* You need to read 1 paper per topic before the class
that will introduce that topic
* After choosing a topic, you need to read papers about it,
and do a project about it within our codebases (and optionally others)
« We'll only introduce the codebases in class
 Watch all videos about the codebases to use for your project on the
ATC’s webpage:
http://users.cs.northwestern.edu/~simonec/ATC.html|

10

http://users.cs.northwestern.edu/~simonec/ATC.html

Papers to read

* Everyone is required to read all papers that introduce a topic
(those discussed in the second and third week)

* Only the discussion leader of a topic must read the remaining papers of that topic

* The discussion leader will lead the discussion about his/her topic
* You will be the teacher for that topic and you will teach us

* No slides
* Use white/blackboard to present the concepts

* Expectation: everyone will learn all concepts explained by the leader

Software

e NOELLE: it can be downloaded from here
A set of abstractions/transformations/analyses that can be used
by an LLVM middle-end pass

e Gino: it can be downloaded from here

e MemOIR: it can be downloaded from here

* NOELLEGym: it can be downloaded from here
infrastructure to test NOELLE-based optimizations
on benchmarks typically used for testing research ideas

* VIRGIL: it can be downloaded from here _
our task engine that is used by (for example) the Gino parallelizing compiler

* Not ours: from the web

https://github.com/arcana-lab/noelle
https://github.com/arcana-lab/gino
https://github.com/arcana-lab/memoir
https://github.com/arcana-lab/noelleGym
https://github.com/arcana-lab/virgil

Outline

* This year’s topics

Topics

* Every year ATC covers different topics

* Topics we will cover this year:

NN AWM

Equality Saturation
Collection selection
Sequential IR

Parallel IR

Sparse computation
Scheduling languages
LLM in compilation
Vectorization

Always have faith in your ability

Success will come your way eventually

Best of luck!

