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• Does j depend on i ?

• Do p and q point to the same memory location?
• Does q alias p?

Memory alias analysis: the problem

i: (*p) = varA + 1
j: varB = (*q) * 2

i: obj1.f = varA + 1
j: varB= obj2.f * 2



Outline

• Enhance CAT with alias analysis

• Simple alias analysis

• Alias analysis in LLVM



Exploiting alias analysis in CATs

• Easiest: extending the transformation

• Midway: extending the analysis

• Hardest: writing a CAT-specific alias analysis

This is what homework H5 
is about!

This is what homework H6 
is about!



Let’s start looking at the interaction between

memory alias analysis

and

a code transformation you are familiar with: 
constant propagation

… but first, let’s recall a term



Escape variables

int x, y;
int *p;
p = &x;
myF(p);
...

void myF (int *q){
…

}



Constant propagation revisited

int x, y;
int *p;
… = &x;
…
x = 5;
*p = 42;
y = x + 1;

Is x constant here?

• If p does not point to x, then x = 5
• If p definitely points to x, then x = 42
• If p might point to x, then we have two reaching 

definitions that reach this last statement, so x is not 
constant

• Yes, only one value of x reaches this last statement

Goal of memory 
alias analysis: understanding 

• Yes, because x doesn’t “escape” and therefore only 
one value of x reaches this last statement

We need to know which variables escape

(your H4)



To exploit memory alias analysis in a code transformation

typically you extend the related code analyses 

to use the information about pointer aliases



Let’s exploit alias analysis for 
making liveness analysis more powerful
• A variable v is live at a given point of a program p if
• Exist a directed path from p to an use of v and
• that path does not contain any definition of v

• What is the most conservative output of the analysis?
(the bottom of the lattice)

GEN[i] = ?                                        KILL[i] = ?
IN[i]     = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s] 



Liveness analysis revisited

int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Is x alive here?

• If p does not point to x, then 
yes

• If p definitely points to x, then 
no

• If p might point to x, then 
yes

• Yes, the value 5 stored in x there will be used later• Yes, because x doesn’t “escape” and therefore the 
value of x stored there will be used later

How can we modify liveness analysis?

What is the most conservative 
output of the analysis?
(the bottom of the lattice)



Liveness analysis revisited

mayAliasVar : variable -> set<variable>
mustAliasVar: variable -> set<variable>

GEN[i] = {v | variable v is used by i}                                         
KILL[i]  = {v’ | variable v’ is defined by i}

IN[i]     = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s] 

How can we modify conventional liveness analysis?



Liveness analysis revisited

mayAliasVar : variable -> set<variable>
mustAliasVar: variable -> set<variable>

GEN[i] = {mayAliasVar(v) U mustAliasVar(v) | variable v is used by i}                                         
KILL[i]  = {mustAliasVar(v) | variable v is defined by i}

IN[i]     = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s] 



int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Trivial analysis: no code analysis

Trivial 
memory 
alias 
analysis

Nothing must alias
Anything may alias everything else

GEN[i] = {mayAliasVar(v) U mustAliasVar(v) | v is used by i}                                         
KILL[i]  = {mustAliasVar(v) | v is defined by i}
IN[i]     = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s] 



int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Great alias analysis impact

Great
memory 
alias 
analysis

No aliases

GEN[i] = {mayAliasVar(v) U mustAliasVar(v) | v is used by i}                                         
KILL[i]  = {mustAliasVar(v) | v is defined by i}
IN[i]     = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s] 

Some compilers expose only data dependences.
How can we compute aliases for them?
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Memory alias analysis

• Assumption: 
no dynamic memory, pointers can point only to variables

• Goal: 
at each program point, compute set of (p->x) pairs
if p points to variable x

• Approach:
• Based on data-flow analysis
• May information

1: p = &x ;
2: q = &y;
3: if (…){
4:   z = &v;

}
5: x++;
6: p = q;
7: print *p



May points-to analysis

• Data flow values: 
{(v, x) | v is a pointer variable and x is a variable}

• Direction: forward
• i: p = &x
• GEN[i] = {(p, x)}                       KILL[i] = {(p, v) | v escapes}
• OUT[i] = GEN[i] U (IN[i] – KILL[i])

• IN[i] = Up is a predecessor of i OUT[p]
• Different OUT[i] equation for different instructions
• i: p = q
• GEN[i] = { }         KILL[i] = {(p,x) | x escapes}

OUT[i] = {(p, z) | (q, z) ∈ IN[i]}  U  (IN[i] – KILL[i])

…
print *pWhich variable does p point to?

Why?



Code example
1: p = &x ;
2: q = &y;
3: if (…){
4:   z = &v;

}
5: x++;
6: p = q;

GEN[1] = {(p, x)}
GEN[2] = {(q, y)}
GEN[3] = { } 
GEN[4] = {(z, v)}
GEN[5] = { }
GEN[6] = { }

KILL[1] = {(p, x), (p, y), (p,v)}
KILL[2] = {(q, x), (q, y), (q,v)}
KILL[3] = { } 
KILL[4] = {(z, x), (z, y), (z, v)}
KILL[5] = { }
KILL[6] = {(p, x), (p, y), (p, v)}

IN[1] = { }
IN[2] = {(p,x)}
IN[3] = {(q,y),(p,x)} 
IN[4] = {(q,y),(p,x)}
IN[5] = {(z,v),(q,y),(p,x)}
IN[6] = {(z,v),(q,y),(p,x)}

OUT[1] = {(p,x)}
OUT[2] = {(q,y),(p,x)}
OUT[3] = {(q,y),(p,x)} 
OUT[4] = {(z,v),(q,y),(p,x)}
OUT[5] = {(z,v),(q,y),(p,x)}
OUT[6] = {(z,v),(q,y),(p,y)}



May points-to analysis
• IN[i] = Up is a predecessor of i OUT[p]
• i: p = &x
• GEN[i] = {(p,x)}                       KILL[i] = {(p,v) | v “escapes”}
• OUT[i] = GEN[i] U (IN[i] – KILL[i])

• i: p = q
• GEN[i] = { }         KILL[i] = {(p,x) | x escapes}

OUT[i] = {(p,z) | (q,z) ∈ IN[i]}  U  (IN[i] – KILL[i]) 

• i: p = *q
• GEN[i] = { }         KILL[i] = {(p,x) | x escapes}

OUT[i] = {(p,t) | (q,r)∈IN[i] & (r,t)∈IN[i]}   U   (IN[i] – KILL[i])

• i: *q = p                     ?? (1 point)



• This was a reasonable alias analysis for understanding pointers that could point 
only to variables

• How about pointers that could point to memory locations?
(stack and heap)
• Challenge: memory locations don’t have pre-defined symbols like variables



Memory alias analysis: 
dealing with dynamically allocated memory
• Each invocation of a memory allocator 

creates a new piece of memory
p = new T();             p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration 
to stand for new memory

for (i=0; i < 10; i++){
v[i] = new malloc(100);

}



Memory alias analysis: 
dealing with dynamically allocated memory
• Each invocation of a memory allocator 

creates a new piece of memory
p = new T();             p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration 
to stand for new memory

• Extending our data-flow analysis
OUT[i] = {(p, newVar)} U (IN[i] – {(p,x) for all x})

i: p = malloc(…)

j: … = *p
IN[j]={(p, newVar0_i)}OUT[i]={(p, newVar0_i)}



k: q = malloc(…)

Memory alias analysis: 
dealing with dynamically allocated memory
• Each invocation of a memory allocator 

creates a new piece of memory
p = new T();             p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration 
to stand for new memory

• Extending our data-flow analysis
OUT[i] = {(p, newVar)} U (IN[i] – {(p,x) for all x})

i: p = malloc(…)

z: w = phi([p,left],[q,right])
j: … = *w

IN[z]={ (p, newVar0_i),
(q, newVar0_k)}IN[j]={ (p, newVar0_i),

(q, newVar0_k)},
(w, newVar0_i), 
(w, newVar0_k)}



Memory alias analysis: 
dealing with dynamically allocated memory
• Each invocation of a memory allocator 

creates a new piece of memory
p = new T();             p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration 
to stand for new memory

• Extending our data-flow analysis
OUT[i] = {(p, newVar)} U (IN[i] – {(p,x) for all x})

i: p = malloc(…)

j: … = *p

IN[j]={(p, newVar0_i), 
(p, newVar1_i),
(p, newVar2_i),
…



Memory alias analysis: 
dealing with dynamically allocated memory
• Each invocation of a memory allocator 

creates a new piece of memory
p = new T();             p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration 
to stand for new memory

• Extending our data-flow analysis
OUT[i] = {(p, newVar)} U (IN[i] – {(p,x) for all x})

• Problem: 
• Domain is unbounded
• Iterative data-flow analysis may not converge



Memory alias analysis: 
dealing with dynamically allocated memory
Simple solution
• Create a summary “variable” for each allocation statement
• Domain is now bounded 

• Data-flow equation
i: p = new T
OUT[i] = {(p,insti)} U (IN[i] – {(p,x) for all x})

i: p = malloc(…)

j: … = *p

IN[j]={(p, insti)}

Let us look at the implication 
of this design choice



Memory alias analysis: 
dealing with dynamically allocated memory
Simple solution
• Create a summary “variable” for each allocation statement
• Domain is now bounded 

• Data-flow equation
i: p = new T
OUT[i] = {(p,insti)} U (IN[i] – {(p,x) for all x})

for (i=0; i < 10; i++) v[i] = new malloc(100);
*(v[0]) = …
*(v[1]) = …

Alias analysis result:
v[i] and v[j] alias
Dependence analysis result:
These 2 instructions depend 
on each other



Memory alias analysis: 
dealing with dynamically allocated memory
Simple solution
• Create a summary “variable” for each allocation statement
• Domain is now bounded 

• Data-flow equation
i: p = new T
OUT[i] = {(p,insti)} U (IN[i] – {(p,x) for all x})

Alternatives
• Summary variable for odd iterations, summary variable for even iterations
• Summary variable for entire heap
• Summary node for each object type

Analysis time/precision tradeoff



Alias analysis common tradeoffs

• Field sensitivity
obj->field1
obj->field2

• Flow sensitivity

• Context sensitivity



Representations of aliasing
Alias pairs 
• Pairs that refer to the same memory
• High memory requirements

Equivalence sets
• All memory references in the same set are aliases

Points-to pairs
• Pairs where the first member points to the second



How hard is the 
memory alias analysis problem?
• Undecidable
• Landi 1992
• Ramalingan 1994

• All solutions are conservative approximations
• But all correct

• Is this problem solved?
• Numerous papers in this area
• Haven’t we solved this problem yet? [Hind 2001]



Alias analyses challenges

• So far we saw only one challenge: dynamic memory allocations

Let’s see the other challenges



Limits of intra-procedural analysis

foo() {
int x, y, a;
int *p;
x = 5;
p = foo(&x);
…
}

foo(int *p){
return p;

}

Does the function call modify x? where does p point to?
• With our intra-procedural analysis, we don’t know
• Make worst case assumptions
• Assume that any reachable pointer may be changed
• Pointers can be “reached” via globals and parameters
• Pointers can be passed through objects in the heap
• p may point to anything that might escape foo

The most accurate analyses are inter-procedural



Quality of memory alias analysis

• Quality decreases
• Across functions
• When indirect access pointers are used
• When dynamically allocated memory is used
• When pointer arithmetic is used
• When pointer to/from integer casting is used

• Partial solutions to mitigate them
• Inter-procedural analysis
• Shape analysis
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What is available in LLVM

• LLVM includes several alias analyses

• Each one is specialized to understand a different code pattern

• Each one with its tradeoff between accuracy and analysis time



int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Using dependence analysis in LLVM

Trivial 
memory 

alias 
analysis

Trivial 
memory data 
dependence 

analysis

Nothing must alias
Anything may alias everything else

Every memory instruction 
depends on 
every instruction 
that might access memory

opt -no-aa -CAT bitcode.bc -o optimized_bitcode.bc



LLVM alias analysis: basicaa

• Distinct globals, stack allocations, and heap allocations can never alias
• p = &g1 ; q = &g2;
• p = alloca(…); q = alloca(…);
• p = malloc(…); q = malloc(…);

• They also never alias nullptr
• Different fields of a structure do not alias
• Baked in information about common standard C library functions
• … a few more …



int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Using basicaa

Basic
memory 
alias analysis

Memory data 
dependence 
analysis

opt -basicaa -CAT bitcode.bc -o optimized_bitcode.bc

opt -no-aa -CAT bitcode.bc -o optimized_bitcode.bc



LLVM alias analysis: globals-aa

• Specialized for understanding reads/writes of globals
• Analyze only globals that don’t have their address taken

• Context-sensitive
• Provide information for call instructions
• e.g., does call i read/write global g1?

int g1;
int g2;
void f (void *p1){

… = &g2;
g(p1);
…

}



int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Using globals-aa

Global
memory 
alias analysis

Memory data 
dependence 
analysis

opt -globals-aa -CAT bitcode.bc -o optimized_bitcode.bc



• basicaa, globals-aa have their strengths and weaknesses

• We would like to use both of them!

• LLVM can chain alias analyses J
• Best of N



int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Using basicaa and globals-aa

Global
memory 
alias analysis

Memory data 
dependence 
analysis

opt -basicaa -globals-aa -CAT bitcode.bc -o optimized_bitcode.bc

Basic
memory 
alias analysis



Other LLVM alias analyses

• tbaa
• cfl-steens-aa
• scev-aa
• cfl-anders-aa

• + others not included in the official LLVM codebase



Alias analyses used

• How can we find out what AA is used in O0/O1/O2/O3?
• opt –O3 -disable-output -debug-pass=Arguments bitcode.bc

• -O0:
• -O1: -basicaa -globals-aa –tbaa
• -O2: -basicaa -globals-aa -tbaa
• -O3: -basicaa -globals-aa –tbaa

• You can always extend O3 adding other AA



• We have seen how to invoke alias analyses

• How can we access alias information and/or dependences in a pass?

• What does ”alias” mean in LLVM exactly? 
What is the memory model adopted by LLVM?



• We have seen how to invoke alias analyses

• How can we access alias information and/or dependences in a pass?

• What does ”alias” mean in LLVM exactly? 
What is the memory model adopted by LLVM?



Asking LLVM to run an AA before our pass

Which AA will run?

opt -basicaa -CAT bitcode.bc -o optimized_bitcode.bc

opt -globals-aa -CAT bitcode.bc -o optimized_bitcode.bc

opt -basicaa -globals-aa -CAT bitcode.bc -o optimized_bitcode.bc



AliasAnalysis LLVM class

• Interface between 
passes that use the information about pointer aliases and
passes that compute them (i.e., alias analyses)
• To access the result of alias analyses:

• AliasAnalysis provides information about pointers used by F
• You cannot use the AA results to check aliases of other functions



AliasAnalysis LLVM class: queries

You can ask to AliasAnalysis the following common queries:
• Do these two memory pointers alias?

• Can this instruction read/write a given memory location?
• Can this function call read/write a given memory location?

• Does this function reads/modifies memory at all?
• Does this function call read/write memory at all?

(*p1) = …
… = *p2

alias(…)

getModRefInfo(…)



AliasAnalysis LLVM class: the memory location

• Memory location representation:
• Starting address (Value *)
• Static size (e.g., 10 bytes)

• From instruction/pointer to the memory location accessed
• MemoryLocation::get(memInst)

p1 = malloc(sizeof(T1));



AliasAnalysis LLVM class: the alias method

• Query: the alias method
aliasAnalysis.alias(…)
Input: 2 memory locations

• The size can be platform dependent: … = malloc(sizeof(long int))



AliasAnalysis LLVM class: the alias method

• Query: the alias method
aliasAnalysis.alias(…)
Input: 2 memory locations

• What if you don’t know the size of the memory location?



AliasAnalysis LLVM class: the alias method

• Query: the alias method
aliasAnalysis.alias(…)
Input: 2 memory locations

Constraint: 
Value(s) used in the APIs that are not constant 
must have been defined in the same function

Output: AliasResult (this is an enum)



AliasResult

MayAlias

NoAlias

MustAlias

PartialAlias

Two pointers cannot refer to the same memory location

Two pointers always refer to the same memory
location and they have the same start address

Two pointers might refer to 
the same memory location

Two pointers always refer to 
the same memory location



Alias query example



Memory instructions

• What if we want to use memory instructions directly?
• e.g., can this load access the same memory object of this store? 



Mod/ref queries

• Information about whether the execution of an instruction 
can modify (mod) or read (ref) a memory location
• It is always conservative (like alias queries)
• API: getModRefInfo
• This API is often used 

to understand dependences between function calls
or between a memory instruction and a function call



Mod/ref query example

… call inst, fence inst, …

MemoryLocation

Input:
• An instruction
• A memory location

Output:
• Whether the memory location may be modified and/or may be read

(the negation of may means cannot) 
• ModRefInfo (this is an enum) 





ModRefInfo

ModRef

Mod Ref

NoModRef

Found no ref
Found no mod
Found must alias

MustMod MustRef

MustModRef

Intersection

Union

(Most conservative output)



Other alias queries

The AliasAnalysis and ModRef API includes other functions
• pointsToConstantMemory
• doesNotAccessMemory
• onlyReadsMemory
• onlyAccessesArgPointees
• …



• We have seen how to invoke alias analyses

• How can we access alias information and/or dependences in a pass?

• What does ”alias” mean in LLVM exactly? 
What is the memory model adopted by LLVM?



The LLVM memory model

myObject0 = call malloc(4)
myObject1 = call malloc(10)

p = myObject0 + 4

Can p alias myObject1? 



The LLVM memory model

myObject0 = call malloc(4)
myObject1 = call malloc(10)

p = myObject0 + 4

Can p alias myObject1? 


