
Alias Analysis
Simone Campanoni
simone.campanoni@northwestern.edu

• Does j depend on i ?

• Do p and q point to the same memory location?
• Does q alias p?

Memory alias analysis: the problem

i: (*p) = varA + 1
j: varB = (*q) * 2

i: obj1.f = varA + 1
j: varB= obj2.f * 2

Outline

• Enhance CAT with alias analysis

• Simple alias analysis

• Alias analysis in LLVM

Exploiting alias analysis in CATs

• Easiest: extending the transformation

• Midway: extending the analysis

• Hardest: writing a CAT-specific alias analysis

This is what homework H5
is about!

This is what homework H6
is about!

Let’s start looking at the interaction between

memory alias analysis

and

a code transformation you are familiar with:
constant propagation

… but first, let’s recall a term

Escape variables

int x, y;
int *p;
p = &x;
myF(p);
...

void myF (int *q){
…

}

Constant propagation revisited

int x, y;
int *p;
… = &x;
…
x = 5;
*p = 42;
y = x + 1;

Is x constant here?

• If p does not point to x, then x = 5
• If p definitely points to x, then x = 42
• If p might point to x, then we have two reaching

definitions that reach this last statement, so x is not
constant

• Yes, only one value of x reaches this last statement

Goal of memory
alias analysis: understanding

• Yes, because x doesn’t “escape” and therefore only
one value of x reaches this last statement

We need to know which variables escape

(your H4)

To exploit memory alias analysis in a code transformation

typically you extend the related code analyses

to use the information about pointer aliases

Let’s exploit alias analysis for
making liveness analysis more powerful
• A variable v is live at a given point of a program p if
• Exist a directed path from p to an use of v and
• that path does not contain any definition of v

• What is the most conservative output of the analysis?
(the bottom of the lattice)

GEN[i] = ? KILL[i] = ?
IN[i] = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s]

Liveness analysis revisited

int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Is x alive here?

• If p does not point to x, then
yes

• If p definitely points to x, then
no

• If p might point to x, then
yes

• Yes, the value 5 stored in x there will be used later• Yes, because x doesn’t “escape” and therefore the
value of x stored there will be used later

How can we modify liveness analysis?

What is the most conservative
output of the analysis?
(the bottom of the lattice)

Liveness analysis revisited

mayAliasVar : variable -> set<variable>
mustAliasVar: variable -> set<variable>

GEN[i] = {v | variable v is used by i}
KILL[i] = {v’ | variable v’ is defined by i}

IN[i] = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s]

How can we modify conventional liveness analysis?

Liveness analysis revisited

mayAliasVar : variable -> set<variable>
mustAliasVar: variable -> set<variable>

GEN[i] = {mayAliasVar(v) U mustAliasVar(v) | variable v is used by i}
KILL[i] = {mustAliasVar(v) | variable v is defined by i}

IN[i] = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s]

int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Trivial analysis: no code analysis

Trivial
memory
alias
analysis

Nothing must alias
Anything may alias everything else

GEN[i] = {mayAliasVar(v) U mustAliasVar(v) | v is used by i}
KILL[i] = {mustAliasVar(v) | v is defined by i}
IN[i] = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s]

int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Great alias analysis impact

Great
memory
alias
analysis

No aliases

GEN[i] = {mayAliasVar(v) U mustAliasVar(v) | v is used by i}
KILL[i] = {mustAliasVar(v) | v is defined by i}
IN[i] = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s]

Some compilers expose only data dependences.
How can we compute aliases for them?

5

Outline

• Enhance CAT with alias analysis

• Simple alias analysis

• Alias analysis in LLVM

Memory alias analysis

• Assumption:
no dynamic memory, pointers can point only to variables

• Goal:
at each program point, compute set of (p->x) pairs
if p points to variable x

• Approach:
• Based on data-flow analysis
• May information

1: p = &x ;
2: q = &y;
3: if (…){
4: z = &v;

}
5: x++;
6: p = q;
7: print *p

May points-to analysis

• Data flow values:
{(v, x) | v is a pointer variable and x is a variable}

• Direction: forward
• i: p = &x
• GEN[i] = {(p, x)} KILL[i] = {(p, v) | v escapes}
• OUT[i] = GEN[i] U (IN[i] – KILL[i])

• IN[i] = Up is a predecessor of i OUT[p]
• Different OUT[i] equation for different instructions
• i: p = q
• GEN[i] = { } KILL[i] = {(p,x) | x escapes}

OUT[i] = {(p, z) | (q, z) ∈ IN[i]} U (IN[i] – KILL[i])

…
print *pWhich variable does p point to?

Why?

Code example
1: p = &x ;
2: q = &y;
3: if (…){
4: z = &v;

}
5: x++;
6: p = q;

GEN[1] = {(p, x)}
GEN[2] = {(q, y)}
GEN[3] = { }
GEN[4] = {(z, v)}
GEN[5] = { }
GEN[6] = { }

KILL[1] = {(p, x), (p, y), (p,v)}
KILL[2] = {(q, x), (q, y), (q,v)}
KILL[3] = { }
KILL[4] = {(z, x), (z, y), (z, v)}
KILL[5] = { }
KILL[6] = {(p, x), (p, y), (p, v)}

IN[1] = { }
IN[2] = {(p,x)}
IN[3] = {(q,y),(p,x)}
IN[4] = {(q,y),(p,x)}
IN[5] = {(z,v),(q,y),(p,x)}
IN[6] = {(z,v),(q,y),(p,x)}

OUT[1] = {(p,x)}
OUT[2] = {(q,y),(p,x)}
OUT[3] = {(q,y),(p,x)}
OUT[4] = {(z,v),(q,y),(p,x)}
OUT[5] = {(z,v),(q,y),(p,x)}
OUT[6] = {(z,v),(q,y),(p,y)}

May points-to analysis
• IN[i] = Up is a predecessor of i OUT[p]
• i: p = &x
• GEN[i] = {(p,x)} KILL[i] = {(p,v) | v “escapes”}
• OUT[i] = GEN[i] U (IN[i] – KILL[i])

• i: p = q
• GEN[i] = { } KILL[i] = {(p,x) | x escapes}

OUT[i] = {(p,z) | (q,z) ∈ IN[i]} U (IN[i] – KILL[i])

• i: p = *q
• GEN[i] = { } KILL[i] = {(p,x) | x escapes}

OUT[i] = {(p,t) | (q,r)∈IN[i] & (r,t)∈IN[i]} U (IN[i] – KILL[i])

• i: *q = p ?? (1 point)

• This was a reasonable alias analysis for understanding pointers that could point
only to variables

• How about pointers that could point to memory locations?
(stack and heap)
• Challenge: memory locations don’t have pre-defined symbols like variables

Memory alias analysis:
dealing with dynamically allocated memory
• Each invocation of a memory allocator

creates a new piece of memory
p = new T(); p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration
to stand for new memory

for (i=0; i < 10; i++){
v[i] = new malloc(100);

}

Memory alias analysis:
dealing with dynamically allocated memory
• Each invocation of a memory allocator

creates a new piece of memory
p = new T(); p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration
to stand for new memory

• Extending our data-flow analysis
OUT[i] = {(p, newVar)} U (IN[i] – {(p,x) for all x})

i: p = malloc(…)

j: … = *p
IN[j]={(p, newVar0_i)}OUT[i]={(p, newVar0_i)}

k: q = malloc(…)

Memory alias analysis:
dealing with dynamically allocated memory
• Each invocation of a memory allocator

creates a new piece of memory
p = new T(); p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration
to stand for new memory

• Extending our data-flow analysis
OUT[i] = {(p, newVar)} U (IN[i] – {(p,x) for all x})

i: p = malloc(…)

z: w = phi([p,left],[q,right])
j: … = *w

IN[z]={ (p, newVar0_i),
(q, newVar0_k)}IN[j]={ (p, newVar0_i),

(q, newVar0_k)},
(w, newVar0_i),
(w, newVar0_k)}

Memory alias analysis:
dealing with dynamically allocated memory
• Each invocation of a memory allocator

creates a new piece of memory
p = new T(); p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration
to stand for new memory

• Extending our data-flow analysis
OUT[i] = {(p, newVar)} U (IN[i] – {(p,x) for all x})

i: p = malloc(…)

j: … = *p

IN[j]={(p, newVar0_i),
(p, newVar1_i),
(p, newVar2_i),
…

Memory alias analysis:
dealing with dynamically allocated memory
• Each invocation of a memory allocator

creates a new piece of memory
p = new T(); p = malloc(10);

• Simple solution: generate a new “variable” for every DFA iteration
to stand for new memory

• Extending our data-flow analysis
OUT[i] = {(p, newVar)} U (IN[i] – {(p,x) for all x})

• Problem:
• Domain is unbounded
• Iterative data-flow analysis may not converge

Memory alias analysis:
dealing with dynamically allocated memory
Simple solution
• Create a summary “variable” for each allocation statement
• Domain is now bounded

• Data-flow equation
i: p = new T
OUT[i] = {(p,insti)} U (IN[i] – {(p,x) for all x})

i: p = malloc(…)

j: … = *p

IN[j]={(p, insti)}

Let us look at the implication
of this design choice

Memory alias analysis:
dealing with dynamically allocated memory
Simple solution
• Create a summary “variable” for each allocation statement
• Domain is now bounded

• Data-flow equation
i: p = new T
OUT[i] = {(p,insti)} U (IN[i] – {(p,x) for all x})

for (i=0; i < 10; i++) v[i] = new malloc(100);
*(v[0]) = …
*(v[1]) = …

Alias analysis result:
v[i] and v[j] alias
Dependence analysis result:
These 2 instructions depend
on each other

Memory alias analysis:
dealing with dynamically allocated memory
Simple solution
• Create a summary “variable” for each allocation statement
• Domain is now bounded

• Data-flow equation
i: p = new T
OUT[i] = {(p,insti)} U (IN[i] – {(p,x) for all x})

Alternatives
• Summary variable for odd iterations, summary variable for even iterations
• Summary variable for entire heap
• Summary node for each object type

Analysis time/precision tradeoff

Alias analysis common tradeoffs

• Field sensitivity
obj->field1
obj->field2

• Flow sensitivity

• Context sensitivity

Representations of aliasing
Alias pairs
• Pairs that refer to the same memory
• High memory requirements

Equivalence sets
• All memory references in the same set are aliases

Points-to pairs
• Pairs where the first member points to the second

How hard is the
memory alias analysis problem?
• Undecidable
• Landi 1992
• Ramalingan 1994

• All solutions are conservative approximations
• But all correct

• Is this problem solved?
• Numerous papers in this area
• Haven’t we solved this problem yet? [Hind 2001]

Alias analyses challenges

• So far we saw only one challenge: dynamic memory allocations

Let’s see the other challenges

Limits of intra-procedural analysis

foo() {
int x, y, a;
int *p;
x = 5;
p = foo(&x);
…
}

foo(int *p){
return p;

}

Does the function call modify x? where does p point to?
• With our intra-procedural analysis, we don’t know
• Make worst case assumptions
• Assume that any reachable pointer may be changed
• Pointers can be “reached” via globals and parameters
• Pointers can be passed through objects in the heap
• p may point to anything that might escape foo

The most accurate analyses are inter-procedural

Quality of memory alias analysis

• Quality decreases
• Across functions
• When indirect access pointers are used
• When dynamically allocated memory is used
• When pointer arithmetic is used
• When pointer to/from integer casting is used

• Partial solutions to mitigate them
• Inter-procedural analysis
• Shape analysis

Outline

• Enhance CAT with alias analysis

• Simple alias analysis

• Alias analysis in LLVM

What is available in LLVM

• LLVM includes several alias analyses

• Each one is specialized to understand a different code pattern

• Each one with its tradeoff between accuracy and analysis time

int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Using dependence analysis in LLVM

Trivial
memory

alias
analysis

Trivial
memory data
dependence

analysis

Nothing must alias
Anything may alias everything else

Every memory instruction
depends on
every instruction
that might access memory

opt -no-aa -CAT bitcode.bc -o optimized_bitcode.bc

LLVM alias analysis: basicaa

• Distinct globals, stack allocations, and heap allocations can never alias
• p = &g1 ; q = &g2;
• p = alloca(…); q = alloca(…);
• p = malloc(…); q = malloc(…);

• They also never alias nullptr
• Different fields of a structure do not alias
• Baked in information about common standard C library functions
• … a few more …

int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Using basicaa

Basic
memory
alias analysis

Memory data
dependence
analysis

opt -basicaa -CAT bitcode.bc -o optimized_bitcode.bc

opt -no-aa -CAT bitcode.bc -o optimized_bitcode.bc

LLVM alias analysis: globals-aa

• Specialized for understanding reads/writes of globals
• Analyze only globals that don’t have their address taken

• Context-sensitive
• Provide information for call instructions
• e.g., does call i read/write global g1?

int g1;
int g2;
void f (void *p1){

… = &g2;
g(p1);
…

}

int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Using globals-aa

Global
memory
alias analysis

Memory data
dependence
analysis

opt -globals-aa -CAT bitcode.bc -o optimized_bitcode.bc

• basicaa, globals-aa have their strengths and weaknesses

• We would like to use both of them!

• LLVM can chain alias analyses J
• Best of N

int x, y;
int *p;
… = &x;
x = 5;
…(no uses/definitions of x)
*p = 42;
y = x + 1;

Using basicaa and globals-aa

Global
memory
alias analysis

Memory data
dependence
analysis

opt -basicaa -globals-aa -CAT bitcode.bc -o optimized_bitcode.bc

Basic
memory
alias analysis

Other LLVM alias analyses

• tbaa
• cfl-steens-aa
• scev-aa
• cfl-anders-aa

• + others not included in the official LLVM codebase

Alias analyses used

• How can we find out what AA is used in O0/O1/O2/O3?
• opt –O3 -disable-output -debug-pass=Arguments bitcode.bc

• -O0:
• -O1: -basicaa -globals-aa –tbaa
• -O2: -basicaa -globals-aa -tbaa
• -O3: -basicaa -globals-aa –tbaa

• You can always extend O3 adding other AA

• We have seen how to invoke alias analyses

• How can we access alias information and/or dependences in a pass?

• What does ”alias” mean in LLVM exactly?
What is the memory model adopted by LLVM?

• We have seen how to invoke alias analyses

• How can we access alias information and/or dependences in a pass?

• What does ”alias” mean in LLVM exactly?
What is the memory model adopted by LLVM?

Asking LLVM to run an AA before our pass

Which AA will run?

opt -basicaa -CAT bitcode.bc -o optimized_bitcode.bc

opt -globals-aa -CAT bitcode.bc -o optimized_bitcode.bc

opt -basicaa -globals-aa -CAT bitcode.bc -o optimized_bitcode.bc

AliasAnalysis LLVM class

• Interface between
passes that use the information about pointer aliases and
passes that compute them (i.e., alias analyses)
• To access the result of alias analyses:

• AliasAnalysis provides information about pointers used by F
• You cannot use the AA results to check aliases of other functions

AliasAnalysis LLVM class: queries

You can ask to AliasAnalysis the following common queries:
• Do these two memory pointers alias?

• Can this instruction read/write a given memory location?
• Can this function call read/write a given memory location?

• Does this function reads/modifies memory at all?
• Does this function call read/write memory at all?

(*p1) = …
… = *p2

alias(…)

getModRefInfo(…)

AliasAnalysis LLVM class: the memory location

• Memory location representation:
• Starting address (Value *)
• Static size (e.g., 10 bytes)

• From instruction/pointer to the memory location accessed
• MemoryLocation::get(memInst)

p1 = malloc(sizeof(T1));

AliasAnalysis LLVM class: the alias method

• Query: the alias method
aliasAnalysis.alias(…)
Input: 2 memory locations

• The size can be platform dependent: … = malloc(sizeof(long int))

AliasAnalysis LLVM class: the alias method

• Query: the alias method
aliasAnalysis.alias(…)
Input: 2 memory locations

• What if you don’t know the size of the memory location?

AliasAnalysis LLVM class: the alias method

• Query: the alias method
aliasAnalysis.alias(…)
Input: 2 memory locations

Constraint:
Value(s) used in the APIs that are not constant
must have been defined in the same function

Output: AliasResult (this is an enum)

AliasResult

MayAlias

NoAlias

MustAlias

PartialAlias

Two pointers cannot refer to the same memory location

Two pointers always refer to the same memory
location and they have the same start address

Two pointers might refer to
the same memory location

Two pointers always refer to
the same memory location

Alias query example

Memory instructions

• What if we want to use memory instructions directly?
• e.g., can this load access the same memory object of this store?

Mod/ref queries

• Information about whether the execution of an instruction
can modify (mod) or read (ref) a memory location
• It is always conservative (like alias queries)
• API: getModRefInfo
• This API is often used

to understand dependences between function calls
or between a memory instruction and a function call

Mod/ref query example

… call inst, fence inst, …

MemoryLocation

Input:
• An instruction
• A memory location

Output:
• Whether the memory location may be modified and/or may be read

(the negation of may means cannot)
• ModRefInfo (this is an enum)

ModRefInfo

ModRef

Mod Ref

NoModRef

Found no ref
Found no mod
Found must alias

MustMod MustRef

MustModRef

Intersection

Union

(Most conservative output)

Other alias queries

The AliasAnalysis and ModRef API includes other functions
• pointsToConstantMemory
• doesNotAccessMemory
• onlyReadsMemory
• onlyAccessesArgPointees
• …

• We have seen how to invoke alias analyses

• How can we access alias information and/or dependences in a pass?

• What does ”alias” mean in LLVM exactly?
What is the memory model adopted by LLVM?

The LLVM memory model

myObject0 = call malloc(4)
myObject1 = call malloc(10)

p = myObject0 + 4

Can p alias myObject1?

The LLVM memory model

myObject0 = call malloc(4)
myObject1 = call malloc(10)

p = myObject0 + 4

Can p alias myObject1?

